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摘 要：为揭示硫化矿石自热过程的分形特征，以从现场采集的矿石样品作为实验材料，开展矿石自热特性实验， 

集成小波技术和分形理论对实测温度数据进行研究。结果表明：仅矿样 1、2、3和 8出现明显自热现象，自热起 

始温度分别为 136.3、178.5、195.4和 200℃，在正常采矿条件下，矿石不易产生自热现象；矿样自热过程具有稳 

定的关联维数，验证了基于分形理论研究自热过程的可行性；在实验条件基本一致的前提下，随着自热起始温度 

的增大，矿样自热过程的关联维数逐渐减小，可采用关联维数来定性判断自热倾向性强弱；自热效果明显的矿样， 

其实验后期的关联维数大于实验前期的值， 因此， 可根据关联维数的变化特征来判定矿样出现明显自热的可能性， 

从而可减少重复实验的工作量。 
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Abstract: To  reveal  the  fractal  characteristics  of  self­heating process  of  sulfide ores,  ore  samples  from a  copper mine 
were taken as experimental materials, and the self­heating characteristics were measured in laboratory. Furthermore, the 
measured temperature was studied by integrating wavelet technology and fractal theory. The results indicate that only the 
ore samples 1, 2, 3 and 8 appear obvious self­heating tendency, and their self­heating initiative  temperatures are 136.3, 
178.5, 195.4  and  200 ℃,  respectively, which mean  that  they  are difficult  to show self­heating tendency under  normal 
mining conditions. The correlation dimension of self­heating process of ore samples is stable, meaning that it is feasible 
to  study  the  self­heating  process  based  on  fractal  theory.  If  the  experimental  conditions  are  basically  consistent,  the 
correlation  dimension  of  self­heating  process  of  ore  samples  decreases  with  the  increase  of  he  self­heating  initiative 
temperature. So, the correlation dimension can be applied to qualitatively determine the self­heating tendency. For the ore 
samples appearing obvious self­heating tendency in the experiment, the correlation dimension of the late period is greater 
than  that  of  the  previous  period.  Therefore,  the  possibility  for  obvious  self­heating  tendency  of  ore  samples  can  be 
determined  according  to  the  variation  characteristics  of  the  correlation  dimension,  which  can  reduce  the  workload  of 
repeated experiments. 
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采场中的硫化矿石堆积在潮湿的环境中，将生成 

大量酸以及有毒有害重金属离子，严重污染矿区周边 

环境 [1−2] 。 氧化过程中释放的反应热不仅会恶化井下作 

业环境，还可能诱发矿石自燃火灾 [3−7] ，严重影响国家 

矿产资源安全和井下作业人员的生命健康安全。随着 

地表矿产资源的逐渐匮乏，深井开采已成大势所趋， 

深井开采的高温问题可能导致高硫矿山自燃火灾的频 

发。因此，对硫化矿石氧化自燃机制及预防控制技术 

进行研究是保证高硫矿山实现安全、 高效生产的前提。 

近年来，对于硫化矿石自燃领域的研究主要集中 

在自燃倾向性评价方面 [8−14] 。 譬如，李孜军 [8] 研究了硫 

化矿石自燃倾向性的鉴定标准，提出了鉴定指标体系 

和测试规范；阳富强等 [10] 建立了硫化矿石自燃倾向性 

综合判定的物元模型；谢正文等 [11] 基于信息熵和集对 

分析理论，对硫化矿石自燃倾向性综合判定模型进行 

了研究；胡汉华等 [12] 建立了硫化矿石自燃倾向性等级 

分类的 Fisher 判别方法。 

在对硫化矿石自燃倾向性进行综合评价时，常用 

的一个评价指标是矿石的自热起始温度，该值是通过 

开展自热特性实验得到。由于矿石氧化自热是一个多 

因素强耦合的非线性演化过程，因此，借助非线性动 

力学理论来研究其非稳态自热过程，是值得深入研究 

的课题。关于该方面的研究工作，迄今还未见相关报 

道。在此，本文作者以现场采集的硫化矿石样品作为 

实验材料，在室内开展矿石自热特性实验，采用小波 

技术和分形理论对其自热过程进行分析，从而为高硫 

矿山防治矿石自燃火灾提供一定的借鉴。 

1  硫化矿石自热特性实验 

1.1  实验材料 

实验矿样取自国内某铜矿， 采样方式为多点采样。 

本次实验选取矿样 10 个，编号依次为矿样 1~10。表 
1所列为矿样 1的化学成分。 

表 1  矿样 1的化学成分 

Table 1  Chemical composition of ore sample 1 (mass fraction, 

%) 

FeT  Fe 2+  Fe 3+  TS  S 0  Cu  Pb  Zn 

34.710  0.035  0.010  38.330  0.074  2.650  0.041  0.110 

FeT is total content of iron. 

