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Abstract: To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed (HCP) single crystal, the
crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on
crystal plasticity theory. The model was verified by test data. Newton—Raphson iteration method was developed with the stress
components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed
numerically under monotonic tension and compression, respectively, in four different strain paths (i.e. along (21 10), (0110),

{0001y and (011 1)) with this model. The stress—strain curves were obtained in the above paths. The numerical calculation results
show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin
variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic
deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high

asymmetry.
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1 Introduction

The magnesium alloys have recently been focused
on because of their potential applications for lightweight
structural parts [1,2]. However, a number of applications
of magnesium alloys are set a limit because they always
show a high anisotropy and are hard to deform at low
homologous temperature [3], just their HCP structure
and limited deformation models.

The closed packed directions for crystallographic
slip on HCP crystals are (1120) family of directions.
Because these are perpendicular to the c-axis of the HCP
crystals, they hardly cause the deformation along that
axis. Twinning is considered to be one of the
mechanisms that provide the inelastic deformation along
the c-axis. In this regard, mechanical twinning plays a
vital role in the deformation of magnesium alloy. At low
homologous temperature, twinning may contribute this

material to satisfy the von Mises criterion, which
requires five independent deformation systems for
meeting an arbitrary homogeneous straining. Unlike
shear due to crystalline slip, the shear associated with
twinning is typically polar in nature.

For the deformation of FCC and BCC materials
which deform primarily by crystallographic slip, there
has been already a well developed mathematical theory
[4,5]. But the integration of deformation twinning as a
mode of plastic deformation and crystallographic slip has
been an unsolved problem in extending crystal plasticity
models to a wider range of polycrystalline materials [6].
Investigators [7,8] have made a lot of efforts to study the
plastic deformation of HCP crystal and have achieved
fruitful results. A continuum approach [9] is presented
for predicting the plastic behaviour of HCP polycrystals
using a simple non-hardening constitutive model
incorporating both slip and twinning. Although slip
and twinning deformation are taken into account in
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constitutive relation, the interaction between slip and
twinning deformation has not been presented in the
above literature. Meanwhile, the iterative solution of
incremental constitutive equation still needs to be
improved. To this end, a constitutive model including
slip and twinning mechanism for polycrystalline HCP
materials was established, in which the Newton—
Raphson iteration algorithm with the stress components
directly as the basic variables of iteration was proposed.
This model took the interaction between slip dislocation
and twinning dislocation into account and put forward
the new hardening functions of slip and twinning
deformation. It is first that the volume fraction of
twinning is proposed as argument to hardening function
of slip deformation. To examine the constitutive model
and the algorithm for texture evolution, AZ3l
magnesium alloy was studied. Then, meso-anisotropic
nature of AZ31 single crystal was revealed by applying
in different strain paths on single crystal. It is feasible to
describing the activation of each deformation mechanism
and twin variant during the single crystal deformation.

2 Slip and twinning deformation mechanism

The twinning can be regarded as a pseudo-slip.
Then, the twinning plane and the correlative shear
direction can be described by the normal of twinning
plane vector and the shear direction vector, respectively.
And they are integrated into the crystal plasticity model.
Let o index the slip modes (i.e., prism or pyramidal) and
S the twinning types. The power law is chosen to
describe the shearing rates of the slip systems and
extended to characterize the shearing rates of the
twinning systems:

(tl)

(@)
~@ g(a)

7P = 7y sgn(zd (la)

20 EA )
717 = Vosgn(zr) (ﬂ) ; >0 (1b)

where }?é“) and 7%’3 ) denote the shear strain rates of
slip systems and twinning system, respectively; ré“)
and r%ﬁ ) denote the resolved shear stresses of slip plane
and twin plane, respectively; p,is equivalent to the
macroscopic strain rate modulus. This flow law
introduces the critical strength or slip resistance g(a)
that depends upon the local microstructure encountered
by the dislocations; g’ denotes the thresholds
demanded to activate this twin system; k is the
rate-sensitivity parameter.

The pseudo-volume fraction of the twin due to
twinning system £ in each grain is defined by

9 = 5P [y )

where /" denotes the volume fraction of twinning
system f3; )/(ﬁ ) is the accumulated shear strain of
twinning system, calculated by 7(ﬁ ) = Uy(ﬁ )dt‘ Y twin
is the shear strain due to twinning system.

