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Abstract: To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed (HCP) single crystal, the 
crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on 
crystal plasticity theory. The model was verified by test data. Newton−Raphson iteration method was developed with the stress 
components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed 
numerically under monotonic tension and compression, respectively, in four different strain paths (i.e. along 〉〈 0112 , 〉〈 0101 , 
〈0001〉 and 〉〈 1101 ) with this model. The stress−strain curves were obtained in the above paths. The numerical calculation results 
show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin 
variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic 
deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high 
asymmetry. 
Key words: AZ31 magnesium alloy; constitutive model; single crystal; deformation twin; twin variant; twin intersection 
                                                                                                             
 
 
1 Introduction 
 

The magnesium alloys have recently been focused 
on because of their potential applications for lightweight 
structural parts [1,2]. However, a number of applications 
of magnesium alloys are set a limit because they always 
show a high anisotropy and are hard to deform at low 
homologous temperature [3], just their HCP structure 
and limited deformation models. 

The closed packed directions for crystallographic 
slip on HCP crystals are 〉〈 0211  family of directions. 
Because these are perpendicular to the c-axis of the HCP 
crystals, they hardly cause the deformation along that 
axis. Twinning is considered to be one of the 
mechanisms that provide the inelastic deformation along 
the c-axis. In this regard, mechanical twinning plays a 
vital role in the deformation of magnesium alloy. At low 
homologous temperature, twinning may contribute this 

material to satisfy the von Mises criterion, which 
requires five independent deformation systems for 
meeting an arbitrary homogeneous straining. Unlike 
shear due to crystalline slip, the shear associated with 
twinning is typically polar in nature. 

For the deformation of FCC and BCC materials 
which deform primarily by crystallographic slip, there 
has been already a well developed mathematical theory 
[4,5]. But the integration of deformation twinning as a 
mode of plastic deformation and crystallographic slip has 
been an unsolved problem in extending crystal plasticity 
models to a wider range of polycrystalline materials [6]. 
Investigators [7,8] have made a lot of efforts to study the 
plastic deformation of HCP crystal and have achieved 
fruitful results. A continuum approach [9] is presented 
for predicting the plastic behaviour of HCP polycrystals 
using a simple non-hardening constitutive model 
incorporating both slip and twinning. Although slip   
and twinning deformation are taken into account in  
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constitutive relation, the interaction between slip and 
twinning deformation has not been presented in the 
above literature. Meanwhile, the iterative solution of 
incremental constitutive equation still needs to be 
improved. To this end, a constitutive model including 
slip and twinning mechanism for polycrystalline HCP 
materials was established, in which the Newton− 
Raphson iteration algorithm with the stress components 
directly as the basic variables of iteration was proposed. 
This model took the interaction between slip dislocation 
and twinning dislocation into account and put forward 
the new hardening functions of slip and twinning 
deformation. It is first that the volume fraction of 
twinning is proposed as argument to hardening function 
of slip deformation. To examine the constitutive model 
and the algorithm for texture evolution, AZ31 
magnesium alloy was studied. Then, meso-anisotropic 
nature of AZ31 single crystal was revealed by applying 
in different strain paths on single crystal. It is feasible to 
describing the activation of each deformation mechanism 
and twin variant during the single crystal deformation. 
 
2 Slip and twinning deformation mechanism 
 

The twinning can be regarded as a pseudo-slip. 
Then, the twinning plane and the correlative shear 
direction can be described by the normal of twinning 
plane vector and the shear direction vector, respectively. 
And they are integrated into the crystal plasticity model. 
Let α index the slip modes (i.e., prism or pyramidal) and 
β the twinning types. The power law is chosen to 
describe the shearing rates of the slip systems and 
extended to characterize the shearing rates of the 
twinning systems:  
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where ( )

S
αγ&  and ( )

T
βγ&  denote the shear strain rates of 

slip systems and twinning system, respectively; ( )
S
ατ  

and ( )
T
βτ  denote the resolved shear stresses of slip plane 

and twin plane, respectively; 0γ& is equivalent to the 
macroscopic strain rate modulus. This flow law 
introduces the critical strength or slip resistance ( )

Sg α  
that depends upon the local microstructure encountered 
by the dislocations; ( )

Tg β  denotes the thresholds 
demanded to activate this twin system; k is the 
rate-sensitivity parameter. 

