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摘 要： 研究溶胶−凝胶法制备 Ti­Ni记忆合金表面复合涂层的工艺， 并对涂层结构性能进行测试。 结果表明， SiO2 

复合涂层溶胶凝胶法制备涂层适当的工艺参数如下：聚乙烯醇(PVA)与正硅酸乙酯(TEOS)质量比为 1:4，提拉速度 

为 2 mm/min，烧结温度为 550℃。通过扫描电子显微分析、原子力显微分析、纳米压痕力学性能分析可知，经上 

述工艺涂覆后的 Ti­Ni形状记忆合金表面形成了均匀致密的 SiO2 涂层，涂层与基体的结合强度良好。 
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Preparation of PVA/SiO2 sol­gel composite coatings on 
Ti­Ni shape memory alloy 
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Abstract: Preparation and properties of SiO2 composite coating on Ti­Ni shape memory alloy using sol­gel method was 
investigated. The results show the appropriate processing parameters as follows: mass ratio of polyvinyl alcohol (PVA) to 
ethyl  orthosilicate  (TEOS)  is  1:4,  pulling  rate  is  2  mm/min,  sintering  temperature  is  550  ℃.  Scanning  electron 
microscope, atom force microscope and nano­indentation tester were used to study the SiO2 coating film, the results show 
that  the  SiO2  sol­gel  composite  coating  forming  on  Ti­Ni  shape  memory  alloy  is  uniform  and  dense,  and  the  bond 
strength between the coating and the substrate is fine. 
Key words: Ti­Ni; shape memory alloy; sol­gel method; SiO2 coating; nano­indentation 

Ti­Ni 记忆合金具有优良的形状记忆效应、超弹 

性、良好的生物相容性及耐腐蚀性 [1−3] 。并已广泛应用 

于人工脏器用微型泵、毛细管、药物释放器、康复器 

械和绝育栓等临床和医疗器械 [4−7] 。但 Ti­Ni合金直接 

植入生物体则会存在Ni离子释放， 存在生物毒性 [8−10] 。 

因此，为了消除 Ni离子危害，需要对 Ti­Ni合金进行 

表面改性处理。 

常用的表面改性方法有激光离子束法、溅射沉积 

法、气相沉积法和溶胶凝胶法等 [11] 。由于溶胶凝胶法 

工艺简单、操作可行性强、成本低廉，因此成了国内 
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外生物材料表面改性的研究热点 [12−14] 。目前常用于生 

物材料表面改性的二氧化硅(SiO2)凝胶具有绝热性能 

好、纳米结构可控、耐腐蚀性能好、生物相容性优异 

等特点，但 SiO2 凝胶若直接涂覆于 Ti­Ni 记忆合金表 

面则存在粘结强度低的问题，因此需要引入成膜剂进 

行改性。聚乙烯醇(PVA)是一种无毒、透明的多羟基 

高聚物， 在作为一种有机偶联剂时与 SiO2 溶胶具有良 

好的结合效果 [15] 。一方面，可使 SiO2 溶胶粘度升高且 

与 TiNi基体的结合性能良好， 从而有效提高涂层的结 

合强度；另一方面，PVA 溶剂还可以有效填充  SiO2 

溶胶在形成凝胶过程中形成的孔洞间隙，提高涂层的 

致密度、耐磨性、硬度等性能 [16] 。但是，该 PVA/SiO2 

复合溶剂用于制备医用  Ti­Ni 记忆合金的涂层从而进 

行表面改性的研究还未见报道。 

在此，本文作者采用浸渍提拉法对经过预氧化处 

理的 TiNi 记忆合金进行 PVA/SiO2 复合溶胶表面改性 

处理，并利用扫描电子显微镜、原子力显微镜、纳米 

压痕仪和椭偏仪等对复合膜进行表面形貌观察和力学 

性能测试，制备出一种表面均匀致密、膜基结合强度 

高、力学性能优良的  TiNi 记忆合金用表面改性复合 

涂层。 

1  实验 

1.1  溶胶制备 

实验用溶胶主要成分为聚乙烯醇(PVA)、正硅酸 

乙酯(TEOS)、去离子水和医用乙醇。制备方法如下： 

先将  5 g聚乙烯醇(PVA)搅拌均匀并缓缓加入 20℃的 
95 mL去离子水中， 浸泡 24 h后再将 PVA溶剂缓慢升 

温到  95 ℃并搅拌加速溶解，得到均匀、无色透明的 
PVA 溶剂。然后向  PVA 溶剂中依次加入正硅酸乙酯 
(TEOS)和乙醇试剂，并滴加少量盐酸(催化剂)和正丙 