For compound twins, the orientation of a twin with
respect to the matrix can be described by the rotation:

t

Rl-jW =2nn; -9 3)
where Rl;-w is the transformation matrix of orientation
between twin and matrix; 7 is the twinning plane normal

vector; O is the Kronecker delta. For later using, it is

.
noted thatj in Miller—Bravais system, {a,, a,, a3, ¢}, the
four coordinate axes are not hard to numerical modeling,
and the vectors a;, a, and a; are linearly dependent. For
this reason, we define an orthonormal basis {x,, M=1,2,3}
such that the x;-axis is in the (2TTO) direction, x,-axis
is in the (01T0) direction and the x;-axis is in the
(0001} direction (Fig. 1).

Ae

Xy Ox“-h ?:.

ay

Fig. 1 Orthonormal system {x;,, M=1,2,3} in unit cell
3 Constitutive equations

We adopt the original explanation provided by
ASARO and RICE [10] for the multiplicative
decomposition of deformation gradient, and extend the
concepts of deformation gradient including deformation
twinning:

F=F°F° (4)

where F is the total deformation gradient; F ¢ contains
deformation gradients owing to both elastic stretches and
the lattice rotation; F” is the plastic deformation gradient.

It is assumed that the velocity gradient L consists of
elastic velocity gradient L® and plastic velocity gradient
L? in the current configuration:

L=L*+L’ (&)

and the elastic velocity gradient L® is defined as
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. -1
L =F° -F° (6)
with the superscript “*” denoting the derivative with
respect to time, the superscript “—1” denoting the inverse

of matrix. So, the plastic velocity gradient L” can be
expressed as

I’ =F°.FP.FP .F° 7)

Considering the slip and twinning mechanisms of
plasticity, according to Ref. [11] we note that

N Ng N
I’ = I_Zfﬂ z7§a)5§a)+z7¥ﬁ)5§ﬂ)+
p=1 a=1 =

Ny Ngr
> {fﬂ > y’é?Sé?-’] (8)

p=1 a=1

where 7{*) and 7% denote the shear rate on a slip

system in the untwinned crystal and in the twinned
regions of the crystal, respectively; %ﬁ ) denotes the
shear strain related to twinning; /” is the volume fraction
of the twinned region; Ns, Nt and Ngr refer to the number
of potentially active slip systems in the untwinned
crystal, the number of potentially active twin systems in
the untwinned crystal, and the number of potentially
active slip systems in each of the twinned regions of the
crystal, respectively; Sé“) represents the slip systems
in the untwinned crystal; S%ﬂ ) stands for the potential
twin systems in the untwinned crystal; S’ stands for
the potential slip systems in the twinned areas of the
crystal. Here,

S5 = mgng
St =min; ©)

* %
Sgr = mgrngr

with
* _Fe * _FefT
mg=1r —-myg, Hg= My s
-T
* e * €
my=F" -my, np=F" -n;
- - (10)

* W
mgy =R - (F° m g)

* e’T
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where superscript “T” denotes the transpose of the
matrix. Note that each system is specified by a unit
normal n, to the slip/twin plane, and a unit vector m,
denoting the slip/twin direction. The slip and twin
systems (ny m,) are supposed to be known in the
reference configuration.

The plastic deformation rate tensor D° and plastic
spin tensor WP are defined as

DP =%(LP+LPT) (11a)

W :%(Lp_LpT) (11b)
and
= DP+WP (12)

3.1 Time-integration scheme

With reference to the specific spatial coordinate x;,
concentric with the current local crystallographic axes,
the incremental formulation can be written as

Aoy =C) Agy, (13)

where Ao, and Ag;, denote the Cauchy stress
increment and the elastic strain increment with reference
to xy, respectively; Cy, denotes the 4th-order tensor of
tangent elasticity of the material with reference to x,,.

The stresses in the twinned and untwinned areas of
the crystal can be described as

mt __ mt, e

t t
oy =Cy ey

(14)

where superscripts “mt” and “tw” denote the untwinned
and the twinned regions, respectively. Note that different
elastic stiffness tensors are used in Eq. (14) for the
parents and the twinned areas, for the sake of the
differences in the lattice orientations in these areas in the
intermediate configuration. In addition, C};' can be
related to C}; by the transformation:
Clt\:;;jkl: ]\r;;taqrszt:,Rjt‘;RlSNRt?N (15)
The Cauchy stress increment in a crystal is
expressed as a volume average of the stresses in the
parents and the twinned regions, i.e.