The pseudo-volume fraction of the twin due to 
twinning system β in each grain is defined by 
 

( )( )
twinTf ββ γ γ=                             (2) 

where f (β) denotes the volume fraction of twinning 
system β; ( )

T
βγ  is the accumulated shear strain of 

twinning system, calculated by ( ) ( )
T T dtβ βγ γ= ∫ & ; twinγ  

is the shear strain due to twinning system. 
For compound twins, the orientation of a twin with 

respect to the matrix can be described by the rotation: 
 

tw 2ij i j ij= −R n n δ                              (3) 
 
where tw

ijR  is the transformation matrix of orientation 
between twin and matrix; n is the twinning plane normal 
vector; ijδ  is the Kronecker delta. For later using, it is 
noted that in Miller−Bravais system, {a1, a2, a3, c}, the 
four coordinate axes are not hard to numerical modeling, 
and the vectors a1, a2 and a3 are linearly dependent. For 
this reason, we define an orthonormal basis {xM, M=1,2,3} 
such that the x1-axis is in the 〉〈 0112  direction, x2-axis 
is in the 〉〈 0101  direction and the x3-axis is in the 
〈0001〉 direction (Fig. 1).  
 

 

Fig. 1 Orthonormal system {xM, M=1,2,3} in unit cell 
 
3 Constitutive equations 
 

We adopt the original explanation provided by 
ASARO and RICE [10] for the multiplicative 
decomposition of deformation gradient, and extend the 
concepts of deformation gradient including deformation 
twinning: 
 

e p= ⋅F F F                                 (4)  
where F is the total deformation gradient; F e contains 
deformation gradients owing to both elastic stretches and 
the lattice rotation; F 

p is the plastic deformation gradient. 
It is assumed that the velocity gradient L consists of 

elastic velocity gradient Le and plastic velocity gradient 
Lp in the current configuration: 
 
L=Le+Lp                                    (5) 
 
and the elastic velocity gradient Le is defined as 
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1e e e−= ⋅&L F F                               (6)  

with the superscript “ ⋅ ” denoting the derivative with 
respect to time, the superscript “−1” denoting the inverse 
of matrix. So, the plastic velocity gradient Lp can be 
expressed as 
 

1 1p e p p e− −
= ⋅ ⋅ ⋅L F F F F&                        (7)  

Considering the slip and twinning mechanisms of 
plasticity, according to Ref. [11] we note that 
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where ( )

S
αγ&  and ( )

ST
αγ&  denote the shear rate on a slip 

system in the untwinned crystal and in the twinned 
regions of the crystal, respectively; ( )

T
βγ&  denotes the 

shear strain related to twinning; f β is the volume fraction 
of the twinned region; NS, NT and NST refer to the number 
of potentially active slip systems in the untwinned  
crystal, the number of potentially active twin systems in 
the untwinned crystal, and the number of potentially 
active slip systems in each of the twinned regions of the 
crystal, respectively; ( )

S
αS  represents the slip systems 

in the untwinned crystal; ( )
T
βS  stands for the potential 

twin systems in the untwinned crystal; ( )
ST
αS  stands for 

the potential slip systems in the twinned areas of the 
crystal. Here, 
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where superscript “T” denotes the transpose of the 
matrix. Note that each system is specified by a unit 
normal n0 to the slip/twin plane, and a unit vector m0 
denoting the slip/twin direction. The slip and twin 
systems (n0, m0) are supposed to be known in the 
reference configuration. 