三醇(稳定剂)，最后在恒温磁力搅拌器中 50 ℃恒温搅 

拌 1 h， 静置 2 h后得到淡蓝色的PVA/SiO2 均匀溶胶体。 

1.2  基材预处理 

实验所用的合金成分为  Ti­53.60Ni(摩尔分数， 
%)，棒材经电火花切割成 10 mm×10 mm×2 mm的 

薄片，薄片表面经预磨抛光、清洗。将获得的表面平 

整洁净的  Ti­Ni  合金基材在  500  ℃恒温炉中保温 
1 h [17] ，然后依次用丙酮、乙醇、去离子水进行超声清 

洗，烘干后备用。 

1.3  涂层制备与热处理 

将经过预处理后的基材全部浸入  PVA/SiO2 溶胶 

并浸泡30 s， 再用垂直提拉机分别以1、 2、 5、 10 mm/min 
的速率提拉基材至液面之上， 室温空气中干燥 20 min， 

然后在 75℃干燥箱中干燥 40 min。重复浸涂、干燥 3 
次。然后在惰性气体保护下进行不同温度的烧结处 

理，以  3~5 ℃/min 的升温速率分别升到  450、550、 
650和 750 ℃， 烧结 1 h 后随炉冷却， 重复提拉、 干燥、 

烧结 3次。 

1.4  实验检测 

利用Sirion 200和Zeiss ULTRA 55扫描电镜(SEM) 
和能谱仪(EDS)对涂层的表面形貌和成分进行分析。 

利用 Dimension  Icon 原子力显微镜(AFM)对涂层的表 

面进行平整度测试。利用 SENTECH SE500椭偏仪测 

量涂层的厚度。并借助 Hysitron TI900 Triboindente纳 

米压痕仪测试涂层的弹性模量和硬度。 利用WS−2005 
型涂层附着力自动划痕仪来测定涂层与基体的膜基结 

合强度。 

2  结果与分析 

2.1  TEOS与 PVA的质量比对 PVA/SiO2 涂层的影响 

图 1 所示为经不同比例的 TEOS 与 PVA 的改性 
PVA/SiO2 溶胶复合涂层改性处理后的样品的SEM像。 

当 TEOS与 PVA的质量比为 1:1时，在涂层表面出现 

了团聚的  SiO2 粒子，并且在涂层表面出现了裂纹(见 

图 1(a))；当 TEOS与 PVA质量比为 2:1时，存在岛状 

分布的  SiO2 聚集 [18] ，较为致密，裂纹数减少(见图 
1(b))； 当 TEOS与 PVA质量比为 4:1时， 涂层表面 SiO2 

粒子呈形状均匀的球状分布，尺寸约为 0.5~1 μm，粒 

子排列均匀有序，且与 PVA的相容性很好；当 TEOS 
与 PVA质量比为 5:1时，SiO2 颗粒呈层状叠加的球形 

分布，尺寸约为 1~2 μm，存在孔洞。 

由图 1可知，通过溶胶−凝胶法可在 Ti­Ni记忆合 

金表面形成 PVA/SiO2 涂层。 由于前驱体 TEOS发生水 

解缩合， 有利于两相的相互渗透。 TEOS缩合后的 SiO2 

不易因溶剂挥发而在涂层表面富集。随着  TEOS  与 
PVA质量比的增大，TEOS水解产生的 SiO2 粒子分布 

越密集， 有利于形成 SiO2 相的致密涂层。 当 TEOS 与 
PVA 质量比为 4:1 时，TEOS 水解缩合充分，生成了 

均匀致密的 SiO2 相涂层。而当 TEOS 与 PVA 质量比 

高于 5:1时， TEOS水解缩合产生的 SiO2 相粒子过量， 

粒子发生严重团聚，并且堆积的粒子间存在空隙容易 

发生剥落。因此，本文作者选取  TEOS 与  PVA 质量 

比为 4:1。
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2.2  提拉速度对 PVA/SiO2 涂层的影响 

图 2所示为 TEOS 与 PVA质量比为 4:1的溶胶在 

不同提拉速度形成的 SiO2 涂层表面 SEM 像。采用浸 

渍−提拉法制备涂层时， 涂层厚度 h与提拉速度 v的关 

系为：  2 / 3 1/ 6 1/ 2 0.94( ) /[ ( ) ] h v g η γ ρ = ，其中 η、γ、ρ和 
g分别为溶胶的粘度、表面张力、密度和重力加速度， 

