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Abstract: The structural, electronic and elastic properties of the M2SiC phases were studied, where M are 3d, 4d, and 5d early 
transition metals. The valence electron concentration (VEC) effect of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W on these properties was 
examined. The C44 saturates for a VEC value in surrounding of 8.5 for each serie. Hf-s, Ta-s and W-s electrons mainly contribute to 
the density of states at the Fermi level, and should be involved in the conduction properties. The distortion increases with increasing 
VEC and decreasing kc/ka factor except for the series M=Ti, V and Cr, where it is lower at the VEC value of 8.5 (it follows a 
parabolic variation). The M2SiC was characterized by a profound anisotropy for the shear planes )0110( and compressibility in the 
direction is higher than that along the cone except for W2SiC, where it is lower. 
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1 Introduction 
 

The MAX phases with chemical formula Mn+1AXn, 
where M is a transition metal, A is an A-group element, 
and X is C or N and n varies from 1 to 3, discovered by 
NOWOTNY [1], have recently attracted the interest of 
both material scientists and physicists due to their 
astonishing combination of properties. These materials 
combine some of the best attributes of metals and 
ceramics. They behave as metals in terms of their 
machinability, electrical and thermal conductivities. They 
behave as ceramics in terms of their specific stiffness and 
high temperature oxidation resistances [2−14]. This 
unique combination of characteristics makes them 
potential materials for many applications, such as 
rotating electrical contacts and bearings, heating 
elements, nozzles, heat exchangers, tools for die  
pressing [10]. Many of these applications are currently 
field-tested and are at various stages of development. 
Based on the n value, this class of materials form three 
groups, M2AX or 211, M3AX2 or 312 and M4AX3 or 413. 

The physical properties of MAX phases vary from 
phase to another and depend on M, A and X elements. 
M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases 
are members of this fascinating family of materials. In 
the present work, we report the first-principles study of 
the structural, electronic and elastic properties of M2SiC 
(M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases as a 
function of valence electron concentration (VEC) 
(average number of valence electrons per atom), by using 
the state of the pseudo-potential plane-wave method 
(PP-PW) in the framework of the density functional 
theory (DFT) in conjunction with the generalized 
gradient approximation (GGA). 
 
2 Computational method 
 

The first-principles calculations were performed by 
employing the PP-PW approach based on the       
DFT [15,16] and implemented in the Cambridge Serial 
Total Energy Package [17]. The exchange-correlation 
potential was treated within the generalized gradient 
approximation (GGA) of Perdew, Burke and Ernzerhof  
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[18]. In order to reduce the required number of plane 
waves, chemically inactive core electrons are effectively 
replaced with an ultra-soft pseudo-potential [19]. Two 
parameters that affect the accuracy of calculations are the 
kinetic energy cut-off which determines the number of 
plane waves in the expansion and the number of special 
k-points used for the Brillouin zone (BZ) integration. We 
performed convergence with respect to Brillouin zone 
sampling and the size of the basis set. Converged results 
were achieved with a 9×9×2 special k-points mesh [20]. 
The size of the basis set was given by cut-off energy 
equal to 350 eV. Careful convergence tests show that 
with these parameters, relative energy converged to 
better than 5×10−6 eV/atom. The Broyden−Fletcher− 
Goldfarb−Shanno (BFGS) minimization technique [21], 
which provides a fast way of finding the lowest energy  
structure, was used in the geometry optimization. The 
tolerances for the geometry optimization were the 
difference in total energy within 5×10−6 eV/atom, the 
maximum ionic Hellmann−Feynman force within   
0.01 eV/Å, the maximum ionic displacement within 
5×10−4 Å and the maximum stress within 0.02 eV/Å3. 
The elastic coefficients were determined from the 
first-principles calculations by applying a set of given 
homogeneous deformations with a finite value and 
calculating the resulting stress with respect to optimizing 
the internal degrees of freedoms, as implemented by 
MILMAN et al [22]. 
 
