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Abstract: In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different
kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics
were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear
characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9
have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 °C, 239 °C, 220 °C and 220 °C,
respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension
of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the
self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples
1,2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6,
sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the
nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the

reliability of measured results.
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1 Introduction

Spontaneous combustion of sulfide ores is a
conversion of the chemical energy to heat due to
oxidation [1-3]. If the reaction heat doesn’t dissipate
entirely, sulfide ores will be heated and release more and
more heat, which is a positive feedback. When the
temperature of sulfide ores reaches the ignition
temperature, spontaneous combustion will take place. It
is well known that spontaneous combustion of sulfide
ores is one of the most serious disasters in sulfide
deposits mining [4—6]. According to statistics of
spontaneous combustion, it has occurred in more than ten
mines in China since 1949, such as Wushan Copper
Mine, Xiangshan Pyrite Mine and Dongguashan Copper
Mine [7]. Spontaneous fires of sulfide ores not only
generate massive toxic gas and heat to worsen the work

environment, but also bring about large economic losses
even loss of human life. For the rapid decrease of surface
mineral resources, deep mining has become a trend and
its high temperature can cause spontaneous combustion
more easily. Therefore, researches on the oxidation
mechanism, prevention and control technology of
spontaneous combustion are a premise to ensure safe and
efficient mining for high-sulfur mines.

In recent years, evaluation for spontaneous
combustion tendency of sulfide ores has attracted
attention of many researchers and some new evaluation
methods have been proposed, such as apparent activation
energy method [8], matter-element model [9], evaluation
model based on entropy and set pair analysis theory [10],
Fisher discriminant analysis method [11] and uncertainty
measurement model [12]. To evaluate the spontaneous
combustion tendency of sulfide ores synthetically,
self-heating initiative temperature, which is measured by
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carrying out self-heating characteristics experiment, is
commonly used as an index. As the self-heating of
sulfide ores is a nonlinear multi-factor coupling
evolution process, research on the unsteady self-heating
process by means of nonlinear dynamics theory is
worthy of further study. Currently, there are very scarce
researches on nonlinear characteristics of self-heating
process.

In this work, nine kinds of typical sulfide ore
samples from a pyrite mine in China were taken as
experimental — materials and their  self-heating
characteristics were measured with precision instruments
in laboratory. Combined with wavelet transform,
nonlinear characteristic parameters extraction and fuzzy
comprehensive evaluation, the nonlinearity of ore
samples  self-heating  process, which is the
characterization of complexity for self-heating process,
was calculated. Moreover, self-heating tendency
evaluation method of sulfide ores based on nonlinear
multi-parameters fusion was proposed.

2 Experimental

2.1 Ore samples collection and analysis

Sulfide ore samples were collected from a pyrite
mine in China with the sampling method of multi-point
sampling, and nine types of representative samples were
taken as experimental materials. As an example, the
chemical composition of the ore sample 1 is listed in
Table 1.

Table 1 Chemical composition of ore sample 1 (mass fraction,

%)
Water-soluble Total Monomer Sulfate
iron ion sulfur sulfur ion
0.0016 35.27 0.044 1.57

The metallic mineral of the ore sample 1 is pyrite
with two-stage mineralization. The largest size of
early-stage pyrite particles is about 5 mm, and their
average size is about 2 mm. They are fragmented as a
result of the stress action. Unlike the early-stage pyrite
particles, the late-stage pyrite particles are fine-grained
aggregates with the average size of about 5 pm. The
micrograph of the ore sample 1 is shown in Fig. 1.