Aay, :[1—2#%@*} +> Aoy’ (16)
B B

where f7 is the volume fraction of the grain that is

twinned to the f twin system; Acl” denotes the

Cauchy stress increment in the £ twinned region.
Combining Egs. (13), (14) and (16), we have

Aoy, = [I—ZfﬁJCA“}t +> fPCy’ Lasy, (17)
B B
and
Cy {I—Zfﬂ]q“;waﬁC;;V” (18)
B B

Further, it is assumed that Ag,, can be expressed
as the sum of Agy, and Aeg}, :

Agy = Agy, +Agl, (19)

In the constitutive model of crystal plasticity, a rate
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formulation is used and dislocation motions on multiple
slipping and twin systems are considered. The flow law
controlling the rate of plastic strain of a single crystal is

NT NS
Agl, = DPAt = [1 -3 fﬂJZ PNy +

= a=1

Zp(ﬁ)AV(ﬁ) + Z(fﬂzps(?)A7(a)J (20)
p=1 p=1 a=1

where P :%(m*n* +nm’) is termed the Schmid
direction tensor with reference to x,,.

For convenience, hereafter the quantity calculation
is related to the configurations before and after a small
time discretization step Az with the left superscripts ¢ and
t+At, respectively. Usually, for meeting the objectivity of
the stress, the update of stress is calculated as follows
[12]:

TGy ="oy +Cy i (Agy —AEY) (21)
Applying Eq. (20) into Eq. (21) gives

t+At _t .
oy =0y +C, :Agy, —

Ny Ny
Co || 1-D 17 D PAy +
p=1

a=l1
Z P(ﬁ)A}/('B) + Z(fﬂ Z PS(_?)Ay(!l)J] (22)
p=1 p=1 a=1
The value of Ay can be calculated by
Ay =[(1=n) 740" | A (23)

with # being a parameter limited in the range of 0<y<I.
And
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Substituting Eqs. (23) and (24) into Eq. (22), we
have

NT
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B=1
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3.2 Stress-based Newton—Raphson iteration method

For the convenience of implementing the algorithms
in an ABAQUS/Standard code, we rewrite Eq. (25) in
the form

F("Ng, )= "Ng, +H(" o)) -r=0 (27)
with
H("™Ya,) = Aty Co B (Tay) | (28)

}I1 (t+At [[1 _ Z fﬁJ z P(a) t+At7éa) +

a=l1

s (B) t+At - (B) & ﬁNST (@) t+At ()

ZPT T +Zf ZPST VST 29
p=1 p=1 a=1

and

r="'o, +{C,:(Agy, —(l—n)At[(l—

Zfﬁ)zP(a)f (a)+ZP(ﬁ)f (ﬂ)+
p=1 a=l1
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G A ) ()
z f Z Pt 7st
p=1 a=1

(30)

Then, the stress-based Newton—Raphson iteration

can be therefore written as

oF
PO o a8 o) =0 31
M
with
F<I+AIO_M) — t+Ato_M +H(Z+AIO_M)_F (32)

and

oF
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Ny Ngr k P(a)_H—AtO_
ST - M .
AVAD (a)| @ | PR | |nAty,
p=1 a=18sT | ST |
(33)

where &8(""“o,,) is the stress variation for the
iteration, and [ is the identity tensor.

3.3 Deformation mechanism and hardening function

According the results in Ref. [13], in the numerical
study represented below, the operative slip and twin
systems are supposed to be the slip on basal {(a) (0001)
(1120) , prismatic (a)(1100) (1120), pyramidal (a+c)
(2112) (2113) systems and twinning on pyramidal
(1102) (1101) and (1101) (1102) systems.

There are 12 slip systems and 12 twin systems for a
HCP single crystal of AZ31. The normal vector n, and
the slip direction vector m, corresponding to each
slip/twin plane are given in Tables 1 and 2.