3 Results and discussion 
 
3.1 Structural properties 

M2SiC (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) 
compounds crystallize in the Cr2AlC crystal structure, 
with space group P63/mmc (#194). The atomic positions 
in the elementary cell are: C (0, 0, 0), Si (1/3, 2/3, 3/4) 
and M (1/3, 2/3, z). Two lattice constants a and c and the 
internal structural parameter z define the structure. 
Figure 1 shows a structural model for the crystalline 
structure of M2SiC phase. The optimized equilibrium 
lattice parameters a0, c0 and the internal structural 
parameter z0, for all M2SiC series as determined from 
geometry within GGA are given in Table 1. There is a 
good agreement between our calculated lattice constants 
and internal parameter of Nb2SiC and those previously 
reported by COVER et al [23] and GHEBOULI et     
al  [24]. The compounds with M elements belonging to 
the same line of the periodic table are grouped together. 
HUG [25] defined for a parameter, ar, of the 211 MAX 
phases to describe the distortion as follows: 
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Fig. 1 Structural model for crystalline structure of M2SiC phase 
 
where z is the internal coordinate of the C atoms. As 
defined, ar is the ratio of the distances between two 
opposite faces contained in the basal planes and two 
faces not in the basal planes. This factor equals unity for 
the cubic octahedron. The calculated ar values for the 
studied M2SiC phases are listed in Table 1 and plotted in 
Fig. 2. The distortion increases with increasing VEC 
except for the series M=Ti, V and Cr, where it has a 
lower value in V2SiC (it follows a parabolic variation). 
The distortion is clearly the highest in Ti2SiC, Mo2SiC 
and W2SiC. The variation of the lattice constants c and a 
as a function of the VEC for the three series is shown in 
Fig. 2. These parameters show a decrease with increasing 
VEC for all series. From Table 1, for the same VEC, 
c0/a0 ratio decreases when the number of valence 
electrons of M element is enhanced. The a0 and c0 values 
of the series of M2SiC phases, where M belongs the same 
column, increase when they go downward the column: 
{a0 and c0} (Ti2/V2/Cr2SiC)<{a0 and c0} (Zr2/Nb2/ 
Mo2SiC)<{a0 and c0} (Hf2/Ta2/W2SiC). As Si and C 
atoms are the same in the three compounds, this result 
can be easily explained by considering the atomic radii 
of M atoms. The larger size of M atoms forces the 
system to have larger lattice constants. 

The computed equilibrium geometry of M2SiC unit 
cell at applied hydrostatic pressure in the range of 0−20 
GPa with the step of 5 GPa is performed to investigate 
the structural parameters under pressure effect. It is 
assumed that no phase transformation occurred in these 
systems. Also, it was reported that no phase 
transformation was observed in the MAX phases Ti2AlN, 
Ti2AlC, V2AlC, Cr2AlC, Nb2AlC, Nb2AlC and Zr2InC, 
which were investigated under pressure of 50 GPa by 
using a synchrotron radiation and a diamond-anvil cell to 
measure the pressure dependencies of the lattice 
parameters [26,27]. Figure 3 plots the relative changes of 
the lattice parameters (a/a0 and c/c0) versus applied 
hydrostatic pressure (p). We clearly observe a quadratic  
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Table 1 Lattice constants a0 and c0, c0/a0 ratio, bulk modulus B0 and its pressure derivative B′, internal parameter z and distortion of 
M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases at zero pressure 

Phase a0/Å c0/Å c0/a0 B0/GPa B′ z ar 

Ti2SiC 3.2002 12.8160 4004 173.68 4.281 0.0910 1.409 

V2SiC 2.9172 12.0549 4132 214.01 4.231 0.0922 1.304 

Cr2SiC 2.8406 11.8612 4175 223.40 4.238 0.0893 1.354 

Zr2SiC 3.2778 13.6240 4156 162.09 3.971 0.0945 1.236 

Nb2SiC 3.1875 12.4175 3895 217.94 4.223 0.0962 1.342 

Mo2SiC 3.0790 12.2099 3998 246.59 3.851 0.0931 1.377 

Hf2SiC 3.2817 13.4067 4085 181.12 4.289 0.0967 1.223 

Ta2SiC 3.2597 12.4195 3810 218.21 4.411 0.0991 1.325 

W2SiC 3.1005 12.2470 3950 262.93 4.108 0.0939 1.366 

 