因此 h∝(v) 2/3  [19] 。当提拉速度为 1  mm/min 时，形成 

的涂层较薄，涂层表面还出现了“针孔”缺陷(见图 
2(a))。当提拉速为 2 mm/min时，形成了 SiO2 颗粒分 

布均匀、表面平整的涂层(见图 2(b))。当提拉速度为 5 
mm/s时，由于形成的涂层较厚，干燥时涂层与基材之 

间因表面张力不同而可能出现裂缝，同时涂层中的 
SiO2 颗粒粗大且分布不均匀(见图  2(c))。而当提拉速 

度为 10 mm/s时，形成的涂层更厚，干燥后的涂层与 

图 1  不同 TEOS与 PVA质量比的 PAV/SiO2 溶胶涂层表面 SEM像 

Fig.  1  SEM  images  of  surface  coatings  with  different  mass  ratios  of  TEOS  to  PVA  in  PVA/SiO2  sol:  (a)  mTEOS:mPVA=1:1; 

(b) mTEOS:mPVA=2:1; (c) mTEOS:mPVA=4:1; (d) mTEOS:mPVA=5:1 

图 2  不同提拉速度下 PVA/SiO2 涂层表面 SEM像 

Fig. 2  SEM  images of  surface  coatings of PVA/SiO2  coatings with different pulling  speeds: (a) 1 mm/min; (b) 2 mm/min; (c) 5 

mm/min; (d) 10 mm/min
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基材表面之间裂缝加大， 涂层已经出现局部剥落(见图 

2(d))。

图3所示为不同提拉速度下制备的PVA/SiO2 涂层 

的原子力显微镜(AFM)照片。由图 3 可见，提拉速度 

对涂层表面的平整度有一定的影响。当提拉速度为  2 

mm/min时，表面平整度均方根偏差 Rq 值为 78.6 nm， 
Ra 值为 62.5 nm(见图 3(a)和(b))。 提拉速度为 5 mm/min 

时，Rq 值为 84.2 nm，Ra 值为 68.7 nm(见图 3(c)和(d))。 

提拉速度为 2  mm/min 时获得涂层的表面平整度明显 

优于提拉速度为 5  mm/min 时涂层。这是由于提拉速 

度为 5 mm/min时，溶胶形成凝胶层时振动幅度偏大， 

溶剂蒸发速率较快，孔隙率增加，因此表面粗糙度增 

大。 

综合 PVA/SiO2 涂层表面形貌的 SEM 像和原子力 

显微观察结果， Ti­Ni形状记忆合金基材的最佳浸渍提 

拉速度为 2 mm/min。 

2.3  烧结温度对 PVA/SiO2 涂层的影响 

图 4 所示是在 TEOS 和 PVA 质量比为 4:1，提拉 

速度为 2  mm/min 的条件下，制备的涂层经过不同温 

度烧结后的表面形貌。涂层经 350和 450 ℃烧结 1  h 
后，有机添加物溢出，PVA 脱水生成了含碳−碳双键 

不饱和结构的产物，硅胶颗粒表面  Si—OH 的羟基聚 

合 [20] ，同时表面出现了少量裂纹(见图  4(a)和(b))。经 

550 ℃烧结 1 h后，涂层的 SiO2 粒子分散均匀、致密， 

表面无裂纹。而经 650 ℃烧结 1 h 后，涂层表面并出 

现裂纹。 

利用椭偏仪对在不同烧结温度下制备的涂层的平 

均厚度进行测量，结果表明：烧结温度分别为  350、 
450  和  550  ℃时的涂层的平均厚度分别为  86.56、 

86.42和 86.2 μm。而当烧结温度为 650℃时，由于涂 

层内部有机物发生局部的熔融，涂层平均厚度仅为 

83.9 μm。因此 550℃是较为合适的烧结温度。 

图 3  不同提拉速度下 PVA/SiO2 涂层的表面 AFM像 

Fig. 3  AFM images of surface coatings of PVA/SiO2 by different pulling speeds: (a) 2 mm/min; (b) 2 mm/min; (c) 5 mm/min; (d) 5 

mm/min
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图 4  不同烧结温度下 PVA/SiO2 涂层表面 SEM像 

Fig. 4  SEM images of surface coatings of PVA/SiO2 sintered at different temperatures: (a) 350℃; (b) 450℃; (c) 550℃; (d) 650℃ 

2.4  纳米压痕结果 

图 5 所示是经不同热处理温度烧结后的涂层表面 

的弹性模量和硬度变化。当烧结温度从 450 ℃增大到 
550 ℃时， 涂层表面的弹性模量(Er)仅从 20.7 GPa增大 

到 20.9 GPa。 进一步增大烧结温度至 650和 750℃时， 
Er 值则分别增大到 29 和 42  GPa。当烧结温度从 450 
增大到 550℃时， 涂层表面的硬度 H仅从 0.49增大到 
0.66 GPa。进一步增大烧结温度至 650和 750 ℃时， 