The plastic deformation rate tensor Dp and plastic 
spin tensor W p are defined as 
 

Tp p p1 ( + )
2

=D L L                            (11a) 

Tp p p1 ( )
2

= −W L L                           (11b) 
 
and 
 

p p p+=L D W                                (12) 
   
3.1 Time-integration scheme 

With reference to the specific spatial coordinate xM 
concentric with the current local crystallographic axes, 
the incremental formulation can be written as 
 

e:M M MΔ = Δσ εC                             (13) 
 
where MΔσ  and e

MΔε  denote the Cauchy stress 
increment and the elastic strain increment with reference 
to xM, respectively; CM denotes the 4th-order tensor of 
tangent elasticity of the material with reference to xM. 

The stresses in the twinned and untwinned areas of 
the crystal can be described as 
 

mt mt e

tw tw e

:

:
M M M

M M M

⎧ =⎪
⎨

=⎪⎩

σ ε

σ ε

C

C
                             (14) 

 
where superscripts “mt” and “tw” denote the untwinned 
and the twinned regions, respectively. Note that different 
elastic stiffness tensors are used in Eq. (14) for the 
parents and the twinned areas, for the sake of the 
differences in the lattice orientations in these areas in the 
intermediate configuration. In addition, mt

MC  can be 
related to tw

MC  by the transformation: 
 

tw mt tw tw tw tw=Mijkl Mpqrs ip jq kr tsR R R RC C                   (15) 
 

The Cauchy stress increment in a crystal is 
expressed as a volume average of the stresses in the 
parents and the twinned regions, i.e. 
 

mt tw1M M Mf fβ β β

β β

⎛ ⎞
Δ = − Δ + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑σ σ σ          (16) 

 
where f β is the volume fraction of the grain that is 
twinned to the β twin system; tw

M
βΔσ  denotes the 

Cauchy stress increment in the β twinned region. 
Combining Eqs. (13), (14) and (16), we have 

 

mt tw e1 :M M MMf fβ β β

β β

⎧ ⎫⎛ ⎞⎪ ⎪Δ = − + Δ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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and  

mt tw1M M Mf fβ β β

β β

⎛ ⎞
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⎝ ⎠

∑ ∑C C C             (18) 

 
Further, it is assumed that MΔε  can be expressed 

as the sum of e
MΔε  and p

MΔε : 
 

pe
M M MΔ = Δ + Δε ε ε                           (19) 

 
In the constitutive model of crystal plasticity, a rate 
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formulation is used and dislocation motions on multiple 
slipping and twin systems are considered. The flow law 
controlling the rate of plastic strain of a single crystal is 
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where * * * *1

2 ( )= +P m n n m  is termed the Schmid 
direction tensor with reference to xM. 

For convenience, hereafter the quantity calculation 
is related to the configurations before and after a small 
time discretization step Δt with the left superscripts t and 
t+Δt, respectively. Usually, for meeting the objectivity of 
the stress, the update of stress is calculated as follows 
[12]: 
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Applying Eq. (20) into Eq. (21) gives 
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The value of Δγ can be calculated by 
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with η being a parameter limited in the range of 0<η<1. 
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Substituting Eqs. (23) and (24) into Eq. (22), we 
have 
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3.2 Stress-based Newton−Raphson iteration method 

For the convenience of implementing the algorithms 
in an ABAQUS/Standard code, we rewrite Eq. (25) in 
the form  
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Then, the stress-based Newton−Raphson iteration 

can be therefore written as 
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where ( )t t

M
+Δδ σ  is the stress variation for the 

iteration, and I is the identity tensor. 
 
3.3 Deformation mechanism and hardening function 

According the results in Ref. [13], in the numerical 
study represented below, the operative slip and twin 
systems are supposed to be the slip on basal 〈a〉 (0001) 

〉〈 0211 , prismatic 〈a〉 )0011( 〉〈 0211 , pyramidal 〈a+c〉 
)2112( 〉〈 1132  systems and twinning on pyramidal 

)0211( 〉〈 1011  and )0111( 〉〈 2011  systems. 
There are 12 slip systems and 12 twin systems for a 

HCP single crystal of AZ31. The normal vector n0 and 
the slip direction vector m0 corresponding to each 
slip/twin plane are given in Tables 1 and 2. 