 
Fig. 2 Lattice constants a and c and distorsion ar in M2SiC 
phases as function of VEC 

dependence in all curves of the studied compounds in the 
considered range of pressure. The solid curve is the 
quadratic least-squares fit (a/a0, c/c0=1+αp+βp2). In 
contradiction to some other MAX phases [26−32], the 
compressibility of M2SiC along the a-axis is greater than 
that along c-axis, except for Nb2SiC, which are nearly 
identical and in W2SiC, it is greater along the c-axis. The 
same behaviour has been observed in other MAX  
phases [27,31−33]. Different reasons have been reported 
to explain this behaviour. With subjecting Nb2AsC to 
hydrostatic pressure up to 41 GPa, KUMAR et al [33] 
found that the pressure contraction along the a-direction 
was greater than that along the c-axis, and concluded that 
Nb−As bond must be quite resistant to compression 
along the c-axis. Experiments on M2AlC phases (M=Ti, 
V, Cr, Zr, Nb and Ta) [27] revealed that the 
compressibility in the c-axis was lower than that along 
a-axis for M = Cr and Nb. It was suggested that M—C 
and M—Al bonds have comparable strength in M2AlC 
with M=Cr, Nb. EMMERLICH et al [31] reported for 
M2AlC phases (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) that 
for the M element with a VEC of 4, the compressibility 
in c-axis is larger than that along the a-axis. As the VEC 
increases and reaches 5, it decreases and becomes 
comparable to that along the a-axis, whereas at VEC=6, 
the compressibility in the a-axis is larger than that along 
the c-axis. The geometric alteration of the bonding 
configuration in combination with the increase in M—C 
bond stiffness is responsible in this compressibility 
change. A similar observation in compressibility along 
both a and c axes for Ta2AlC [32] has been attributed to 
an increase in Ta—Al and Ta—Ta bonding strength as 
well as the interaction between TaC−TaC layers. Our 
results show that the compressibility along the a-axis is 
higher than that along the c-axis for all studied M2SiC 
compounds and has VEC of 8.0, 8.5 and 9.0, except for 
M=Nb and W. These results conclude that the 
compressibility of the lattice parameters depend on   
the nature of M, A and X atoms. The calculated unit cell  
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Fig. 3 Relative changes of lattice constants a/a0 and c/c0 in M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases as function of 
pressure 
 
volumes at fixed values of applied hydrostatic pressure 
in the range of 0−20 GPa with the step of 5 GPa were 
used to construct the equation of state (EOS), which was 
fitted to the third-order Birch−Murnaghan equation [34]. 
We obtained, by least-squares fitting, the bulk modulus at 
zero pressure B0 and its pressure derivative B′. These are 
listed in Table 1. Table 1 illustrates that the bulk modulus 
increases with increasing the number of valence 
electrons of the transition metal in the same row. 
 
3.2 Electronic properties 

The calculated energy band structures for Hf2SiC, 
Ta2SiC and W2SiC at equilibrium lattice parameters, 
along the high symmetry directions in the Brillouin zone, 
where the transition metal element belongs to the sixth 
period, are shown in Fig. 4. We considered them as a 
prototype since the band profiles of the other  
compounds, where the transition metal element belongs 
to the other periods, are quite similar. The valence and 
conduction bands overlap considerably and there is no 
band gap at the Fermi level. As a result, M2SiC will 
exhibit metallic properties. The noble metal carbides, 
such as PdC, AgC, PtC and NbC in zinc blende phase are 
metallic in nature [35−38]. The EF of Hf2SiC lies below 
the valence-band maximum near Γ point. In W2SiC, 

more valence electrons present in the unit cell, and the EF 
lies about 2.5 eV which is higher than that in Hf2SiC. 
This leads to some additional occupation of bonding 
states near the Fermi level. The initially unoccupied 
valence band near the Γ point shifts downward and is 
located below the Fermi level in W2SiC. The substitution 
of Hf by Ta and then by W in M2SiC introduces extra 
valence electrons per atom and correspondingly Fermi 
level moves to a higher energy. 