金属矿样 1的主要化学成分为黄铁矿、闪锌矿、 

黄铜矿及少量方铅矿，脉石矿物主要为石英。其中， 

黄铁矿含量为  85%(质量分数)，呈碎裂状，常被闪锌 

矿和黄铜矿溶蚀交代，或被黄铜矿和方铅矿连生穿插 

交代。图 1所示为矿样 1的光学显微组织。 

图 1  矿样 1的光学显微组织 

Fig. 1  Photomicrograph of ore sample 1 

1.2  实验装置及方法 

图 2 所示为实验装置示意图。每个矿样均取 100 
g，含水率为 4%~5%，粒度小于 425 μm。由于矿区所 

在地属典型北温带大陆性气候寒冷区，年平均气温为 
4.7℃。 考虑到采深增大会导致井下采场环境温度有所 

升高，故设定实验初始温度为 15℃，高温试验箱平均 

升温速度为 0.4 ℃/min 左右，待试验箱内环境温度上 

升到设定温度后，恒温等待约 30 min，观察矿样有无 

产生明显自热，实验最高温度不超过 220 ℃。实验完 

成后，将测温仪采集的温度数据导入计算机，对其作 

进一步分析处理。 

图 2  实验装置示意图 
Fig.  2  Schematic  diagram  of  experimental  apparatus:  1— 
Poisonous  gas  absorption  bottle;  2 — Automatic  heating 
incubator;  3—Reactor;  4—Ores;  5—Temperature  probe;  6— 
Humidifier;  7 — Flow  meter;  8 — Buffering  bottle;  9 — 
Automatic temperature recorder; 10—Oxygen cylinder 

2  研究方法 

2.1  实测温度序列的小波变换 

本次实验中采集的矿样温度变化数据是高温试验



中国有色金属学报  2015 年 2 月 494 

箱梯度升温与矿样氧化自热共同作用的结果，且前者 

起主导作用。因此，将矿样自热信息从实测温度序列 

中分离出来非常必要。鉴于此，本文作者引入小波分 

析技术对实测温度序列进行小波分解与重构，温度序 

列的低频成分(大尺度逼近部分)反映的是梯度升温对 

矿样温度变化的影响，高频成分(细节部分)蕴藏着矿 

样的自热复杂信息。 

小波分析技术源于函数的伸缩和平移，是 Fourier 
变换、Gabor  变换发展的结果。对于任意一个信号函 

数 f(t)，其连续小波变换公式如下 [15] ： 
1 

( , ) ( ) * d t b W f a b f t t 
a a ϕ ϕ 

+∞ 

−∞ 

−   =   
  ∫  (1) 

式中：  ( , ) W f a b ϕ 为小波变换系数；f(t)为拟变换的信 

号；φ(t)为基小波；*为共轭；a为尺度因子；b为平移 

因子。

选择适当的小波函数是进行小波分析的关键，本 

文作者参考桑燕芳等 [16] 提出的方法对 7个常用小波系 

中的 54个小波函数进行优选。 利用不同的小波函数将 

实测温度序列分解为低频和高频两个部分，然后对比 

低频重构序列和原序列的特征值，建立小波函数的选 

取准则如下。 
1)  由于蕴含矿样自热信息的高频重构序列在原 

系列中所占的比例很小，低频重构序列和原序列的均 

值 X 值相差不宜过大。 
2) 由于去除了矿样自热过程中的复杂信息， 因此 

相比较原序列， 低频重构序列的变差系数 Cv 值应该有 

所减小。 
3)  自热复杂信息的干扰会造成原序列的相关性 

减弱，消除这些干扰后，低频重构序列的自相关系数 
r1 值应该有所增大。 

4)  低频重构序列在原序列中所占的比例大，因 

此，应大致保持原序列的基本特征，其偏态系数  Cs 
值与原序列的 Cs 值应该差别不大。 

2.2  矿石自热过程的分维提取 

设研究序列为  1 { } n i i x = ，对其重构相空间后的元素 

为 

( 1) { , , , , 1, 2, , } i i i i m x x x i N τ τ + + − = = X  L L  (2) 