 
Table 1 Labels of direction and plane of slip systems for AZ31 single crystal 

n0 m0 Slip No. 
a b a b 

1 (0001) (001) 〉〈 0211  〈0.5,0.886,0〉 
2 (0001) (001) 〉〈 1021  〈0.5,−0.866,0〉 
3 (0001) (001) 〉〈 1102  〈−1,0,0〉 
4 )0011(  (0.866,−0.5,0) 〉〈 0211  〈0.5,0.866,0〉 
5 )0101(  (−0.866,−0.5,0) 〉〈 1021  〈0.5,−0.866,0〉 
6 )0101(  (0,1,0) 〉〈 1102  〈−1,0,0〉 
7 )2112(  (0.852,0,0.524) 〉〈 1132  〈−0.524,0,0.852〉 
8 )2211(  (−0.426,−0.737,0.524) 〉〈 3211  〈0.262,0.454,0.852〉 
9 )2121(  (−0.426,0.737,0.524) 〉〈 1321  〈0.262,−0.454,0.852〉 
10 )1122(  (−0.852,0,0.524) 〉〈 3112  〈0.524,0,0.852〉 
11 )2211(  (0.426,0.737,0.524) 〉〈 2311  〈−0.262,0.454,0.852〉 
12 )1221(  (0.426,−0.737,0.524) 〉〈 3121  〈−0.262,0.454,0.852〉 

a—Four axis coordinate in Miller−Bravais system; b—Cartesian coordinate in {xM, M=1,2,3}. 
 
Table 2 Labels of direction and plane of twinning systems for AZ31 single crystal 

n0 m0 Twinning No. 
a b a b 

1 )0211(  (0.592,−0.342,0.729) 〉〈 1011  〈−0.632,0.365,0.684〉 
2 )0121(  (−0.592,−0.342,0.729) 〉〈 1110  〈0.632,0.365,0.684〉 
3 )2101(  (0,0.684,0.729) 〉〈 1110  〈0,−0.729,0.684〉 
4 )1021(  (−0.592,0.342,0.729) 〉〈 0111  〈0.632,−0.365,0.684〉 
5 )2110(  (0.592,0.342,0.729) 〉〈 0111  〈−0.632,−0.365,0.684〉 
6 )1210(  (0,−0.684,0.729) 〉〈 1101  〈0,0.729,0.684〉 
7 )0111(  (0.764,−0.441,0.471) 〉〈 0211  〈0.408,−0.235,−0.882〉 
8 )0111(  (−0.764,−0.441,0.471) 〉〈 2011  〈−0.408,−0.235,−0.882〉 
9 )1101(  (0,0.882,0.471) 〉〈 2101  〈0,0.471,−0.882〉 

10 )1011(  (−0.764,0.441,0.471) 〉〈 2101  〈−0.408,0.235,−0.882〉 
11 )1110(  (0.764,0.441,0.471) 〉〈 2110  〈0.408,0.235,−0.882〉 
12 )1110(  (0,−0.882,0.471) 〉〈 2110  〈0,−0.471,−0.882〉  
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Depending on the family of slip/twin systems, the 
evolution rule for the hardening ( )g α  is expressed as 
[14] 
 

( ) ( )

=1
=

n
g hα β

αβ
β

γ∑ &&                            (34) 

 
where hαβ  is the slip/twin hardening modulus and is 
proposed as 
 

( ) ( )= +(1 )h h q qαβ αβγ γ δ⎡ ⎤−⎣ ⎦                   (35) 
 
where q is a constant. Hardening parameter h(γ) and the 
values of the coupling parameter q have to be calibrated 
by a fitting procedure accounting for the test results of 
the polycrystal. 