Table 1 Labels of direction and plane of slip systems for AZ31 single crystal

Slip No. o o
a b a b

1 (0001) (001) (1120) (0.5,0.886,0)

2 (0001) (001) (1210) (0.5,-0.866,0)

3 (0001) (001) (2110) (-1,0,0)

4 (1100) (0.866,-0.5,0) (1120) (0.5,0.866,0)

5 (1010) (-0.866,0.5,0) 1210y (0.5,-0.866,0)

6 (0110) (0,1,0) (2110) (-1,0,0)

7 (2112) (0.852,0,0.524) (2113) (—0.524,0,0.852)

8 (1122) (—0.426,-0.737,0.524) (1123) (0.262,0.454,0.852)
9 (1212) (—0.426,0.737,0.524) (1213) (0.262,0.454,0.852)
10 (2112) (—0.852,0,0.524) (2113) (0.524,0,0.852)
11 (1122) (0.426,0.737,0.524) (1123) (—0.262,0.454,0.852)
12 (1212) (0.426,-0.737,0.524) (1213) (—0.262,0.454,0.852)

a—Four axis coordinate in Miller—Bravais system; b—Cartesian coordinate in {x,;, M=1,2,3}.

Table 2 Labels of direction and plane of twinning systems for AZ31 single crystal

Twinning No. o i
a b a b

1 (1102) (0.592,-0.342,0.729) (1101) (—0.632,0.365,0.684)
2 (1012) (-0.592,-0.342,0.729) (1011 (0.632,0.365,0.684)
3 (0112) (0,0.684,0.729) (0111) (0,-0.729,0.684)

4 (1102) (—0.592,0.342,0.729) aton (0.632,0.365,0.684)
5 1012) (0.592,0.342,0.729) (1011 (—0.632,—0.365,0.684)
6 (0112) (0,-0.684,0.729) 0111) (0,0.729,0.684)

7 1101 (0.764,-0.441,0.471) (1102) (0.408,-0.235,0.882)
8 (1011) (-0.764,-0.441,0.471) (1012) (—0.408,-0.235,~0.882)
9 (0111) (0,0.882,0.471) (0112) (0,0.471,—0.882)

10 (1101) (—0.764,0.441,0.471) (1102) (—0.408,0.235,-0.882)
11 1011) (0.764,0.441,0.471) 1012) (0.408,0.235,-0.882)
12 (0111) (0,-0.882,0.471) (0112) (0,-0.471,—0.882)
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Depending on the family of slip/twin systems, the
evolution rule for the hardening g(“) is expressed as
[14]

g(a’):i haﬁ ‘};(ﬁ)‘ (34)
=

where 7, is the slip/twin hardening modulus and is
proposed as

h, (7):h(7)[‘1+(1_61)5aﬂ] (35)

where ¢ is a constant. Hardening parameter A(y) and the
values of the coupling parameter ¢ have to be calibrated
by a fitting procedure accounting for the test results of
the polycrystal.

Since twin boundaries (TB) impede the motion of
slip dislocation after twinning in the grain to some
extent, the hardening of slip deformation is closely
associated with twin boundaries or the volume fraction
of twin. In addition, the slip dislocation can penetrate
into the twin. So Hall-Petch effect due to twinning is
weakened. The experiments presented in Ref. [15] show
that there are visible differences between the slip
hardening rates with twin and without twin. Obviously,
these differences depend on the volume fraction of twin.
Based on the above analysis, the slip hardening modulus
hy(y) is applied as follows:

hs (7) =hgsech” [%—7,J (36)

T —7g)e
where y is the accumulated shear strain of all slip

n
systems, and y= I Z‘dy(“)‘; hy is the initial hardening
a=1

value; 7y and 7, are the shear stresses at the onset of yield
and the saturation of hardening, respectively. Note that 7,
is used as the initial value of g, namely, the critical
resolved shear stress(CRSS); fdenotes the volume
fraction of twin, and f = z f B ris a coupling
parameter determined by fitting the experimental data.