The calculated total densities of states (TDOS) for 
Hf2SiC, Ta2SiC and W2SiC are presented in Fig. 5. The 
details of the peak structures and the relative heights of 
the peaks in their TDOS are rather similar, indicating 
similarity in chemical bonding. The computed number 
(N) of states at the Fermi level (EF) is 3.59, 3.01 and  
2.12 eV/cell for W2SiC, Hf2SiC and Ta2SiC. Therefore, 
we expect that the electrical conductivity decreases in the 
sequence of W2SiC → Hf2SiC → Ta2SiC. The 
understanding of the chemical bonding in M2SiC 
requires the calculating their partial density of states 
(PDOS). The PDOS spectrum for M2SiC, where M 
belongs to the fourth period, is shown in Fig. 5. Carbon 
does not contribute to the TDOS at the Fermi level and 
therefore is not involved in the conduction properties. 
M-s electrons mainly contribute to the TDOS at the 
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Fermi level, and should be involved in the conduction 
properties. Si electrons do not contribute significantly at 
the Fermi level. It is apparent that a covalent interaction 
occurs between the constituting elements. C-s and M-s as 
well as Si-s and M-s states are hybridized. The PDOS 
shows that the hybridization peak in energy of M-s and 
C-s is lower than that of M-s and Si-s. This suggests that 
the M-s=(Ti-s, V-s and Cr-s)—C-s bonds are stiffer than 
the (M-s)—(Si-s) bonds. The Fermi level moves from a 
lower to a higher energy with the substitution of the 
transition metals of Ti by V and Cr, which indicates that 
the increased extra valence electrons fill in the M-s—C-s 
and M-s—Si-s hybridized bonding states. The states 
located between −0.9 and −5.5 eV below the Fermi level 
in Hf2SiC are originated from the hybridization of  
(Hf-6s)—(C-2s) orbitals. These states shift downward 
and extend from −1.9 to −5.68 eV below Fermi level in 
Ta2SiC. This indicates that the stiffness of the M−Si and 
M−C bonds increases with increasing valence electron 
concentration. 
 
3.3 Elastic properties 

Table 2 lists our computed elastic constants of 
M2SiC phases (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W). To 
date, no direct experimental elastic constants are 
available to be compared with our results. Future 
experimental measurements will test our calculated 

predictions. The elastic constant C11, which provides a 
measure of rigidity against unidirectional deformation 
along a-axis is slightly lower than the elastic constant  
C33, which provides an estimation of the elastic response 
of the material to a unidirectional pressure along 
c-direction. This is in accordance with the response of a- 
and c-axis under hydrostatic pressure (Fig. 3). 

The elastic anisotropy of crystals has an important 
implication in engineering since it is highly correlated 
with the possibility to induce microcracks in the 
materials [39]. Essentially, all known crystals are 
elastically anisotropic, and a description of such 
anisotropic behaviour has an important implication in 
engineering science as well as in crystal physics. To 
quantify the elastic anisotropy of M2SiC, we calculated 
the shear anisotropic factor (A) for the shear plane 

)0110(  formed by the 〉〈 1101  and 〉〈 0101  
directions, which is identical to the shear anisotropy 
factor for the shear plane )0101(  formed by the 

〉〈 1110  and 〉〈0001  directions [40]: 
 

133311

44

2
4

CCC
CA

−+
=                           (2) 

 
The calculated shear anisotropic factor of M2SiC is 

given in Table 2. For an isotropic crystal, A is equal to 1, 
while any value smaller or larger than 1 indicates 
anisotropy. The magnitude of the deviation from 1 is a  

Fig. 4 Electronic band dispersion curves of 
Ta2SiC (a), W2SiC (b) and Hf2SiC (c) along 
some high symmetry directions of Brillouin 
zone 
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Fig. 5 Total and partial densities of states of Ta2SiC (b), W2SiC (a) and Hf2SiC (c) 
 
measure of the degree of elastic anisotropy possessed by 
the crystal. According to this, M2SiC is characterized by 
a profound anisotropy for the shear planes described 
above. 

We use the ratio between the linear compressibility 
coefficients along the c- and a-axis, i.e., kc/ka to 
characterize their elastic anisotropy (Table 2 and Fig. 6). 
For a hexagonal crystal, kc/ka can be expressed as [41,42] 
 

)()2(/ 1333131211 CCCCCkk ac −−+=            (3) 
 