2.2 Experimental method

In the experiment, the particle diameter of ore
samples was ground to less than 0.2 mm. Each sample
with mass of about 100 g and moisture content of about
5% was installed into the reactor in the automatic heating
incubator to measure its self-heating characteristics
owing to the weak oxidation of sulfide ores at normal
temperature. The initial temperature was set between 40

and 50 °C and one single heating extent was about 10 °C.
After the temperature of automatic heating incubator
reached the setting temperature, it was kept isothermal
for about 30 min. During the experiment process, the
maximum temperature of automatic heating incubator
was not higher than 250 °C. The experimental devices
are shown in Fig. 2.

|
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Fig. 2 Schematic diagram of experimental apparatus:
1—Poisonous gas absorption bottle; 2— Automatic heating
incubator; 3 — Reactor; 4—Ores; 5— Temperature probe;
6 — Humidifier; 7 — Flow meter; 8 — Buffering bottle;
9—Automatic temperature recorder; 10—Oxygen cylinder

3 Experimental results

By analyzing the self-heating characteristic curves
of ore samples, it can be found that only the ore samples
1, 2, 6 and 9 have obvious self-heating phenomenon, and
their self-heating initiative temperatures are 220 °C, 239
°C, 220 °C and 220 °C, respectively, which means that
they are difficult to produce self-heating under normal
mining conditions. Figure 3 displays the self-heating
characteristic curve of the ore sample 1. It shows that the
obvious self-heating period lies between 1200 and 1230
min and the maximum self-heating extent is 5 °C.

4 Preprocessing of measured temperature
series

Temperature variations of ore samples are caused by
the comprehensive effect of automatic heating incubator
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Fig. 3 Self-heating characteristic curve of ore sample 1
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and exothermic oxidation of ore samples, and the former
plays a dominant role. Hence, it is necessary to separate
self-heating information from the measured temperature
series. Then, the temperature series were processed by
wavelet decomposition and reconstruction [13]. The low
frequency components of the (large scale
approximation parts) reflect the effect of gradient
temperature-elevating with automatic heating incubator,
and high frequency components (details) contain the
complicated self-heating information of ore samples.

Owing to the limited measured data, the
temperature series of the four samples (ore samples 1, 2,
6 and 9) were extended with the cubic spline
interpolation method, and the length of the expanded
series was 301. For temperature increments could show
the pre- and post-temperature variations more intuitively,
they were selected as the research objects.

The temperature increment series were transformed
with the same wavelet function of bior3.1 based on the
results of wavelet optimization. The characteristic values
of corresponding series are listed in Table 2, which
indicate that the temperature increment series are well
correlated for all the autocorrelation coefficients, greater
than 0.86, and the skewness coefficients have a
significant difference.

For these four kinds of ore samples, their
temperature increment series were decomposed with
wavelet bior3.1, and then the first layer of high
frequency coefficients were reconstructed. Finally, the

series

Table 2 Characteristic values for corresponding series of ore samples
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reconstructed high frequency series were normalized as
the research series.

Wavelet reconstruction for temperature increment
series of the ore sample 1 is shown in Fig. 4. The trend of
low frequency reconstructed series, which reflects the
effect of gradient temperature-elevating, is consistent
with that of the original sequence in general. High
frequency reconstructed series have more complicated
detailed change, which can amplify the tiny distinction of
self-heating process effectively.

5 Extraction of nonlinear multi-parameters

According to the definitions of approximate entropy,
correlation dimension and the maximum Lyapunov
exponent, each of them can be adopted to characterize
the chaotic features from different aspects. Approximate
entropy mainly reflects the disorder degree of the time
Correlation dimension is a measure of the
complexity for chaotic series. Maximum Lyapunov
exponent is an estimation of predictability for chaotic
Therefore, these three kinds of nonlinear
characteristic parameters were extracted from research
series as evaluation indexes for self-heating tendency:.

series.

series.

5.1 Extraction of approximate entropy

For a given N-point research series {x(i), i=1, -,
N}, approximate entropy can be obtained by the
following steps (m is the dimension, and r is the
threshold value) [14]:

1) Compose the m-dimensional vector X(i) as
follows:

X (@) =[x(@@), x(i+1), -, x((+m-1)],
i=1,2,---,(N—-m+1) 1)
2) For every i value, calculate the distance between

X(i) and X(j), namely

dIX@.X()]= max [|x(i+8)=x(j+b)] @)

3) Given the threshold value r (+>0), for each i
value, count the number of d[X(i), X(j)]<r (denoted as
n"(r)) and calculate the ratio of n"(r) to the total
number of vectors (denoted as C;" (7)), so

