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Abstract: In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different 
kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics 
were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear 
characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 
have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 °C, 239 °C, 220 °C and 220 °C, 
respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension 
of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the 
self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 
1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, 
sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the 
nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the 
reliability of measured results. 
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1 Introduction 
 

Spontaneous combustion of sulfide ores is a 
conversion of the chemical energy to heat due to 
oxidation [1−3]. If the reaction heat doesn’t dissipate 
entirely, sulfide ores will be heated and release more and 
more heat, which is a positive feedback. When the 
temperature of sulfide ores reaches the ignition 
temperature, spontaneous combustion will take place. It 
is well known that spontaneous combustion of sulfide 
ores is one of the most serious disasters in sulfide 
deposits mining [4−6]. According to statistics of 
spontaneous combustion, it has occurred in more than ten 
mines in China since 1949, such as Wushan Copper 
Mine, Xiangshan Pyrite Mine and Dongguashan Copper 
Mine [7]. Spontaneous fires of sulfide ores not only 
generate massive toxic gas and heat to worsen the work 

environment, but also bring about large economic losses 
even loss of human life. For the rapid decrease of surface 
mineral resources, deep mining has become a trend and 
its high temperature can cause spontaneous combustion 
more easily. Therefore, researches on the oxidation 
mechanism, prevention and control technology of 
spontaneous combustion are a premise to ensure safe and 
efficient mining for high-sulfur mines. 

In recent years, evaluation for spontaneous 
combustion tendency of sulfide ores has attracted 
attention of many researchers and some new evaluation 
methods have been proposed, such as apparent activation 
energy method [8], matter-element model [9], evaluation 
model based on entropy and set pair analysis theory [10], 
Fisher discriminant analysis method [11] and uncertainty 
measurement model [12]. To evaluate the spontaneous 
combustion tendency of sulfide ores synthetically, 
self-heating initiative temperature, which is measured by 
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carrying out self-heating characteristics experiment, is 
commonly used as an index. As the self-heating of 
sulfide ores is a nonlinear multi-factor coupling 
evolution process, research on the unsteady self-heating 
process by means of nonlinear dynamics theory is 
worthy of further study. Currently, there are very scarce 
researches on nonlinear characteristics of self-heating 
process. 

In this work, nine kinds of typical sulfide ore 
samples from a pyrite mine in China were taken as 
experimental materials and their self-heating 
characteristics were measured with precision instruments 
in laboratory. Combined with wavelet transform, 
nonlinear characteristic parameters extraction and fuzzy 
comprehensive evaluation, the nonlinearity of ore 
samples self-heating process, which is the 
characterization of complexity for self-heating process, 
was calculated. Moreover, self-heating tendency 
evaluation method of sulfide ores based on nonlinear 
multi-parameters fusion was proposed. 
 
2 Experimental 
 
2.1 Ore samples collection and analysis 

Sulfide ore samples were collected from a pyrite 
mine in China with the sampling method of multi-point 
sampling, and nine types of representative samples were 
taken as experimental materials. As an example, the 
chemical composition of the ore sample 1 is listed in 
Table 1. 
 
Table 1 Chemical composition of ore sample 1 (mass fraction, 
%) 

Water-soluble 
iron ion 

Total 
sulfur 

Monomer 
sulfur 

Sulfate 
ion 

0.0016 35.27 0.044 1.57 

 
The metallic mineral of the ore sample 1 is pyrite 

with two-stage mineralization. The largest size of 
early-stage pyrite particles is about 5 mm, and their 
average size is about 2 mm. They are fragmented as a 
result of the stress action. Unlike the early-stage pyrite 
particles, the late-stage pyrite particles are fine-grained 
aggregates with the average size of about 5 μm. The 
micrograph of the ore sample 1 is shown in Fig. 1. 
 
2.2 Experimental method 

In the experiment, the particle diameter of ore 
samples was ground to less than 0.2 mm. Each sample 
with mass of about 100 g and moisture content of about 
5% was installed into the reactor in the automatic heating 
incubator to measure its self-heating characteristics 
owing to the weak oxidation of sulfide ores at normal 
temperature. The initial temperature was set between 40 

and 50 °C and one single heating extent was about 10 °C. 
After the temperature of automatic heating incubator 
reached the setting temperature, it was kept isothermal 
for about 30 min. During the experiment process, the 
maximum temperature of automatic heating incubator 
was not higher than 250 °C. The experimental devices 
are shown in Fig. 2. 