On can notice that kc/ka decreases with increasing 
VEC. The kc/ka values for all M2SiC phases are less than 
1, which suggests that the compressibility along a-axis is 
higher than that along c-direction. It is observed that the 
distortion increases with decreasing kc/ka except for the 
series M=Ti, V and Cr, where it is lower for V2SiC 

compound. 
Once the elastic constants are determined, we would 

like to compare our results with experiments, or predict 
what experiment would yield for the elastic constants. A 
problem arises when single-crystal samples cannot be 
obtained. Then, it is not possible to measure the 
individual elastic constants Cij. Instead, the isotropic bulk 
modulus B and the shear modulus G are determined [43]. 
These data cannot in general be calculated directly from 
Cij, but we can use our values to place bounds on the 
isotropic modulus. REUSS and ANGEW [44] found 
lower bounds for all lattices, while VOIGT [45] 
discovered upper bounds. HILL [46] showed that the 
Voigt and Reuss averages are limited and suggested that 
the actual effective modulus could be approximated by 
the arithmetic mean of the two bounds. The formulas for  
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Table 2 Calculated elastic constants Cij, ratio kc/ka, bulk modulus B and shear modulus G, elastic modulus E, Poisson ratio υ and 
anisotropy factor A of M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases 

Phase C11/GPa C33/GPa C44/GPa C12/GPa C13/GPa C66/GPa kc/ka BV/GPa 

Ti2SiC 311 343 155 84 107 119 0.7669 173 

V2SiC 313 344 194 131 154 91 0.7157 205 

Cr2SiC 337 440 64 138 178 99 0.4542 133 

Zr2SiC 267 280 116 91 110 88 0.8117 159 

Nb2SiC 325 357 195 139 172 93 0.6486 219 

Mo2SiC 339 380 139 161 191 89 0.6243 238 

Hf2SiC 308 305 142 90 129 109 0.7954 179 

Ta2SiC 332 361 203 136 173 98 0.6489 221 

W2SiC 375 419 132 157 224 109 0.4307 264 

Phase BR/GPa B/GPa GV/GPa GR/GPa G/GPa E/GPa σ A B/G 

Ti2SiC 172 172.5 130 127 128.5 309 0.20 1.4 1.34 

V2SiC 204 204.5 131 114 122.5 306 0.25 2.22 1.66 

Cr2SiC 226 179.5 87 82 84.5 225 0.33 0.6 2.12 

Zr2SiC 159 159 97 95 96 240 0.24 1.41 1.65 

Nb2SiC 217 218 132 113 122.5 309 0.26 2.30 1.77 

Mo2SiC 235 236.5 108 102 105 274 0.30 1.64 2.25 

Hf2SiC 179 179 117 112 114.5 283 0.23 1.6 1.56 

Ta2SiC 219 220 137 118 127.5 320 0.25 2.34 1.72 

W2SiC 258 261 112 108 110 289 0.31 1.52 2.37 

 
these bounds for a hexagonal lattice can be found in  
Refs. [47,48]. We also calculated the elastic modulus (E) 
and Poisson ratio (υ), which are frequently measured for 
polycrystalline materials when investigating their 
hardness. These data are related to the bulk modulus B 
and the shear modulus G by the following     
equations [49]: 
 

)3/(9 GBBGE +=                           (4) 
 

)6/()3( BEB −=υ                            (5) 
 

The calculated bulk modulus, shear modulus, elastic 
modulus and Poisson ratio of M2SiC (M=Ti, V, Cr, Zr, 
Nb, Mo, Hf, Ta, W) are given in Table 2. The bulk 
modulus values calculated from the elastic constants 
have nearly the same ones as those obtained from the 
EOS fitting. This might be an estimate of the reliability 
and accuracy of our calculated elastic constants. We 
illustrate the VEC effect on elastic and shear moduli as 
shown in Fig. 6. With the exception of V2SiC, which is 
anomalously soft, E is the maximum at VEC of 8.5. The 
trends in G are identical, with the G values also peaking 
at VEC of 8.5, again with the exception of V2SiC. The 
Poisson ratio falls in the range 0.2−0.33. 

One can estimate the brittle and ductile behaviours 
of polycrystalline materials by considering B and G as 
the resistance to fracture and to plastic deformation. A 

low (high) B/G ratio is therefore associated to brittleness 
(ductility) of materials. The consequence of brittleness is 
the sensitivity for thermal shocks, as the material cannot 
efficiently dissipate thermal stress via plastic 
deformations. Thus, a brittle solid can only be subjected 
to limited thermal shocks before its strength drops 
dramatically. The ductile materials are resistant to 
thermal shocks; their mechanical properties decrease 
slowly with increasing temperature. PUGH [50] 
proposed a critical value which separates ductile and 
brittle materials. It was fixed at about 1.75, i.e., if 
B/G>1.75, the material behaves in a ductile manner, 
otherwise, the material behaves in a brittle manner. From 
the computed B/G ratios of Table 2 and referred to 
Pugh’s criterion, we can conclude that M2SiC (M=Cr, 
Mo and W) is brittle, whereas M2SiC (M=V, Nb and Ta) 
is between the two categories of materials. M2SiC, with 
M=Ti, Zr and Hf is ductile. 