Experiments [16] indicate that the slip dislocations
do not impede twinning deformation and the twin
hardening rate keeps in a zero state or softening occurs
within a narrow range with the increase of strain at the
beginning stage of twinning deformation, and does not
start to grow until the strain reaches about 3%, and
increases rapidly as the following increase of strain.
When the strain reaches about 6.5%, the twin hardening
rate becomes so high that the twinning deformation
hardly occurs, namely twinning exhausted phenomenon.
In view of the above hardening evolution, the twin
hardening modulus /1(y) is applied as follows:

he (7)=hq [coshz [}")—7} - 1} (37)

s~ 7

where y is the accumulated shear strain of all twinning

systems, and ;/=J Zn: ‘dy(ﬁ )‘ .
p=1

4 Numerical results

Figure 2 shows the schematic of the finite element
model. The cubic model is divided into seven uniform
parts in each direction, and eight-node iso-parametric
brick elements with reduced integration are adopted.
Initial crystal orientations for all elements are arranged
randomly. Thus, the number of initial crystal orientations
of the model is 7x7x7=343.

Fig. 2 Schematic of finite element analysis model

4.1 Validation of constitutive model and stress—strain
response for AZ31 magnesium sheet

Based on test data by MARKO et al [17], the initial
(0001) and (IOTO) pole figures of the model are shown
in Fig. 3. In the calculation, the x-, y-, and z-axes in Fig.
2 are defined to be the rolling direction (RD), transverse
direction (TD), and normal direction (ND) in the sheet,
respectively. Thus, the majority of c-axis is tended to
align in the z direction (ND). All calculations are
performed by adopting the boundary conditions in Fig. 2
to predict the strength differential effect of uniaxial
tension and compression, i.e., the planes x=0, y=0, and
z=0 are fixed in the x, y, and z directions, respectively.
For uniaxial tension, the plane y=1 is extended at a fixed

0001 1

N

PR

[

&

RD

Fig. 3 Pole figures showing initial texture in analysis models
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displacement rate, while for uniaxial compression it is
compressed at a constant displacement rate.

The material parameters of the crystal model are
estimated from the macroscopic stress—strain curve
through tracking the experiments, via the trial-and-error
method to fit the computationally obtained curves by
applying a specified load on finite element model
(Fig. 2). Due to the variation in microstructures, there are
large discrepancies in the material parameters of
magnesium alloy made by processing
technologies, especially CRSS, for example. In general,
the reasonableness of the material parameters estimated
numerically can be judged by comparing with the
experiments, through verifying the reflection of texture
evolution and macroscopic stress—strain curve of the
simulation. The result of stress—strain curve is compared
with the experimental result reported in Ref. [17]. And
there is an attempt to match the stress—strain response
with experimental results. A set of material parameters
that give an acceptable matching to the stress—strain
curve are given in Table 3.

various

Table 3 Model hardening parameters of AZ31 single crystal

Deformation 7o/ 7/ ho/ o/ i
»
modes MPa MPa MPa 5! 4
Basal-(a) 10 20 100 0.001 1.4 22 200

Prismatic~(a) 75 105 250 0.001 1.4 2.2 200
Pyramical-(a+c) 90 110 250 0.001 1.4 2.2 200
Tensile-twin 50 145 500 0.001 1.4 - 200
Compression-twin 100 155 500 0.001 1.4 — 200

The quite similar stress—strain curves shown in
Fig. 4 can be obtained by this set of hardening
parameters. It indicates that the stress—strain curves
under uniaxial tension and compression obtained by this
set of hardening parameters are in good accordance
qualitatively with the test results by MARKO et al [17].

500
0 Tension-TEST [18]
400 Tension-FEM
© Compression-TEST [18] D
-=-=-= Compression-FEM e

300

200

True stress/MPa

W00~

0 0.02 004 006 0.08 010 0.12
True strain

Fig. 4 Stress—strain curves under uniaxial tension and
compression

Therefore, we consider that the following discussion
about the activities of the slip and twinning systems is
acceptable with regard to the set of hardening
parameters.

4.2 Calculation of texture evolution for AZ31
magnesium alloy

Figure 5 shows the initial random texture in (0001)
pole figure in terms of 343 grains for the AZ31
polycrystal at e=0. The homogeneous deformation is
considered by plane strain compression.