 

 
Fig. 1 Micrograph of ore sample 1 
 

 
Fig. 2 Schematic diagram of experimental apparatus:        
1—Poisonous gas absorption bottle; 2—Automatic heating 
incubator; 3—Reactor; 4—Ores; 5— Temperature probe;     
6 — Humidifier; 7 — Flow meter; 8 — Buffering bottle;        
9—Automatic temperature recorder; 10—Oxygen cylinder 
 
3 Experimental results 

 
By analyzing the self-heating characteristic curves 

of ore samples, it can be found that only the ore samples 
1, 2, 6 and 9 have obvious self-heating phenomenon, and 
their self-heating initiative temperatures are 220 °C, 239 
°C, 220 °C and 220 °C, respectively, which means that 
they are difficult to produce self-heating under normal 
mining conditions. Figure 3 displays the self-heating 
characteristic curve of the ore sample 1. It shows that the 
obvious self-heating period lies between 1200 and 1230 
min and the maximum self-heating extent is 5 °C. 
 
4 Preprocessing of measured temperature 

series 
 

Temperature variations of ore samples are caused by 
the comprehensive effect of automatic heating incubator 
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Fig. 3 Self-heating characteristic curve of ore sample 1 
 
and exothermic oxidation of ore samples, and the former 
plays a dominant role. Hence, it is necessary to separate 
self-heating information from the measured temperature 
series. Then, the temperature series were processed by 
wavelet decomposition and reconstruction [13]. The low 
frequency components of the series (large scale 
approximation parts) reflect the effect of gradient 
temperature-elevating with automatic heating incubator, 
and high frequency components (details) contain the 
complicated self-heating information of ore samples. 

Owing to the limited measured data, the 
temperature series of the four samples (ore samples 1, 2, 
6 and 9) were extended with the cubic spline 
interpolation method, and the length of the expanded 
series was 301. For temperature increments could show 
the pre- and post-temperature variations more intuitively, 
they were selected as the research objects. 

The temperature increment series were transformed 
with the same wavelet function of bior3.1 based on the 
results of wavelet optimization. The characteristic values 
of corresponding series are listed in Table 2, which 
indicate that the temperature increment series are well 
correlated for all the autocorrelation coefficients, greater 
than 0.86, and the skewness coefficients have a 
significant difference. 

For these four kinds of ore samples, their 
temperature increment series were decomposed with 
wavelet bior3.1, and then the first layer of high 
frequency coefficients were reconstructed. Finally, the 

reconstructed high frequency series were normalized as 
the research series. 

Wavelet reconstruction for temperature increment 
series of the ore sample 1 is shown in Fig. 4. The trend of 
low frequency reconstructed series, which reflects the 
effect of gradient temperature-elevating, is consistent 
with that of the original sequence in general. High 
frequency reconstructed series have more complicated 
detailed change, which can amplify the tiny distinction of 
self-heating process effectively. 
 
5 Extraction of nonlinear multi-parameters  

 
According to the definitions of approximate entropy, 

correlation dimension and the maximum Lyapunov 
exponent, each of them can be adopted to characterize 
the chaotic features from different aspects. Approximate 
entropy mainly reflects the disorder degree of the time 
series. Correlation dimension is a measure of the 
complexity for chaotic series. Maximum Lyapunov 
exponent is an estimation of predictability for chaotic 
series. Therefore, these three kinds of nonlinear 
characteristic parameters were extracted from research 
series as evaluation indexes for self-heating tendency. 
 
5.1 Extraction of approximate entropy 

For a given N-point research series {x(i), i=1, …, 
N}, approximate entropy can be obtained by the 
following steps (m is the dimension, and r is the 
threshold value) [14]: 

1) Compose the m-dimensional vector X(i) as 
follows: 
 

( ) [ ( ),  ( 1),  ,  ( 1)],i x i x i x i m= + + −X L  
 

1,2, , ( 1)i N m= − +L                      (1) 
 

2) For every i value, calculate the distance between 
X(i) and X(j), namely 
 

0 ( 1)
[ ( ), ( )] max ( ) ( )

k m
d i j x i k x j k

= − −
= ⎡ + − + ⎤⎣ ⎦X X       (2) 