The key criterion for mechanical stability of a 
crystal is that the strain energy must be positive [51]. For 
an hexagonal crystal, its five independent elastic 
constants should satisfy the well-known born stability 
criteria [52], i.e., C11−|C12|>0, (C11+C12)C33− 02 2

13 >C  
and C44>0. Our results reveal that the stability criteria are 
verified, implying the mechanical stability of M2SiC 
materials. The stability of these compounds can also be  
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Fig. 6 Ratio between linear compressibility coefficients kc/ka 

along c- and a-axis (a), shear modulus (b) and elastic modulus 
(c) in M2SiC phases as function of VEC 
 
confirmed by providing the Poison ratio, whose value is 
usually between −1 and 0.5, corresponding to the lower 
and upper limit where the materials do not change their 
shapes. 

Elastic deformation can be reduced to volume and 
shape changes [53]. The bulk modulus provides an 
estimation of the elastic response of the material to 
isotropic hydrostatic pressure. The shear modules (G and 
C44) provide a measure of rigidity against the shape 
deformation. WANG and ZHOU [53] and JHI et al [54] 
found that in transition-metal carbonitrides TiCxN1−x, the 

hardness and shear module C44 reached an anomalous 
maximum for one valence electron number value in the 
unit cell, while the bulk and shear moduli did not show 
the maximum. C44 was demonstrated to be a better 
hardness predictor for this class of materials [53−55]. 
Because of the fact that M2SiC phase has a close 
relationship with the transition-metal carbides both in 
crystal structure and atomic bonding characteristics, one 
could expect direct information on predicting the 
hardness by examining the correlation between C44 and 
VEC for M2SiC. Figure 7 illustrates the calculated elastic 
constant C44 of M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta 
and W) as a function of the valence electron 
concentration (average number of valence electrons per 
atom). This variation is parabolic and similar in each 
series. In the same series, as the VEC is increased from 
8.0 to 8.5, C44 increases and then decreases when the 
VEC reaches 9. We remark that C44 may saturate its 
maximum when the VEC is equal to 8.41, 8.56 and 8.48 
for the compounds having M element from the fourth, 
the fifth and the sixth period, respectively. This trend is 
consistent with the literature on M2AlC (M=Ti, V, Nb,  
Cr) [56,57]. This implies that the maximal hardness 
might be achieved when the VEC is in the range of 
8.40−8.42, 8.55−8.57 and 8.47−8.49 for the compounds 
having M element from the fourth, the fifth and the sixth 
period, respectively. 
 

 

Fig. 7 Calculated elastic constant C44 of M2SiC as function of 

VEC (Solid lines represent the second-order polynomial fit) 
 
3.4 Thermal properties 

The thermal conductivity is the property of a 
material that indicates its ability to conduct heat. So, in 
order to know if material is a potential candidate for 
thermal barrier coating application, its thermal 
conductivity needs to be investigated. Based on the 
Debye model, CLARKE [58] suggested that the 
theoretical minimum thermal conductivity kmin can be 
calculated after replacing different atoms by an 
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equivalent atom with a mean relative atomic mass Mm: 

3
2

mmBmin )/(
−

= ρMvkk                        (6) 
 
where kB is the Boltzmann constant. 

The average sound velocity vm in the polycrystalline 
material is given by [59] 
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where vl and vt are the longitudinal and transverse sound 
velocities obtained by the shear modulus G and the bulk 
modulus B from the Navier’s equation [59]: 
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One of the most important parameters that 

determine the thermal characteristics of materials is the 
Debye temperature (θD). The Debye temperature is 
closely related to many physical properties such as 
elastic constant, specific heat and melting temperature. A 
higher θD implies a higher thermal conductivity.  It is 
used to distinguish high and low temperature regions for 
a solid. All modes are expected to have energy kBT if  
T>θD, and if T<θD one can expect high-frequency modes 
to be frozen [60]. At low temperature, the vibrational 
excitation arises solely from acoustic modes. Hence, at 
low temperature, the Debye temperature calculated from 
elastic constants is the same as that determined from 
specific heat measurements. The Debye temperature can 
be defined in terms of the mean sound velocity as 
follows [59]: 
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The computed thermal properties of M2SiC (M= Ti, 