Temperature increment series

Low frequency reconstructed series

Sg;\l;:fle Mean Variation Autocorrelation  Skewness Mean Variation ~ Autocorrelation ~ Skewness
value coefficient coefficient coefficient value coefficient coefficient coefficient

1 0.6617 1.3556 0.8837 0.7875 0.6617 1.3462 0.8856 0.7510

2 0.6987 1.6351 0.8813 0.5807 0.6987 1.6149 0.8849 0.5218

6 0.8060 1.3528 0.8929 2.5053 0.8060 1.3401 0.8952 2.4664

9 0.7500 1.4255 0.8673 1.8876 0.7500 1.3964 0.8756 1.8521
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Fig. 4 Wavelet reconstruction for temperature increment series

of ore sample 1: (a) Original series; (b) Low frequency series;
(c) Normalized high frequency series

n" (r)

C"(r) =
P () N-m+1

(€)

4) Calculate the logarithm of C/"(r) and its
average value, denoted as ¢ (r) , namely
1 N-m+1

¢m(”)=m ; InC/" (r) 4)

5) For m + 1, repeat steps 1-4 to obtain ¢""'(r).
The approximate entropy value is as follows:

Ex(m,r)=¢"(r)—¢""'(r) (5)

Usually, m=2 and r=ko (k is empirical coefficient,
k=0.1-0.2; o is standard deviation of research series) are
used to calculate the approximate entropy.

In this work, empirical coefficient was determined
according to the variation extent of approximate entropy
with different k values, which can be expressed as

pe |Ex (m,ky0) = E (m, ko)
EA (maklo-)

(6)

For all the ore samples, when the average E takes on
minimum value, the corresponding & value is optimal.

Figure 5 denotes the variation of approximate
entropy with different values of k. With the increase of £,
approximate entropy for research series of the ore sample
9 gradually increases, while the others decrease, as
shown in Fig. 5. When £=0.15, the average E takes a
minimum value of 0.66%. Correspondingly, approximate
entropies of the ore samples 1, 2, 6 and 9 are 0.6309,
0.6229, 0.5759 and 0.6251, respectively.

+—0Ore sample 1
4—OQOre sample 2
=—(re sample 6
*—Ore sample 9

0.70

Fig. 5 Eo—k curves for ore samples

5.2 Extraction of correlation dimension

Correlation dimension can be calculated by the
following steps based on the GP algorithm [15]:

1) For the m-dimensional reconstructed phase space,
define the correlation integral as

1 N
Cimry=— ) O|r—-|X,-X; (7
N2 i,jzzl [ | J |:|
i#]
where N is the number of phase point, » is hypersphere
radius, | X—X;|is the euclidean distance between the
phase point X; and X;, and @ is called Heaviside function.
2) Adjust the value of 7 in a certain range to meet

C(m,r)oc rP™ (8)

where D(m) is an estimation of correlation dimension.

3) When the embedding dimension m is equal to the
saturated embedding dimension m., D(m) will be stable
and the stable value is correlation dimension D,.
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In actual calculation of D,, the optional delay time z
was obtained using the improved auto-correlation
function method [16] firstly, and then D, was extracted
in reconstructed phase space.

In C(m,r)—In r curves for research series of the ore
sample 1 are depicted in Fig. 6(a), which indicate that
In C(m,r) increases at first and then tends to be stable
with In 7. The calculated results are D,=1.4503 and m =6,
as shown in Fig. 6(b).

The calculated results D, for all the samples are
listed in Table 3.

S
K=
=
S. -1.5F¢ Fitting straight line
= InC(m,r)y=1.4503In r+2.6646
=20}
Fitting results
—2.51 RMSE  SSE R R?
20 0.1578 0.1245 0.9822 0.9646
-4 =3 32 -1 0
Inr

Fig. 6 D, calculation process for ore sample 1: (a) In C(m,r)—
In r curves; (b) Fitting result (m=6)

Table 3 Calculated results D, for ore samples

Samples No. T me D,
1 1 6 1.4503
2 1 6 1.1154
6 1 7 1.9921
9 1 6 1.5642

5.3 Extraction of maximum Lyapunov exponent
Maximum Lyapunov exponent can be calculated by
the following steps by means of small data sets [17].
1) In the m-dimensional reconstructed phase space,
search the nearest neighbor point Xj; of the reference

point X; and keep temporal separation:
d,(Oy=min| X, - X | | /= il > p ©)

where d(0) is the initial distance between the phase point
X; and its nearest neighbor point Xj; and p is the mean
period of research series.