式中：m 为嵌入维数；τ 为延迟时间；N=n−(m−1)τ 为 

重构后的相点数；n为序列长度。 

在重构相空间时，采用式(3)确定延迟时间： 
1 

1 1 

1 ( ) {[ ][ ]} 
n m 

m 
xx i i j 

i j 
C x x x x 

n τ τ 
− 

+ 
= = 

= − − ∑∑  (3) 

式中：  ( ) m 
xx C τ 为复自相关函数； x为序列的均值。 

关于延迟时间  τ  的选择，有研究者认为选择 
( ) m 

xx C τ 的第一个零点对应的时间 [17] ，还有研究者认为 

当  ( ) m 
xx C τ 的值变为其初始值的1/e和1−1/e时所对应的 

时间 [18] 。 

对于观测得到的数据序列，由于延迟时间计算方 

法的选择不同，计算结果相差会比较大。因此，实际 

在重构相空间时，τ的选取存在一定的范围，即保证 τ 
不能过大，也不能过小。这是由于当 τ 过小时，重构 

相空间中相似信息过多，导致有效信息较少；当 τ 过 

大时，重构相空间中的相点会变得毫不相关，对于较 

短的序列进行高维重构还会导致用于分析的相点数不 

足。由于采集的矿样温度数据有限，根据经验本文作 

者取 τ的最大估计值为 10，从 1~10逐渐增大 τ，计算 

式(3)对应的函数值，找出第一个零点或最接近零点对 

应的 τ，将其定义为最佳延迟时间。 

采用 G­P算法提取矿石自热过程的关联维数，计 

算步骤如下 [19] ： 
1) 对于 m维相空间，定义其关联函数为 

2 
, 1 

1 ( , ) 
N 

i j 
i j 
i j 

C m r r 
N 

Θ 
= 

≠ 

  = − −   ∑  X X  (4) 

式中：  i j − X X  为相点  Xi 与  Xj 的欧氏距离；Θ 为 
Heaviside函数； r 为临界距离，是设定的一个较小正 

数；  ( , ) C m r  表示相空间中两相点之间距离小于 r的概 

率。 
2)  适当调整  r  的取值，在一定区间内满足 

( ) ( , )  D m C m r r ∝ ，这里的 D(m)称为关联维数估计值。 
3) 当 m 从小到大取值时，相应的 D(m)也会发生 

改变。当 m 等于饱和嵌入维数 mc 时，D(m)将趋于稳 

定，此时的 D(m)值即为该序列的关联维数 D2。 

本计算中所有工作均在中南大学高性能网格计算 

平台上完成，计算编程软件为Matlab7.4.0。 

3  结果与分析 

3.1  矿石自热测定结果分析 

实验发现，部分矿样温度多次高于试验箱内的环 

境温度。在此条件下，确定矿样的自热起始温度是一 

个关键问题。经多次实验，本文作者认为，当试验箱 

升温时，若某时刻的矿样温度高于环境温度，可认为 

此时的环境温度即为自热起始温度； 当试验箱恒温时， 

若某时刻的矿样温度高于环境温度，还需比较此时的 

矿样温度是否比试验箱开始恒温时的环境温度高。如 

果矿样温度高于该值，则认为该环境温度值为自热起
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始温度；否则，则不认为矿样出现明显自热。这是因 

