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Numerical study of effect of pore microstructure of
layered thermal barrier coatings on thermal insulation performance
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Abstract: A software for constructing coating microstructure was developed based on the quartet structure generation set
(QSGS), and the anisotropic pore microstructure of layered coating was constructed, also a software for analyzing the
thermal insulation performance was developed based on thermal resistance network method. By numerical simulation, the
heat transfer process within the layered coatings of different pore sizes, thicknesses and directions was analyzed, then, the
coating effective thermal conductivity and thermal steady state temperature field were obtained. The results show that
increasing the porosity of the coating can effectively enhance the thermal insulation performance of the coating. When
porosity is constant, as the layered pores diameter decreases, its thermal insulation performance will be weakened, but the
steady-state temperature distribution will be more uniform, and the structure will be more stable. When porosity is
constant, as the layered pores elongating, its thermal insulation performance will be enhanced to some extent. When
porosity is constant in the range of 0°-90°, as the horizontal angle of the layered pores increases, its thermal insulation
performance will be weakened. And the higher the porosity, the more obvious the weaken trend.
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Fig. 2 Layered structure geometry models under different
generation probabilities of solid phase nucleation centers:
(a) p=0.05; (b) p.=0.20; (c) p.=0.35; (d) p.=0.50

B3 w1, 377 MR NI ZARG R RR

Fig. 3 Layered structure geometry models under different
growth probabilities of direction 1 and 3: (a) ps=0.0002;
(b) p4=0.002; (¢) p4=0.02; (d) p4=0.2
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Fig. 7 Steady-state temperature field of layered structures coatings with different p.: (a) p.=0.05; (b) p.=0.20; (¢) p.=0.35; (d) p=0.50
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