V, Cr, Zr, Nb, Mo, Hf, Ta and W) phases, including the 
sound velocity, minimum thermal conductivity and 
Debye temperature as well as the density are summarized 
in Table 3. When the M element changes downward the 
column of periodical table, the Debye temperature and 
minimum thermal conductivity of M2SiC decrease, 
except for the series M = Ti, Zr and Hf, where it is lower 
for Zr2SiC. When the M element changes in the same 
line of the periodical table, the Debye temperature and 
the minimum thermal conductivity of M2SiC saturate 
their maximum for a VEC value about 8.5. In this 
formulation, the Debye temperature is directly related to 
the elastic constants via average elastic wave velocity, so 
the variations of the Debye temperature and the 
minimum thermal conductivity of M2SiC depending on 
the chemical nature of the M elements have the same 

trend with the average elastic wave velocities. 
Unfortunately, as far as we know, there are no data 
available related to these properties in the literature for 
M2SiC. Therefore, our calculated values can be 
considered prediction of these properties. Future 
experimental work will provide a comparison for our 
calculated results. 
 
Table 3 Calculated density ρ, longitudinal, transverse and 
average sound velocities vl, vt and vm, Debye temperature θD 
and minimum thermal conductivity kmin for M2SiC (M=Ti, V, 
Cr, Zr, Nb, Mo, Hf, Ta and W) phases 

Phase ρ/(g·cm−3) vl/(m·s−1) vt/(m·s−1) vm/(m·s−1) θD/K kmin

Ti2SiC 4.4581 8790 4648 5195 577 1.40

V2SiC 5.3071 8326 4534 5058 595 1.43

Cr2SiC 5.7731 7702 3763 4227 512 1.15

Zr2SiC 5.8297 7025 4022 4468 543 0.96

Nb2SiC 6.8665 7453 4534 5009 642 1.11

Mo2SiC 7.6207 7032 4195 4643 617 1.05

Hf2SiC 10.546 5609 4382 4671 691 0.8

Ta2SiC 11.6815 5777 4626 4907 751 0.95

W2SiC 13.2825 5542 4296 4586 733 0.75

 
4 Conclusions 
 

1) The lattice constants decrease with increase in 
VEC of the M element in the same period. 

2) A numerical first-principles calculation of the 
elastic constants was used to calculate C11, C12, C13, C33, 
C44 and C66. It is found that a quadratic dependence of 
the ratio c0/a0 as a function of valence electron 
concentration. 

3) With the exception of V2SiC, both the elastic and 
shear moduli peaks are at a VEC value of 8.5. 

4) The distortion and bulk modulus increase with 
increasing VEC. 

5) The Debye temperature and the minimum 
thermal conductivity of M2SiC saturate their maximum 
at a VEC value about 8.5. 

6) Like all MAX phases, the compounds studied are 
electrical conductors and the conductivity is assured by 
the s electrons of the transition metals. 

7) The analysis of the partial density of states shows 
a strong hybridization Si-s—M-s and C-s—M-s. 
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M2SiC(MAX)相(M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) 
结构、电子特性、弹性和热性能的第一性原理计算 
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摘  要：研究 M2SiC 相的结构、电子特性、弹性和热性能(M 为 3 d, 4 d 和 5 d 前过渡金属)。分析 Ti、V、Cr、Zr、

Nb、Mo、Hf、Ta 和 W 价电子浓度(VEC)对这些性能的影响。每个系列金属在 VEC 值约为 8.5 时弹性常数 C44

达到饱和。Hf-s、Ta-s 和 W-s 电子主要在费米能级对态密度有贡献，可用于传导性能计算。M=Ti，V 和 Cr 系列

金属在 VEC 值为 8.5 时畸变最小(遵循抛物线变化)，而其他金属的变形随着 VEC 值的增大和 kc/ka因子的减小而

增大。M2SiC 的主要特征是在 )0110( 剪切面具有强烈的各向异性。除 W2SiC 外，沿该方向的可压缩性比沿锥面

方向的可压缩性高。 

关键词：三元碳化物；从头计算法；晶体结构；电子结构 
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