为试验箱恒温一段时间后，箱内的环境温度有时会低 

于开始恒温时的值，此种情况下矿样温度高于环境温 

度很有可能缘于试验箱梯度升温的滞后效应。 

对 10个矿样的自热特性曲线进行分析， 结果发现 

仅矿样 1、2、3 和 8 出现明显自热，自热起始温度分 

别为 136.3、178.5、195.4和 200℃。图 3所示为矿样 
1 的自热特性曲线，该矿样首次出现明显自热的时间 

约在 7~7.5h。由于矿区所在地位于寒带，地表和井下 

采场的环境温度比南方矿山低很多，对抑制矿石的氧 

化自热非常有利，释放的少量反应热很容易散失，可 

有效防止矿石快速氧化升温。 

图 3  矿样 1自热特性曲线 

Fig. 3  Self­heating characteristic curves of ore sample 1 

3.2  小波函数优选 

由于实测温度数据有限，采用 3次样条插值对矿 

样 1、2、3和 8 的实测温度序列进行扩充，扩充后的 

序列长度均为  241。由于温度增量能够更为直观地反 

映矿石前后时刻的温度变化情况，因此，以温度增量 

序列作为研究对象，对其进行小波函数优选。为使计 

算结果具有可对比性，在满足前述小波选取准则的前 

提下，4个矿样对应序列优先选择同一种小波函数。 

小波优选结果表明，对于 4 个矿样都适用的小波 

函数为 Rbio1.3。 表 2所列为各个矿样温度增量序列与 

低频重构序列特征值的变化情况。由表 2 可知，各个 

矿样对应序列均具有很好的相关性，r1 值大于  0.93。 

以正偏为主，仅矿样 8对应序列为负偏。Cs 绝对值差 

别很大，最大值为 0.9610，最小值仅为 0.0638。小波 

变换后低频重构序列与原序列的特征值差别不大。 

3.3  矿石自热过程的分形特征 

以矿样 1 为例，应用 3 次样条插值对其实测温度 

序列进行扩充，并构造温度增量序列。选择 rbio1.3小 

波对其温度增量序列进行小波分解，将第一层分解的 

高频系数进行小波重构，然后将重构得到的高频序列 

标准化，进而计算该序列(以下简称为研究序列)的延 

迟时间 τ=7。 

采用  G­P  算法提取该矿样研究序列的关联维数 
D2，嵌入维数  m 从  2 依次增大，反复求取关联积分 
C(m,r)并绘制 lnC(m,r)−lnr关系曲线，如图 4所示。由 

图 4可知，lnC(m,r)先是随着 lnr的增大而增大，然后 

逐渐趋于稳定。对应不同的 m 值，lnC(m,r)−lnr 曲线 

存在无标度区(即图中直线相关的部分)，由此可认为 

矿样 1研究序列具有分形特征。 
D2 计算过程中发现， 关联维数估计值 D(m)随着 m 

的增大逐渐收敛。程序设定当 D(m)与 D(m−1)的关系 

满足式(5)时终止运算， 此时的 m即为该序列的饱和嵌 

入维数 mc，对应的 D(m)为所求的关联维数 D2 
[20] 。 

[D(m)−D(m−1)]/D(m)≤10%  (5) 

计算得到矿样 1 研究序列的 mc=9，D2=2.59，计 

算结果如图 5所示，图中 RMSE为均方差，SSE为残 

差平方和，R为相关系数；R2 为可决系数。 

同法计算其余 3个矿样研究序列的 D2 值， 并绘制 
D2 与自热起始温度的关系曲线如图 6所示。由图 6可 

表 2  各个矿样温度增量序列与低频重构序列的特征值 

Table 2  Characteristic values for temperature increment series and low frequency reconstructed series 

of ore samples 

Temperature increment series  Low frequency reconstructed series Ore sample 
No.  X  Cv  r1  Cs  X  Cv  r1  Cs 

1  0.8375  0.3752  0.9635  0.7199  0.8375  0.3751  0.9645  0.7223 

2  0.7958  0.5351  0.9695  0.0638  0.7958  0.5349  0.9701  0.0650 

3  0.8083  0.7411  0.9661  0.2612  0.8083  0.7409  0.9674  0.2637 

8  0.7917  0.8166  0.9327  −0.9610  0.7917  0.8165  0.9351  −0.9626
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图 4  矿样 1研究序列的 lnC(m,r)−lnr曲线 

Fig. 4  lnC(m,r)−lnr curves for research series of ore sample 1 

图 5  矿样 1研究序列的 D2 计算结果(m=9) 

Fig. 5  D2 calculation results for research series of ore sample 

1 (m=9) 