 
3) Given the threshold value r (r>0), for each i 

value, count the number of d[X(i), X(j)]<r (denoted as 
( )m

in r ) and calculate the ratio of ( )m
in r  to the total 

number of vectors (denoted as ( )m
iC r ), so 

 
Table 2 Characteristic values for corresponding series of ore samples 

Temperature increment series Low frequency reconstructed series 
Sample 

No. Mean 
value 

Variation 
coefficient 

Autocorrelation 
coefficient 

Skewness 
coefficient

Mean 
value 

Variation 
coefficient

Autocorrelation 
coefficient 

Skewness 
coefficient

1 0.6617 1.3556 0.8837 0.7875 0.6617 1.3462 0.8856 0.7510 

2 0.6987 1.6351 0.8813 0.5807 0.6987 1.6149 0.8849 0.5218 

6 0.8060 1.3528 0.8929 2.5053 0.8060 1.3401 0.8952 2.4664 

9 0.7500 1.4255 0.8673 1.8876 0.7500 1.3964 0.8756 1.8521 
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Fig. 4 Wavelet reconstruction for temperature increment series 
of ore sample 1: (a) Original series; (b) Low frequency series; 
(c) Normalized high frequency series 
 

( )
( )

1

m
m i
i

n r
C r

N m
=

− +
                            (3) 

 
4) Calculate the logarithm of ( )m

iC r  and its 
average value, denoted as ( )m rφ , namely 
 

1

1

1( ) ln ( )
1

N m
m m

i
i

r C r
N m

φ
− +

=
=

− + ∑                 (4) 

 
5) For m + 1, repeat steps 1–4 to obtain 1( )m rφ + . 

The approximate entropy value is as follows: 

)()(),( 1
A rrrmE mm +−= φφ                     (5) 

Usually, m=2 and r=kσ (k is empirical coefficient, 
k=0.1−0.2; σ is standard deviation of research series) are 
used to calculate the approximate entropy. 

In this work, empirical coefficient was determined 
according to the variation extent of approximate entropy 
with different k values, which can be expressed as 
 

A 2 A 1

A 1

( , ) ( , )
( , )

E m k E m k
E

E m k
σ σ

σ
−

=                   (6) 

 
For all the ore samples, when the average E takes on 

minimum value, the corresponding k value is optimal. 
Figure 5 denotes the variation of approximate 

entropy with different values of k. With the increase of k, 
approximate entropy for research series of the ore sample 
9 gradually increases, while the others decrease, as 
shown in Fig. 5. When k=0.15, the average E takes a 
minimum value of 0.66%. Correspondingly, approximate 
entropies of the ore samples 1, 2, 6 and 9 are 0.6309, 
0.6229, 0.5759 and 0.6251, respectively. 
 

 

Fig. 5 EA−k curves for ore samples 
 
5.2 Extraction of correlation dimension 

Correlation dimension can be calculated by the 
following steps based on the GP algorithm [15]: 

1) For the m-dimensional reconstructed phase space, 
define the correlation integral as 

2
, 1

1( , )
N

i j
i j
i j

C m r r
N

Θ
=

≠

⎡ ⎤= − −⎣ ⎦∑ X X               (7) 

where N is the number of phase point, r is hypersphere 
radius, │Xi−Xj│is the euclidean distance between the 
phase point Xi and Xj, and Θ is called Heaviside function. 

2) Adjust the value of r in a certain range to meet 

( )( , ) D mC m r r∝                               (8) 

where D(m) is an estimation of correlation dimension. 
3) When the embedding dimension m is equal to the 

saturated embedding dimension mc, D(m) will be stable 
and the stable value is correlation dimension D2. 
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In actual calculation of D2, the optional delay time τ 
was obtained using the improved auto-correlation 
function method [16] firstly, and then D2 was extracted 
in reconstructed phase space. 

ln C(m,r)−ln r curves for research series of the ore 
sample 1 are depicted in Fig. 6(a), which indicate that  
ln C(m,r) increases at first and then tends to be stable 
with ln r. The calculated results are D2=1.4503 and mc=6, 
as shown in Fig. 6(b). 

The calculated results D2 for all the samples are 
listed in Table 3. 
 

 
Fig. 6 D2 calculation process for ore sample 1: (a) ln C(m,r)−  
ln r curves; (b) Fitting result (mc=6) 
 
Table 3 Calculated results D2 for ore samples 

Samples No. τ mc D2 

1 1 6 1.4503 

2 1 6 1.1154 

6 1 7 1.9921 

9 1 6 1.5642 

 
5.3 Extraction of maximum Lyapunov exponent 

Maximum Lyapunov exponent can be calculated by 
the following steps by means of small data sets [17]. 

1) In the m-dimensional reconstructed phase space, 
search the nearest neighbor point Xjj of the reference 

point Xj and keep temporal separation: 

(0)=min , j j jjd j jj p− − >X X                (9) 

where dj(0) is the initial distance between the phase point 
Xj and its nearest neighbor point Xjj and p is the mean 
period of research series. 