Since twin boundaries (TB) impede the motion of 
slip dislocation after twinning in the grain to some  
extent, the hardening of slip deformation is closely 
associated with twin boundaries or the volume fraction 
of twin. In addition, the slip dislocation can penetrate 
into the twin. So Hall−Petch effect due to twinning is 
weakened. The experiments presented in Ref. [15] show 
that there are visible differences between the slip 
hardening rates with twin and without twin. Obviously, 
these differences depend on the volume fraction of twin. 
Based on the above analysis, the slip hardening modulus 
hs(γ) is applied as follows:  

( )
( )

2 0
S 0

s 0
= sech

erf
h

h h
γ

γ
τ τ

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

                 (36) 

 
where γ is the accumulated shear strain of all slip 

systems, and ( )

=1
= d

n
α

α
γ γ∑∫ ; h0 is the initial hardening 

value; τ0 and τs are the shear stresses at the onset of yield 
and the saturation of hardening, respectively. Note that τ0 
is used as the initial value of g(α), namely, the critical 
resolved shear stress(CRSS); f denotes the volume 
fraction of twin, and ( )f f β= ∑ ; r is a coupling 
parameter determined by fitting the experimental data. 

Experiments [16] indicate that the slip dislocations 
do not impede twinning deformation and the twin 
hardening rate keeps in a zero state or softening occurs 
within a narrow range with the increase of strain at the 
beginning stage of twinning deformation, and does not 
start to grow until the strain reaches about 3%, and 
increases rapidly as the following increase of strain. 
When the strain reaches about 6.5%, the twin hardening 
rate becomes so high that the twinning deformation 
hardly occurs, namely twinning exhausted phenomenon. 
In view of the above hardening evolution, the twin 
hardening modulus hT(γ) is applied as follows: 
 

( ) 2 0
T 0

s 0
= cosh 1

h
h h

γ
γ

τ τ
⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
                (37) 

where γ is the accumulated shear strain of all twinning 

systems, and ( )

=1
= d

n
β

β
γ γ∑∫ . 

 
4 Numerical results 
 

Figure 2 shows the schematic of the finite element 
model. The cubic model is divided into seven uniform 
parts in each direction, and eight-node iso-parametric 
brick elements with reduced integration are adopted. 
Initial crystal orientations for all elements are arranged 
randomly. Thus, the number of initial crystal orientations 
of the model is 7×7×7=343. 
 

 
Fig. 2 Schematic of finite element analysis model 
 
4.1 Validation of constitutive model and stress−strain 

response for AZ31 magnesium sheet 
Based on test data by MARKO et al [17], the initial 

(0001) and )0110(  pole figures of the model are shown 
in Fig. 3. In the calculation, the x-, y-, and z-axes in Fig. 
2 are defined to be the rolling direction (RD), transverse 
direction (TD), and normal direction (ND) in the sheet, 
respectively. Thus, the majority of c-axis is tended to 
align in the z direction (ND). All calculations are 
performed by adopting the boundary conditions in Fig. 2 
to predict the strength differential effect of uniaxial 
tension and compression, i.e., the planes x=0, y=0, and 
z=0 are fixed in the x, y, and z directions, respectively. 
For uniaxial tension, the plane y=1 is extended at a fixed  
 

 

Fig. 3 Pole figures showing initial texture in analysis models 
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displacement rate, while for uniaxial compression it is 
compressed at a constant displacement rate. 

The material parameters of the crystal model are 
estimated from the macroscopic stress−strain curve 
through tracking the experiments, via the trial-and-error 
method to fit the computationally obtained curves by 
applying a specified load on finite element model    
(Fig. 2). Due to the variation in microstructures, there are 
large discrepancies in the material parameters of 
magnesium alloy made by various processing 
technologies, especially CRSS, for example. In general, 
the reasonableness of the material parameters estimated 
numerically can be judged by comparing with the 
experiments, through verifying the reflection of texture 
evolution and macroscopic stress−strain curve of the 
simulation. The result of stress−strain curve is compared 
with the experimental result reported in Ref. [17]. And 
there is an attempt to match the stress−strain response 
with experimental results. A set of material parameters 
that give an acceptable matching to the stress−strain 
curve are given in Table 3. 
 