硬度 H值则分别增大到 0.84和 1.60 GPa。同时可见， 

图  5  不同烧结温度下  PVA/SiO2 涂层的硬度与弹性模量的 

关系 

Fig. 5  Relationship between hardness and modulus of elasticity 

of PVA/SiO2 coatings sintered at different temperatures 

烧结温度为 450℃和 550℃的样品Er 值和H值的标准 

方差较小，样品的涂层表面力学性能均匀一致。650 
和 750 ℃烧结的样品的标准方差较大，涂层表面不同 

区域的力学性能波动大。 

图 6 所示为不同温度烧结后制备的涂层的纳米压 

痕载荷−位移曲线。由图 6可知，550℃烧结后的曲线 

中 3 个不同测试点的曲线路径接近，涂层的表面状态 

和性能较为均匀。同时曲线比较光滑，表明样品表面 

组织里外均匀。而在 450、650和 750℃烧结样品的载 

荷−位移曲线路径差异大，曲线也不平滑，样品表面 

的性能不均匀。在 550 ℃温度下烧结的样品组织是最 

佳的。

PVA/SiO2 涂层的力学性能(弹性模量和硬度)随着 

烧结温度的升高而增大， 数据的标准方差也逐步增大。 

这是由于在较低的温度下(如 450 和 550 ℃)，涂层中 
SiO2 粒子发生团聚较少，硬度值较低，SiO2 粒子的表 

面活性降低，SiO2 粒子表面能与  PVA 发生键合的羟 

基数目降低。同时，随着烧结温度的升高，SiO2 粒子 

与 PVA的结合更为紧密，致密度提高，获得类陶瓷结 

构， 从而提升了 Er 和 H值。 但当温度过高时， SiO2  粒 

子团聚严重，使材料内部产生了局部应力集中。同时 

当烧结温度为 650 ℃时，涂层的 Si—O—Si键构架热 

收缩使涂层孔径略显增大，PVA/SiO2 涂层局部出现熔 

融(见图 4(d))。进一步升高烧结温度至  750℃时，局
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图 6  不同热处理温度的薄膜纳米压痕载荷−位移曲线 

Fig. 6  Indentation load−displacement curves of various regions of PVA/SiO2 coatings sintered at different temperatures: (a) 450℃; 

(b) 550℃; (c) 650℃; (d) 750℃ 

部熔融更严重，因此不同位置力学性能差别大，表明 

涂层表面的组织不均匀。 

2.5  膜基结合强度测试结果 

涂层与基体金属能否良好结合是评价涂层性能的 

关键因素， 是其附着于基体减少 Ni离子释出的重要基 

础。划痕法测的膜基结合强度代表的是膜基的综合承 

载能力，该值也随薄膜硬度的增加而增大。表 1 所列 

为不同条件下制备的涂层的膜基结合强度。由表 1 可 

知，氧化+PVA/SiO2 工艺制备的涂层具有最高的膜基 

结合强度。与纯硅胶膜制备的涂层的膜基结合强度相 

表 1  不同条件下制备涂层的膜基结合强度 

Table 1  Bond strengths between coating film and substrate 

Coating film  Bond strength/N 

None­oxidation + PVA/SiO2  40.85±1.75 

Oxidation +PVA/SiO2  65.9±1.5 

None­oxidation + Si  21..95±1.35 

Oxidation + Si  29.95±2.0 

比，本文作者制备的  PVA/SiO2 涂层的膜基结合强度 

显著提高，且氧化后涂层的膜基结合强度明显大于未 

经过氧化处理的涂层的膜基结合强度。 

3  结论 

1) 随着 TEOS 与 PVA 质量比的增大，TEOS 水 

解产生的  SiO2 粒子分布越密集，越有利于形成  SiO2 

相的致密涂层。当 TEOS 与  PVA 质量比为  4:1 时， 
TEOS水解缩合充分， 生成了均匀的 SiO2 相致密涂层， 

涂层表面 SiO2 呈球状分布，与 PVA没有明显的界面， 

两相的相容性很好。 
2) 表面形貌分析可知， 当提拉速为 2 mm/min时， 

形成了 SiO2 颗粒分布均匀、表面平整的涂层，在 550 
℃烧结 1  h 可获得表面均匀致密的涂层，涂层的平均 

厚度为 86.2 μm。 
3)  纳米压痕力学性能测试结果表明涂层与基体 

的结合性能良好，提高烧结温度可以增加涂层的弹性
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模量和硬度。当烧结温度为 750℃时，表面涂层的 Er 
和 H分别为 42和 1.6 GPa。 

4) 利用溶胶−凝胶法在  Ti­Ni 记忆合金表面制备 
SiO2 复合涂层的最佳工艺参数为：制备溶胶的  TEOS 
和 PVA的质量比为 4:1，提拉速度为 2 mm/min，烧结 

温度为 550℃。 
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