图 6  D2 与自热起始温度的关系 

Fig.  6  Relationship  between  D2  and  self­heating  initiative 

temperature 

知，4个矿样的氧化自热过程均具有稳定的 D2，表明 

自热过程具有分形特征，验证了基于分形理论研究自 

热过程的可行性。随着矿样自热起始温度的增大，除 

了矿样 8， 其余矿样研究序列的D2 值呈逐渐减小趋势。 

实验条件基本一致，但各个矿样的 D2 值差别较大，是 

因为尽管矿样取自同一个矿山，但其内部的矿物组成 

和化学成分并不完全一致。 

硫化矿石产生明显自热的根本原因取决于其氧化 

反应的内在特点。研究结果显示，硫化矿石的氧化反 

应速度会随着温度的升高而增大，同时释放出更多的 

反应热，这是一个动态的非线性反馈过程。当矿石温 

度高于其自热起始温度时，矿石会进入更为复杂剧烈 

的高速氧化阶段(即快速自热阶段)，该阶段内矿石自 

热升温效果明显。D2 作为自热过程复杂程度的一个度 

量，D2 越大，表明自热过程越复杂。对于矿样 1~3， 

实验时段均为 0~12 h(矿样 8实验时段为 0~15 h)，梯 

度升温方式基本相同，自热起始温度越低的矿样进入 

高速氧化阶段的时间会越早(矿样  1 明显自热的时间 

约在 7~7.5 h， 矿样 2和矿样 3明显自热的时间在 10 h 
以后)，相同时段内，其自热过程必然会更复杂，宏观 

表现就是其研究序列的 D2 值更大。因此，在保证实验 

条件基本一致的前提下， 可采用 D2 来定性判断矿石自 

热倾向性的强弱。 

为揭示矿石自热过程中不同氧化时段  D2 的变化 

情况，将这 4个矿样的研究序列拆分为等长度的 2 段 

子序列，分别计算其对应的 D2 值，计算时所有子序列 

的 τ和 mc 都需重新确定，所得结果如图 7所示。由图 
7 可知，4 个矿样实验后期的 D2 值均大于实验前期， 

平均增幅达到 83.47%，这是因为随着实验的进行，试 

验箱内环境温度不断升高，促使硫化矿石氧化自热反 

应加剧，导致自热过程变得更为复杂。因此，对于那 

图 7  矿样不同时段 D2 的变化 

Fig. 7  D2 variation of ore samples at different times
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些实验过程中没有明显自热的矿样，可简单根据其自 