Table 3 Model hardening parameters of AZ31 single crystal 

Deformation 
modes 

τ0/ 
MPa 

τs/ 
MPa 

h0/ 
MPa 

γ0/ 
s−1 

q r k

Basal-〈a〉 10 20 100 0.001 1.4 2.2 200

Prismatic-〈a〉 75 105 250 0.001 1.4 2.2 200

Pyramical-〈a+c〉 90 110 250 0.001 1.4 2.2 200

Tensile-twin 50 145 500 0.001 1.4 − 200

Compression-twin 100 155 500 0.001 1.4 − 200

 
The quite similar stress−strain curves shown in  

Fig. 4 can be obtained by this set of hardening 
parameters. It indicates that the stress−strain curves 
under uniaxial tension and compression obtained by this 
set of hardening parameters are in good accordance 
qualitatively with the test results by MARKO et al [17].  
 

 
Fig. 4 Stress−strain curves under uniaxial tension and 
compression 

Therefore, we consider that the following discussion 
about the activities of the slip and twinning systems is 
acceptable with regard to the set of hardening 
parameters. 
 
4.2 Calculation of texture evolution for AZ31 

magnesium alloy 
Figure 5 shows the initial random texture in (0001) 

pole figure in terms of 343 grains for the AZ31 
polycrystal at ε=0. The homogeneous deformation is 
considered by plane strain compression. 

The predicted stress−strain curves and deformed 
textures at ε=0.1 and ε=0.2 are also shown in Fig. 5. The 
predicted results reveal that the textures in (0001) pole 
figure gradually result in the textures that the c-axis of 
most grains is approximately parallel to the direction of 
compression from initial random textures during 
compression process. Here, the predicted textures are 
essentially in accordance with basal plane textures of the 
rolled magnesium alloy sheet [19]. 
 

 
Fig. 5 Predicted stress−strain curve and textures evolution 
under plane strain compression for HCP polycrystal 
 
5 Discussion 
 

To investigate the whole behavior of the single 
crystal, we computed the response of the single crystal 
under uniaxial tension and compressions in four different 
directions: 1) 〉〈 0112 , 2) 〉〈 0101 , 3) 〈0001〉, and 4) 

〉〈 1101 , respectively (Fig. 6 for reference). In all of 
these calculations, the single crystal was loaded 
gradually until the nominal strain reached 15% in the 
loading direction. The calculated stress−strain relations 
in the above loading paths are shown in Fig. 7. The 
behavior of the crystal model is strongly anisotropic. 
 
5.1 Crystal anisotropy and meso analysis 

The compression stress−strain curves are plotted 
with absolute values in order to compare the results with 
the tension stress−strain curves. 

Figure 7 shows the stress−strain curves of AZ31 
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Fig. 6 Loading direction in unit cell 
 

 
Fig. 7 Stress−strain curves in four different directions 
 
magnesium alloy obtained from simulation investigation 
under uniaxial tension and compression in four different 
directions. A careful observation of the stress−strain 
curves shown in Fig. 7 reveals that the yield stresses are 
different in four loading paths. During monotonic tension 
in Fig. 7(a), the yield stresses along 〉〈 0112  and 

〉〈 0101  occur at the same magnitude of 175 MPa. The 
plastic deformation is largely caused by the activity of 
prismatic 〈a〉 slip and a little compression twin 

)0111( 〉〈 0211  (Figs. 8(a) and (c)). 
The crystal flows at a near-constant stress of    

100 MPa to form a plateau along 〈0001〉 loading path due 
to the activity of tension twin )0211( 〉〈 1011 (Fig. 8(e)). 
As the plastic deformation proceeds until a strain of 
about 6.5%, tension twinning is exhausted, followed by a 
flow characterized by a incrementally increased strain 
hardening rate dominated by prismatic 〈a+c〉 slip. In 
addition, when the stress reaches 30 MPa, the material 
flows in 〉〈 0101  loading direction due to activity of 
basal 〈a〉 slip. And the activity of compression twin 

)0111( 〉〈 0211  (Fig. 8(h)) emerges at the strain of 
approximately 4% and the maximum stress of only about 
95 MPa. 