2) To each point X, calculate the distance dj(i):

d, (i)=||Xj+l. -X

B+ si=1, 2,nmln(N_]aN_]])(1O)

3) For general j, calculate the average value of y(i):
1 q
i=— > Ind . (i 11
U ; 1) (11)

where ¢ is the number of all non-zero d(i).

4) Select the linear region of y(i)—i curves and make
the regression line using the least square method. The
slope of the line is the maximum Lyapunov exponent
Amax-

For the ore sample 1, the mean period of research
series was calculated with the value of 3 based on FFT
method. The phase space was reconstructed with m=6
and =1, and then the maximum Lyapunov exponent
(Amax=0.0037) was calculated following the above step.
Figure 7 shows the A, result for the ore sample 1.

0.20
0.15+
= o010k Fitting straight line
o W(i)=0.0037i+0.0798
-
.*.
0.05F% Fitting result
al RMSE  SSE R R?
0.0207 0.0128 0.8381 0.7024
0 10 20 30 40

i
Fig. 7 Apax result for ore sample 1
Table 4 lists the calculated results of A, for all
samples. In conjunction with Table 3, it is known that for

each sample, the correlation dimension of self-heating
process is fraction and the maximum Lyapunov exponent

Table 4 Calculated results A, for ore samples

Samples No. p Amax
1 3 0.0037
2 2 0.0019
6 3 0.0131
9 2 0.0072
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is positive, which means that self-heating of sulfide ores
is a chaotic evolution process. As a result, it is feasible to
study the self-heating process based on chaotic dynamics
theory.

6 Self-heating tendency evaluation by means
of nonlinearity

The maximum Lyapunov exponent can be used to
characterize the nonlinear degree of self-heating process,
but it needs high precision long series to obtain the
precise value and is sensitive to noise. So it is limited in
actual wuse. To compensate for this deficiency,
approximate entropy, correlation dimension and the
maximum Lyapunov exponent were fused, and the
integration value was defined as nonlinearity to be used
to measure the degree of irregularity and complexity for
the self-heating process from dynamic aspect.

According to the conception of nonlinearity, define
the nonlinearity vector of self-heating process as
U=(u,, u, u3), where u;, u, and u; are approximate
entropy, correlation dimension and the maximum
Lyapunov exponent, respectively. To eliminate their
physical and geometric meaning and difference of order
of magnitude, u; (=1, 2, 3) need to be normalized,
namely wu;€U, U=(0, 1). Meanwhile, define the
evaluation set as V=(vy, v,, v3, v4), Where vy, v,, v3 and vy
are corresponding to the ore samples 1, 2, 6 and 9.

Given the factors set U and evaluation set V, a:
U—V is univariate evaluation function, so fla(u;), o(u,),
o(u3)) is the comprehensive evaluation of U [18].
Generally, comprehensive evaluation function involves
two weight vectors, namely normalized weight vector
and regularization weight vector.

In this work, the normalized weight vector was
obtained with the value of (0.37, 0.31, 0.32), and the
univariate evaluation matrix R=(r;);«4 was established as

1 0.9873 0.9128 0.9908
R=|0.7280 0.5599 1 0.7852 (12)
0.2824 0.1450 1 0.5496

Four kinds of evaluation functions were utilized to assess
the nonlinear intensity of self-heating process.

Table 5 Sort of self-heating tendency and a of ore samples

When using the weighted average model, namely,
3

Py = 2T (13)
i=1

where w; is the weight vector elements and r; is the
scalar of normalized factors.

The evaluation value is P\=(p11, p12, P13, Pra)=
(0.6861, 0.5853, 0.9677, 0.7859).