热过程中  D2 的变化特征来判定矿样是否可能出现明 

显自热。具体判据为，如果实验后期的 D2 大于实验前 

期的值，意味着矿样在温度升高的情况下能够加速氧 

化，该种情况下矿样可能出现明显自热；反之，则不 

认为矿样可能出现明显自热。对于第一种情况，可对 

实验条件进行微调(如增大供氧量等)，再重复  1~2 次 

实验，观察矿样自热效果是否变得明显；对于第二种 

情况，则无需再进行实验，如此可减少重复实验的工 

作量。

在具体操作时，重点是如何对矿样研究序列进行 

分段。理论上，以环境温度与自热起始温度的关系作 

为分段标准，将矿样氧化自热过程分为低速氧化和高 

速氧化两个阶段，能够得到理想的判定结果，但这里 

自热起始温度未知。因此，在实际对某矿样研究序列 

进行分段时， 应预先估测一下该矿样的自热起始温度， 

选取的分段参考值适当低于该估测值，如此能够将可 

能出现的高速氧化阶段包含在第二段子序列中，提高 
D2 的分段辨识效果。同时，在充分利用实测温度数据 

的前提下，为消除序列长度对计算结果的影响，保证 

分段子序列的长度一致。 

以实验过程中未见明显自热的 6个矿样(样品 4、 
5、6、7、9 和 10)进行验证。首先对这 6 个矿样的矿 

物组分进行分析，发现金属矿物以黄铁矿为主，有利 

用价值的组分包括黄铜矿和闪锌矿。参考本课题组多 

年来对国内多个高硫矿山典型矿样的测定结果，可知 

当矿样含水率为  5%时，黄铁矿的氧化反应速度在环 

境温度高于 100℃时才会有所增大。结合矿样 1、2、 
3 和 8 的自热特性测定结果，充分考虑各个矿样实验 

条件的差异，本文作者认为分段参考温度介于  102~ 
125 ℃为宜。 

按前述方法对这 6个矿样的实测温度数据进行处 

理，得到分段温度区间及计算结果如表 3 所列。由表 
3 可知，矿样 4、5 和 7 实验后期的 D2 均大于实验前 

期的 D2 值，表明矿样有可能出现明显自热。因此，对 

这 3 个矿样进行重复实验，实验过程中仍未发现矿样 

有明显自热迹象，表明这 3 个矿样的自热起始温度偏 

高。在着火点实验中得以证实，这 3 个矿样只有在接 

近着火点时才能出现明显自热，以大量冒烟作为着火 

标准，3个矿样的着火点分别为 442、382和 442℃。 

由于正常采矿条件下不可能有如此高的环境温度，因 

此， 不认为这 3 个矿样有明显自热的可能。 实验后期， 

矿样 6、9 和 10 的 D2 小于实验前期的 D2 值，可能原 

因在于经过前一阶段的氧化反应之后， 矿样表面已逐 

渐被氧化，导致自热过程复杂程度降低(矿样  9 体现 

得尤其明显)。对其进行重复实验，未发现这  3 个矿 

样有明显自热迹象。 

进行硫化矿石自热特性实验的主要目的是为了揭 

示矿石自热效果与试验箱内环境温度之间的关系，确 

定导致矿石快速氧化的最低环境温度。理论上，随着 

环境温度的升高，矿石氧化放热量增多，与此同时， 

散热条件变差。当环境温度达到某一临界值时，会出 

现放热量大于散热量的情况，此时，矿石因聚热升温 

而产生明显自热。但在实际测定过程中，由于矿样产 

热量少和其他影响因素的制约，常会出现矿样温度不 

超过环境温度的情况，这样就很难确定矿样的自热起 

始温度。为得到相对精确的测定结果，一般采用多次 

重复实验。本文作者从硫化矿石氧化自热过程的复杂 

程度变化角度，结合室内实验，提出基于分段 D2 比较 

的硫化矿石自热可能性的判定方法，能够避免大规模 

的重复实验，但矿样的含水率、粒度分布和矿物组分 

等对自热测定结果有一定的影响，因此，研究结论的 

表 3 分段温度区间及计算结果 

Table 3  Temperature range and calculation results for subsection research series of ore samples 

Calculation result 
Temperature range/℃ 

SubsectionⅠ  SubsectionⅡ 
Ore sample 

No. 
SubsectionⅠ  SubsectionⅡ  τ  mc  D2  τ  mc  D2 

4  [15.0,102.6)  [102.6,203.0]  2  7  0.77  8  7  3.65 

5  [15.0,114.4)  [114.4,216.0]  9  8  1.10  8  8  2.99 

6  [15.0,110.6)  [110.6,210.0]  8  8  2.90  9  8  2.85 

7  [15.0,120.2)  [120.2,204.0]  8  8  1.72  9  8  1.96 

9  [15.0,124.6)  [124.6,212.0]  8  6  1.07  8  4  0.39 

10  [15.0,115.0)  [115.0,193.0]  3  8  2.94  8  6  2.86
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普适性有待进一步验证。 

4  结论 

1) 自热特性实验结果表明：仅矿样 1、2、3和 8 
出现明显自热，自热起始温度分别为  136.3、178.5、 
195.4和 200℃。 考虑到矿区所在地位于寒带， 井下采 

场的环境温度偏低，在正常采矿条件下矿石的自热倾 

向性较弱。 
2) 矿样氧化自热过程具有分形特征， 验证了基于 

分形理论研究自热过程的可行性。在实验条件基本一 

致的前提下，随着自热起始温度的增大，矿样自热过 

程的 D2 逐渐减小，此种情况下可采用 D2 来定性判断 

矿石自热倾向性强弱。 
3) 实验过程中自热效果明显的矿样， 其实验后期 

的 D2 均大于实验前期的 D2 值，因此，可根据自热过 

程中  D2 的变化特征来判定矿样出现明显自热的可能 

性，如此可减少重复实验的工作量。 
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