During monotonic compression in Fig. 7(b), the 
stress−strain curves form a plateau at the beginning of 
material yielding along 〉〈 0112 and 〉〈 0101  
compression paths. A plateau in 〉〈 0112  and 〉〈 0101  
compression directions is resulted from the activity of 
tension twin )0211( 〉〈 1011 ) (Figs. 8(b) and (d)). 
Furthermore, the material flows at stresses of 140, 100, 
200 and 30 MPa in 〉〈 0112 , 〉〈 0101 , 〈0001〉 and 

〉〈 1101 strain paths, respectively. The compression yield 
stress lies on the CRSS of the prismatic 〈a+c〉 slip system 
along 〈0001〉 direction (Fig. 8(f)). But the compression 
yield stresses depend on the CRSS of the tension 
twinning system along 〉〈 0112  and 〉〈 0101  
directions. The compression yield stresses are different 
along 〉〈 0112 and 〉〈 0101  directions mainly due to 
different Schmid factors. The plastic deformation along 

〉〈 1101  direction is caused by the activity of basal 〈a〉 
slip (Fig. 8(h)). 

The comparative analysis of the stress−strain curves 
along the above four different directions shows that the 
flow stresses of tension and compression loading are 
quite asymmetric. For instance, the flow stress along 

〉〈 0112  tension path is 175 MPa due to the activity of 
prismatic 〈a〉 slip. But the flow stress along 〉〈 0112  
compression path is 140 MPa due to the activity of 
tension twin )0211( 〉〈 1011 (Fig. 7). 

In conclusion, the yield strength and the 
macroscopic stress−strain responses are observably 
dependent upon the combination of slip and twin system 
activities. And the activity of each slip or twin system is 
heavily influenced by the CRSS and the loading path. 
The rate of work hardening and the velocity of stress 
saturated are affected by the volume fraction of twin. 
Specifically, the greater the volume fraction of twin is, 
the higher the rate of work hardening and the saturated 
stress are. 
 
5.2 Types of twin variants and twin intersection 

The theoretical calculations show that not all of 
twin variants have contribution to the propagation of 
twin bands in the deformed crystal. It is feasible to 
theoretically predict which type of twin variant readily 
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Fig. 8 Relative activities of five deformation modes during uniaxial loading 
 
experiences a reorientation under monotonous    
loading. The relative activity of twin variants    
defined in the following equation [18] is used to carry 
out this. 
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where Ga ,
r
β  denotes the relative activity of twin 

variants;  G,αγ&  and G,βγ& denote the shear rates in slip 
systems and twin systems, respectively. They are 
summed up within each GIP at each incremental step 
during plastic deformation. 

Figure 9 shows the relative activities of twin 
variants calculated for the deformed crystal in different 
strain paths. Since several types of twin variants emerge 
in a grain, it is possible to emerge twin intersection and 
form various types of twin intersection [20]. In Fig. 9, on  

 

 

Fig. 9 Relative activities of twin variants during uniaxial loading 
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one hand, the cases of the activity of tension twin are (a1) 
compression along 〉〈 0112 , (b1) compression along 

〉〈 0101 , (c1) tension along 〈0001〉 and (d1) compression 
along 〉〈 1101 . In the case of (a1), there are four types of 
twin variants to be activated, i.e., )0211( 〉〈 1011 , 

)0121( 〉〈 1110 , )1021( 〉〈 0111 and )2110( 〉〈 0111  
(Fig. 9(b)). The types of potential twin intersection are 

)0211( − )0121( , )0211( − )1021(  and )0211( − 
)2110( . In the case of (b1), there are two types of twin 

variants to be activated, i.e. )2101( 〉〈 1110 and 
)1210( 〉〈 1101  (Fig. 9(d)). The type of potential twin 

intersection is )0211( − )0121( . In the case of (c1), 
there are six types of twin variants to be activated    
(Fig. 9(e)). The types of potential twin intersection are 

)0211( − )0121( , )0211( − )2101( , )0211( − )1021( , 
)0211( − )2110( and )0211( − )1210( . In the case of 

(d1), there is one type of twin variant to be activated, i.e. 
)1210( 〉〈 1101  (Fig. 9(h)). 