2) To each point Xj, calculate the distance dj(i): 

( )= , 1, 2, , min( , )j j i jj id i i N j N jj+ +− = − −X X L (10) 

3) For general j, calculate the average value of y(i): 

1

1( )= ln ( )
q

j
j

y i d i
q t =Δ ∑                           (11) 

where q is the number of all non-zero dj(i). 
4) Select the linear region of y(i)−i curves and make 

the regression line using the least square method. The 
slope of the line is the maximum Lyapunov exponent 
λmax. 

For the ore sample 1, the mean period of research 
series was calculated with the value of 3 based on FFT 
method. The phase space was reconstructed with m=6 
and τ=1, and then the maximum Lyapunov exponent 
(λmax=0.0037) was calculated following the above step. 
Figure 7 shows the λmax result for the ore sample 1. 
 

 

Fig. 7 λmax result for ore sample 1 
 

Table 4 lists the calculated results of λmax for all 
samples. In conjunction with Table 3, it is known that for 
each sample, the correlation dimension of self-heating 
process is fraction and the maximum Lyapunov exponent  
 
Table 4 Calculated results λmax for ore samples 

Samples No. p λmax 

1 3 0.0037 

2 2 0.0019 

6 3 0.0131 

9 2 0.0072 
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is positive, which means that self-heating of sulfide ores 
is a chaotic evolution process. As a result, it is feasible to 
study the self-heating process based on chaotic dynamics 
theory. 
 
6 Self-heating tendency evaluation by means 

of nonlinearity 
 

The maximum Lyapunov exponent can be used to 
characterize the nonlinear degree of self-heating process, 
but it needs high precision long series to obtain the 
precise value and is sensitive to noise. So it is limited in 
actual use. To compensate for this deficiency, 
approximate entropy, correlation dimension and the 
maximum Lyapunov exponent were fused, and the 
integration value was defined as nonlinearity to be used 
to measure the degree of irregularity and complexity for 
the self-heating process from dynamic aspect. 

According to the conception of nonlinearity, define 
the nonlinearity vector of self-heating process as   
U=(u1, u2, u3), where u1, u2 and u3 are approximate 
entropy, correlation dimension and the maximum 
Lyapunov exponent, respectively. To eliminate their 
physical and geometric meaning and difference of order 
of magnitude, ui (i=1, 2, 3) need to be normalized, 
namely ui∈U, U=(0, 1). Meanwhile, define the 
evaluation set as V=(v1, v2, v3, v4), where v1, v2, v3 and v4 
are corresponding to the ore samples 1, 2, 6 and 9. 

Given the factors set U and evaluation set V, α: 
U→V is univariate evaluation function, so f(α(u1), α(u2), 
α(u3)) is the comprehensive evaluation of U [18]. 
Generally, comprehensive evaluation function involves 
two weight vectors, namely normalized weight vector 
and regularization weight vector. 

In this work, the normalized weight vector was 
obtained with the value of (0.37, 0.31, 0.32), and the 
univariate evaluation matrix R=(rij)3×4 was established as 
 

1 0.9873 0.9128 0.9908
= 0.7280 0.5599 1 0.7852

0.2824 0.1450 1 0.5496

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R          (12) 

 
Four kinds of evaluation functions were utilized to assess 
the nonlinear intensity of self-heating process. 

    When using the weighted average model, namely, 
 

3

1
1

j i ij
i

p w r
=

= ∑                                (13) 

 
where wi is the weight vector elements and rij is the 
scalar of normalized factors. 

The evaluation value is P1=(p11, p12, p13, p14)= 
(0.6861, 0.5853, 0.9677, 0.7859). 

When using the geometric mean model, namely, 
 

3

2
1

iw
j ij

i
p r

=

=∏                                (14) 

 
The evaluation value is P2=(p21, p22, p23, p24)= 

(0.6047, 0.4483, 0.9668, 0.7634). 
When using the univariate decision model, namely, 

3

3
1
( )j i ij

i
p w r

=
= ∧∨                             (15) 

The evaluation value is P3=(p31, p32, p33, p34)=    
(1, 0.9873, 0.9128, 0.9908). 

When using the main factors prominent model, 
namely, 
 

3

4
1
( )j i ij

i
p w r

=
= ∨ ┳                            (16) 

 
The evaluation value is P4=(p41, p42, p43, p44)=    

(1, 0.9873, 0.9128, 0.9908). 
The above four kinds of evaluation values were 

taken as the initial evaluations, and then all of the initial 
evaluations were further evaluated. The final evaluation 
matrix Rp was constructed based on the initial evaluation 
Pi (i=1, 2, 3, 4), namely, 
 
Rp=(P1, P2, P3, P4)T                           (17) 
 

According to the weighted average function, the 
formula of nonlinearity can be written as  

4

1
i ij

i
α γ η

=
= ∑                                 (18) 

 
where α is the nonlinearity, γi is the weight coefficient 
with the value of 0.25 and η1−η4 are the column vectors 
of Rp. 