The predicted stress—strain curves and deformed
textures at ¢=0.1 and ¢=0.2 are also shown in Fig. 5. The
predicted results reveal that the textures in (0001) pole
figure gradually result in the textures that the c-axis of
most grains is approximately parallel to the direction of
compression from random textures during
compression process. Here, the predicted textures are
essentially in accordance with basal plane textures of the
rolled magnesium alloy sheet [19].

initial

350
g 3007 L i (0001)
2250t " i (0001)
Z 200
£ (0001)
'z 1507
=
£'100 £=0.1
2 i _
e=0 —{— Plane compression
0 0.05 0.10 0.15 0.20 0.25

Compression strain

Fig. S Predicted stress—strain curve and textures evolution
under plane strain compression for HCP polycrystal

5 Discussion

To investigate the whole behavior of the single
crystal, we computed the response of the single crystal
under uniaxial tension and compressions in four different
directions: 1) (2110), 2) (0110), 3) (0001), and 4)
0111y, respectively (Fig. 6 for reference). In all of
these calculations, the single crystal was loaded
gradually until the nominal strain reached 15% in the
loading direction. The calculated stress—strain relations
in the above loading paths are shown in Fig. 7. The
behavior of the crystal model is strongly anisotropic.

5.1 Crystal anisotropy and meso analysis

The compression stress—strain curves are plotted
with absolute values in order to compare the results with
the tension stress—strain curves.

Figure 7 shows the stress—strain curves of AZ31
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Fig. 6 Loading direction in unit cell
500 —
@) — Along <2110>
1 — Along <0110>
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‘Eﬁ 300
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Fig. 7 Stress—strain curves in four different directions

magnesium alloy obtained from simulation investigation
under uniaxial tension and compression in four different
directions. A careful observation of the stress—strain
curves shown in Fig. 7 reveals that the yield stresses are
different in four loading paths. During monotonic tension
in Fig. 7(a), the yield stresses along (2110) and
(01T0) occur at the same magnitude of 175 MPa. The
plastic deformation is largely caused by the activity of
prismatic {a) slip and a little compression twin
(1101) (1102) (Figs. 8(a) and (c)).

The crystal flows at a near-constant stress of

100 MPa to form a plateau along (0001) loading path due
to the activity of tension twin (1102) (1101) (Fig. 8(e)).
As the plastic deformation proceeds until a strain of
about 6.5%, tension twinning is exhausted, followed by a
flow characterized by a incrementally increased strain
hardening rate dominated by prismatic {a+c) slip. In
addition, when the stress reaches 30 MPa, the material
flows in (0110) loading direction due to activity of
basal (a) slip. And the activity of compression twin
(1101) (1102) (Fig. 8(h)) emerges at the strain of
approximately 4% and the maximum stress of only about
95 MPa.

During monotonic compression in Fig. 7(b), the
stress—strain curves form a plateau at the beginning of
material  yielding along (2110) and (0110)
compression paths. A plateau in <2TTO> and (OITO)
compression directions is resulted from the activity of
tension twin (1102) (1101) ) (Figs. 8(b) and (d)).
Furthermore, the material flows at stresses of 140, 100,
200 and 30 MPa in (2110), (0110), (0001) and
(0111) strain paths, respectively. The compression yield
stress lies on the CRSS of the prismatic (a+c) slip system
along (0001) direction (Fig. 8(f)). But the compression
yield stresses depend on the CRSS of the tension
twinning system along (2110) and (OITO)
directions. The compression yield stresses are different
along (2TTO) and (01?0) directions mainly due to
different Schmid factors. The plastic deformation along
(OITI) direction is caused by the activity of basal (a)
slip (Fig. 8(h)).

The comparative analysis of the stress—strain curves
along the above four different directions shows that the
flow stresses of tension and compression loading are
quite asymmetric. For instance, the flow stress along
(ZT TO) tension path is 175 MPa due to the activity of
prismatic {(a) slip. But the flow stress along (2110)
compression path is 140 MPa due to the activity of
tension twin (1102) (1101 (Fig. 7).

In conclusion, the yield strength and the
macroscopic stress—strain responses are observably
dependent upon the combination of slip and twin system
activities. And the activity of each slip or twin system is
heavily influenced by the CRSS and the loading path.
The rate of work hardening and the velocity of stress
saturated are affected by the volume fraction of twin.
Specifically, the greater the volume fraction of twin is,
the higher the rate of work hardening and the saturated
stress are.

5.2 Types of twin variants and twin intersection

The theoretical calculations show that not all of
twin variants have contribution to the propagation of
twin bands in the deformed crystal. It is feasible to
theoretically predict which type of twin variant readily
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denotes the relative activity of twin
and ;?ﬂ ‘% denote the shear rates in slip

systems and twin systems, respectively. They are
summed up within each GIP at each incremental step
during plastic deformation.