When using the geometric mean model, namely,

P =H”ijw' (14)

The evaluation value is Py=(p21, P2, P23> Paa)=
(0.6047, 0.4483, 0.9668, 0.7634).

When using the univariate decision model, namely,
3

p3; =\ (W ATy) (15)
i=1

The evaluation value is P3=(ps31, P, P33» P3a)=
(1,0.9873,0.9128, 0.9908).

When using the main factors prominent model,
namely,

3
Paj =\ W, T7) (16)
i=l

The evaluation value is Py=(ps1, ps, Pa3z, Pas)=
(1, 0.9873,0.9128, 0.9908).

The above four kinds of evaluation values were
taken as the initial evaluations, and then all of the initial
evaluations were further evaluated. The final evaluation
matrix R, was constructed based on the initial evaluation
P;(i=1, 2, 3, 4), namely,

R,=(P,, P, P, P,)" 17

According to the weighted average function, the
formula of nonlinearity can be written as

4
a=ym; (18)
i=1

where a is the nonlinearity, y; is the weight coefficient
with the value of 0.25 and #;—#4are the column vectors
of R,,.
The sort of self-heating tendency and nonlinearity
of ore samples are listed in Table 5. From Table 5, it is

Sample Sort of self-heating tendency Sort of a
No. Self-heating initiative temperature/ °C Maximum self-heating extent/ °C Sort a Sort
1 220 5 3 0.8227 3
2 239 3 4 0.7521 4
6 220 26 1 0.9401 1
9 220 15 2 0.8827 2
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found that the sort of nonlinearity is consistent with that
of the self-heating tendency. Thus, the self-heating
tendency of sulfide ores can be evaluated by means of
nonlinearity method.

The main purpose for the self-heating
characteristics experiment of sulfide ores is to reveal the
relationship between self-heating effects and the ambient
temperature of automatic heating incubator and
determine the lowest ambient temperature that induces
rapid oxidation of sulfide ores. Theoretically, as the
ambient temperature rises, the oxidation heat liberation
increases and meanwhile the condition of heat
dissipation deteriorates. When the ambient temperature
reaches the critical value, the amount of heat liberation
will be greater than that of heat dissipation, and obvious
self-heating will appear in the ores due to the effect of
heat accumulation simultaneously. But during the actual
measurement process, temperature of ore samples often
does not exceed the ambient temperature owing to the
low heat liberation and other restrictive factors. Hence, it
is difficult to determine the self-heating initiative
temperature of ore samples accurately. In addition, the
difference of temperature elevation program has a certain
impact on the measured results of self-heating
characteristics. Thus, the reliability of the evaluation
results based on only the measured values in laboratory
needs to be further verified.

The nonlinearity proposed in this work was
extracted from all the measured temperature data by
integration of multiple nonlinear characteristic
parameters, and the effect of automatic heating incubator
was eliminated with the wavelet technology during the
calculation process. Since the self-heating of sulfide ores
is a typical nonlinear evolution process, it is more
objective to evaluate self-heating tendency with the
nonlinearity method. The practical application indicates
that the evaluation results are of high distinction and can
be used to verify the reliability of the measured results.

7 Conclusions

1) The measured results of self-heating
characteristics indicate that only the ore samples 1, 2, 6
and 9 have obvious self-heating phenomenon, and their
self-heating initiative temperatures are 220 °C, 239 °C,
220 °C and 220 °C, respectively. Namely, sulfide ores of
the pyrite mine are difficult to produce self-heating under
normal mining conditions.

2) The extracted correlation dimension is fraction
and the extracted maximum Lyapunov exponent is
positive, which means that self-heating of sulfide ores is
a chaotic evolution process. So, it is feasible to study the
self-heating process based on chaotic dynamics theory.

3) The self-heating process nonlinearity of these

four samples (ore samples 1, 2, 6 and 9) are 0.8227,
0.7521, 0.9401 and 0.8827, respectively and the order of
the samples according to these results is: sample 6,
sample 9, sample 1, sample 2, which is consistent with
the measured results of self-heating characteristics.
Therefore, self-heating tendency of sulfide ores can be
evaluated by using the nonlinearity method, which is an
effective verification of the reliability of measured
results.
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