The sort of self-heating tendency and nonlinearity 
of ore samples are listed in Table 5. From Table 5, it is 

 
Table 5 Sort of self-heating tendency and α of ore samples 

Sort of self-heating tendency  Sort of α Sample 
No. Self-heating initiative temperature/ °C Maximum self-heating extent/ °C Sort  α Sort 

1 220 5 3  0.8227 3 

2 239 3 4  0.7521 4 

6 220 26 1  0.9401 1 

9 220 15 2  0.8827 2 
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found that the sort of nonlinearity is consistent with that 
of the self-heating tendency. Thus, the self-heating 
tendency of sulfide ores can be evaluated by means of 
nonlinearity method. 

The main purpose for the self-heating 
characteristics experiment of sulfide ores is to reveal the 
relationship between self-heating effects and the ambient 
temperature of automatic heating incubator and 
determine the lowest ambient temperature that induces 
rapid oxidation of sulfide ores. Theoretically, as the 
ambient temperature rises, the oxidation heat liberation 
increases and meanwhile the condition of heat 
dissipation deteriorates. When the ambient temperature 
reaches the critical value, the amount of heat liberation 
will be greater than that of heat dissipation, and obvious 
self-heating will appear in the ores due to the effect of 
heat accumulation simultaneously. But during the actual 
measurement process, temperature of ore samples often 
does not exceed the ambient temperature owing to the 
low heat liberation and other restrictive factors. Hence, it 
is difficult to determine the self-heating initiative 
temperature of ore samples accurately. In addition, the 
difference of temperature elevation program has a certain 
impact on the measured results of self-heating 
characteristics. Thus, the reliability of the evaluation 
results based on only the measured values in laboratory 
needs to be further verified. 

The nonlinearity proposed in this work was 
extracted from all the measured temperature data by 
integration of multiple nonlinear characteristic 
parameters, and the effect of automatic heating incubator 
was eliminated with the wavelet technology during the 
calculation process. Since the self-heating of sulfide ores 
is a typical nonlinear evolution process, it is more 
objective to evaluate self-heating tendency with the 
nonlinearity method. The practical application indicates 
that the evaluation results are of high distinction and can 
be used to verify the reliability of the measured results. 
 
7 Conclusions 
 

1) The measured results of self-heating 
characteristics indicate that only the ore samples 1, 2, 6 
and 9 have obvious self-heating phenomenon, and their 
self-heating initiative temperatures are 220 °C, 239 °C, 
220 °C and 220 °C, respectively. Namely, sulfide ores of 
the pyrite mine are difficult to produce self-heating under 
normal mining conditions. 

2) The extracted correlation dimension is fraction 
and the extracted maximum Lyapunov exponent is 
positive, which means that self-heating of sulfide ores is 
a chaotic evolution process. So, it is feasible to study the 
self-heating process based on chaotic dynamics theory. 

3) The self-heating process nonlinearity of these 

four samples (ore samples 1, 2, 6 and 9) are 0.8227, 
0.7521, 0.9401 and 0.8827, respectively and the order of 
the samples according to these results is: sample 6, 
sample 9, sample 1, sample 2, which is consistent with 
the measured results of self-heating characteristics. 
Therefore, self-heating tendency of sulfide ores can be 
evaluated by using the nonlinearity method, which is an 
effective verification of the reliability of measured 
results. 
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基于非线性多参数融合的硫化矿石自热倾向性评价 
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摘  要：为揭示硫化矿石非稳态自热过程的非线性动力学特征，以从某硫铁矿采集的 9 种硫化矿石样品为实验材

料，开展室内矿石自热特性实验。采用集成小波变换、非线性特征参数提取和模糊综合评判等方法对实测温度数

据进行研究。结果表明：仅矿样 1、2、6 和 9 出现明显自热，自热起始温度分别为 220、239、220 和 220 °C，在

正常采矿条件下矿石不易产生自热；矿样自热过程的关联维数均为分数，最大 Lyapunov 指数均大于 0，验证了基

于混沌动力学理论研究自热过程的可行性；矿样自热过程的非线性度分别为 0.8227、0.7521、0.9401 和 0.8827，

排序依次为矿样 6、矿样 9、矿样 1、矿样 2，与自热特性测定结果一致。因此，可采用非线性度方法来评价硫化

矿石自热倾向性，该方法可对实测结果的可靠性进行有效验证。 

关键词：硫化矿石；自热过程；非线性特征参数；非线性度；自热倾向性 
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