1.0

Figure 9 shows the relative activities of twin
variants calculated for the deformed crystal in different
strain paths. Since several types of twin variants emerge
in a grain, it is possible to emerge twin intersection and
form various types of twin intersection [20]. In Fig. 9, on
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Fig. 9 Relative activities of twin variants during uniaxial loading
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one hand, the cases of the activity of tension twin are (a;)
compression along (2110), (b)) compression along
(0110), (cy) tension along (0001) and (d,) compression
along (01 11) . In the case of (a1), there are four types of
twin variants to be activated, ie., (1 102) (1 101) ,
(1012) (1011) , (1102) (1101) and (1012) (1011)
(Flg 9(b)). The types of potentlal twin intersection are
(1102) — (1012) , (1102) — (1102) and (1102) —
(1012). In the case of (b)), there are two types of twin
variants to be activated, i.e. (01?2) (OTI 1) and
(0112) (0111) (Fig. 9(d)). The type of potential twin
intersection is (1T02)—(T012). In the case of (¢),
there are six types of twin variants to be activated
(Fig. 9(e)). The types of potential twin intersection are
(1102)—(1012), (1102)—(0112), (1102)—(1102),
(1102)—(1012)and (1102)—(0112). In the case of
(dy), there is one type of twin variant to be activated, i.e.
(0112) (0111) (Fig. 9(h)).

On the other hand, the cases of the activity of
compression twin are (a,) tension along (2110), (by)
tension along (0110), (cy) compression along (0001)
and (d,) tension along (0111) . In the case of (ap), there
is no type of twin variant to be activated (Fig. 9(a)). In
the case of (b,), there are two types of twin variants to be
activated, i.e. (01 1 1) (0112) and (01 11) (0112)
(Fig. 9(c)). The types of potential twin intersection are
(ITOI)—(TIOI). In the case of (c,), there are all six
types of twin variant to be activated (Fig. 9(f)). The types
of potential twin intersection are (1 101) - (101 1),
a 101) —(11 D, d 101) = (1101), (1101)—(1011)
and (1 101) (01 11). In the case of (d,), there is one
type of twin variant to be activated, i.e. (01 11) (01 12)
(Fig. 9(g)).

The above analysis indicates that the number of the
active twin variants and the type of the dominant twin
variants are also dependent on the orientation of the
crystal, which leads to different types of twin
intersection. The twin intersection leads to strain
hardening due to the mutual interference of intersectional
twin. The role of strain hardening is described by the
latent hardening parameters in the above constitutive
model. Due to the limitation of experimental condition, it
is difficult to represent completely the emergence of all
types of twin intersection under various loading
conditions with experiments. So it is very necessary to
analyze all types of twin intersection under various
loading conditions by numerical method.

6 Conclusions

1) The constitutive model and hardening functions
are utilized to simulate the stress—strain behavior of a
AZ31 single crystal undergoing uniaxial loading in four
different paths. It is reasonable to predict the plastic

behavior of an AZ31 single crystal and the relative
activity of slip/twin system in crystal during
deformation.

2) The constitutive model and hardening functions
can be used to effectively predict the strain hardening
characteristics of single crystal. The calculated results
reveal that the plastic behavior of an AZ31 single crystal
and work hardening are strongly dependent on the
loading path, and the single crystal material shows
significant anisotropy and asymmetry due to the polar
nature of mechanical twinning.

3) Twin variants can be predicted using the model
described in Section 3. It is found that the number of
active twin variants and the types of dominant twin
variants are also heavily dependent on the loading
direction, which leads to different types of twin
intersection.

4) The rate of work hardening and the velocity of
stress saturated are affected by the volume fraction of
twin. Namely, the greater the volume fraction of twin is,
the higher the rate of work hardening and the saturated
stress are.

5) Despite of low CRSS of basal {(a) system, the
relative activity of basal (a) slip is not significant during
uniaxial loading along (2TTO> (01T0> and (0001) due
to the crystal being unfavorably oriented for basal (a)
slip. On the contrary, relative activity of basal (a) slip is
dominant in the (01T2) monotonic loading path due to
favorable orientation of crystal. It is proved that plastic
behavior of crystal is heavily dependent on the loading
direction.
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