On the other hand, the cases of the activity of 
compression twin are (a2) tension along 〉〈 0112 , (b2) 
tension along 〉〈 0101 , (c2) compression along 〈0001〉 
and (d2) tension along 〉〈 1101 . In the case of (a2), there 
is no type of twin variant to be activated (Fig. 9(a)). In 
the case of (b2), there are two types of twin variants to be 
activated, i.e. )1101( 〉〈 2101  and )1110( 〉〈 2110      
(Fig. 9(c)). The types of potential twin intersection are 

)0111( − )1011( . In the case of (c2), there are all six 
types of twin variant to be activated (Fig. 9(f)). The types 
of potential twin intersection are )0111( − )0111( , 

)0111( − )1101( , )0111( − )1011( , )0111( − )1110(  
and )0111( − )1110( . In the case of (d2), there is one 
type of twin variant to be activated, i.e. )1101( 〉〈 2101  
(Fig. 9(g)). 

The above analysis indicates that the number of the 
active twin variants and the type of the dominant twin 
variants are also dependent on the orientation of the 
crystal, which leads to different types of twin  
intersection. The twin intersection leads to strain 
hardening due to the mutual interference of intersectional 
twin. The role of strain hardening is described by the 
latent hardening parameters in the above constitutive 
model. Due to the limitation of experimental condition, it 
is difficult to represent completely the emergence of all 
types of twin intersection under various loading 
conditions with experiments. So it is very necessary to 
analyze all types of twin intersection under various 
loading conditions by numerical method. 
 
6 Conclusions 
 

1) The constitutive model and hardening functions 
are utilized to simulate the stress−strain behavior of a 
AZ31 single crystal undergoing uniaxial loading in four 
different paths. It is reasonable to predict the plastic 

behavior of an AZ31 single crystal and the relative 
activity of slip/twin system in crystal during 
deformation. 

2) The constitutive model and hardening functions 
can be used to effectively predict the strain hardening 
characteristics of single crystal. The calculated results 
reveal that the plastic behavior of an AZ31 single crystal 
and work hardening are strongly dependent on the 
loading path, and the single crystal material shows 
significant anisotropy and asymmetry due to the polar 
nature of mechanical twinning. 

3) Twin variants can be predicted using the model 
described in Section 3. It is found that the number of 
active twin variants and the types of dominant twin 
variants are also heavily dependent on the loading 
direction, which leads to different types of twin 
intersection. 

4) The rate of work hardening and the velocity of 
stress saturated are affected by the volume fraction of 
twin. Namely, the greater the volume fraction of twin is, 
the higher the rate of work hardening and the saturated 
stress are. 

5) Despite of low CRSS of basal 〈a〉 system, the 
relative activity of basal 〈a〉 slip is not significant during 
uniaxial loading along 〉〈 0112 〉〈 0101  and 〈0001〉 due 
to the crystal being unfavorably oriented for basal 〈a〉 
slip. On the contrary, relative activity of basal 〈a〉 slip is 
dominant in the 〉〈 2101 monotonic loading path due to 
favorable orientation of crystal. It is proved that plastic 
behavior of crystal is heavily dependent on the loading 
direction. 
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摘  要：为研究 HCP 结构单晶在塑性变形中的变形孪晶和塑性各向异性，采用基于晶体塑性本构理论的有限单

元法，建立包含滑移与孪生变形机制的晶体塑性本构关系，发展了以应力作为自变量的牛顿−拉普森迭代方法，

通过已有文献的试验数据验证模型的有效性，并利用此模型模拟 AZ31 单晶体在 4 种(即沿 〉〈 0112 ， 〉〈 0101 ， 

〈0001〉和 〉〈 1101 方向)拉伸与压缩变形路径下的塑性变形行为，并获得了相应加载路径下的应力−应变关系曲线。

数值计算结果表明，在不同加载路径下该模型可用于预测滑移系或孪生系的活动情况，以及描述孪生变体的活动

数量、主要孪生变体和孪生交叉类型。由于机械孪晶具有的极性性质及其在材料非弹性变形中的重要作用，单晶

材料表现出显著的各向异性与非对称性。 

关键词： AZ31 镁合金；本构模型；单晶体；变形孪生；孪晶变体；孪晶交叉 
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