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Mechanical properties and constitutive analysis of
extruded AZ31B magnesium alloy

WU Zhang-bin, GUI Liang-jin, FAN Zi-jie

(Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084, China)

Abstract: By conducting uniaxial tension and compression tests, the mechanical properties of extruded AZ31B
magnesium alloy were studied and a suitable constitutive model was established. The results show that the yielding
response of extruded AZ31B alloy exhibits significant anisotropy and tension-compression asymmetry, and the evolution
of yield surface during plastic flow also exhibits great anisotropy, known as distortional hardening effect. By introducing
an analytical evolving law for the distortional hardening effect, a phenomenological constitutive model was established
based on the CPB06 yield function, which accounts for both anisotropy and tension-compression asymmetry. The model
was programmed to the user material subroutine interface VUMAT and applied to the finite element simulation of the
tension tests of a grooved specimen. The computational results coincide well with the experimental ones, which
demonstrates the predictive efficiency of this constitutive model.
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Table 1 Chemical compositions of AZ31B magnesium alloy

(mass fraction, %)

Al Zn Mn Si Fe Cu Ni Mg
2.73 0.84 0.3041 0.0102 0.0016 0.0015 0.0008 Bal.
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Fig. 1 Geometry of specimens (Unit: mm): (a) Uniaxial tension specimen; (b) R=3 mm grooved specimen; (c) Uniaxial

compression specimen
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Fig. 2 Engineering stress—strain curves of uniaxial tension

tests on 4 sides of AZ31B rectangular tubes along ED direction
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Fig. 3 Engineering stress—strain curves of uniaxial tension

and compression tests of AZ31B magnesium alloy: (a) Tension;

(b) Compression
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Fig. 4 Average true stress—plastic strain curves of uniaxial

tension and compression tests of AZ31B magnesium alloy
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Fig. 6 Comparison between fitting and measured stress—strain

curves for ED tension test
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