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Abstract: A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element
method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from
undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is
caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the
forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes
from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the
primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of
the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to
remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with

uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
Key words: dendritic growth; phase-field model; forced flow; adaptive finite element method

1 Introduction

Dendrite is a form of most casts during
solidification. The dendrite growth is a complex physical
process influenced by the transfer of heat, mass and
momentum. The transfer of heat and mass in the process
of solidification not only depends on the diffusion, but
also closely relates to the flow of liquid metal. The
macro-segregation, solidification shrinkage cavity and
cast defects are influenced dramatically by the melt flow,
and those factors restrain the performances of metal
materials.

In recent years, on the basis of pure diffusion phase-
field model, the numerical simulation has provided a
very convenient and effective method for the study of
microstructures evolution [1-5]. TONG et al [6] and
BECKERMANN and SUN [7] used phase-field method
combined with SIMPLE algorithm to study the

relationship between dendritic tip morphology of pure
material and liquid fluid velocity. Finite difference
method and SIMPLE algorithm were adopted to solve
phase-field and flow field, respectively. The effects of
flow velocity on the unsymmetrical dendritic growth and
the temperature distribution were investigated
numerically based on the phase-field model [8]. CHEN
and CHEN [9] reported the phase-field model coupled
with the flow field to simulate two-dimensional dendrite
growth of metal by using finite difference method, and
the effect of flow velocity on metal dendritic crystal
growth was investigated. Based on the Wheeler model, a
phase-field model was proposed by coupling with
concentration field, temperature field and flow field. An
explicit finite difference numerical method was used to
solve the phase-field model [10,11].

However, the adaptive finite element method based
on non-uniform grid is more efficient and less amount
of calculation than the method based on uniform grid
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[12,13]. When the mass and momentum conservation
equations are calculated, projection method has the high
efficiency through prediction and correction step to get
the speed and pressure at the new time [14].

Based on the Wheeler diffusion model, a phase-field
model incorporated both flow and thermal noise was
proposed in this study, and the effect of gravity and
dynamics was neglected. The adaptive finite element
algorithm [15,16], the functional library AFEPack [17]
and the projection algorithm [18] were employed to
solve the phase-field model, momentum and mass
conservation equations. The dendritic growth of nickel
was simulated quantitatively, and the effects of flow
velocity on the dendrite morphology and tip operating
state were investigated. In addition, the influence of the
dendrite growth on the fluid flow was studied.

2 Simulation model

2.1 Dimensionless 2D phase-field model equations
Phase-field model represents the system’s physical

state of each point by introducing a continuous order
parameter ¢. In this study, ¢=0 represents the solid
condition, ¢=1 represents the liquid condition, and
0<g<1 represents solid—liquid interface. The phase-field
model equation is defined by [19]

2
g—%—(tp:go(l—gp)[gp—1/2+305aSugo(l—(p)]+
m

ezv~<n(9)2w)—ezai(n<e)n'(9)a—¢+
X Oy

82%(77(9)77’(9)2—? (1)

The form of thermal noise in Eq. (1) is given by
[20]
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where ¢ stands for the thickness of interfacial layer, and a
is defined as o = \/EZLIZH /(12¢,07T,,) . The dimensionless
temperature u is given byu =T -T,)/(T,, -T,), T is
the melting temperature, and 7y is the initial temperature
of system. Dimensionless supercooling degree S is
defined as S =c,(T;, - 1)/ Ly, , ¢, is the heat capacity
at constant pressure, and L,, is the latent heat, interfacial
migration coefficient m is defined by m=uoT/(xLy,), 1
denotes the interface migration rate, o represents the
interface energy, and « stands for the thermal diffusivity.
The anisotropic factor is defined by 7(f)=
1+ ycos[M (0)], y represents the anisotropy strength, M
denotes the mode of anisotropic, and 8 reflects the angle
between the preferred orientation of solidification and

the positive direction of x axis. Moreover, ¢, =0@/0x
and @, =0¢p/0y . Applying / as the length scale and
7 =1["/k as the time scale, all dimensional variables are
cast into their dimensionless forms. R e {—1,+l} is the
random number, and fis the thermal noise intensity.

2.2 Thermal field equation coupled with flow field
The thermal field equation takes the following
form [217]:
Ou P (@) 0p _ o
—+F(p)v-Vu+———=V-u 3
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where v stands for the dimensionless flow velocity
v=Ud,/x,U stands for the initial flow velocity, and
interpolation function F(¢) is given by

0, 0.7
F(p) ={ o= @)

o, =0.7
In Eq. (3), p'(¢) is defined as the derivative of
potential function p((p):(p3(6(p2—15(p+10) for ¢
[19].

2.3 Conservation equations of mass and momentum
The conservation equations for mass and
momentum take the following forms [22]:

F(p)V-v=0 )
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where p is the dimensionless pressure, and Re denotes
Reynolds number.

3 Numerical simulation parameters and
methods

3.1 Initial condition and boundary condition
An initial nucleus of the radius 7, can be defined as

¢)=0,u=0,vx=0,vy=0,p=0,x2+y2Sr02 7

=1L, u=-1,v =0, vyzvo,p=0, )c2+)/2>r02

where x and y are the coordinate axes, v, and v, are the
convection velocities along axes x and y, respectively.
The supercooled melt enters the domain from the top
boundary with a uniform velocity v, and exits at the
bottom boundary. The Zero-Neumann boundary
conditions are imposed at the boundaries of the
computational domain for phase field and thermal field,
while the mass and momentum equations employed
no-slip boundary conditions. The initial condition of
simulation domain is shown in Fig. 1. The simulation
domain size dimensions 4.0/x4.0/ (I=1.33x10%d,), where
dy is the capillary length.

The material parameters of phase-field model are
shown in Table 1.
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Fig. 1 Initial condition of simulation domain

Table 1 Physical parameters of pure Ni

Parameter Value Parameter Value
T./K 1728 S 0.65

Lo/(J-em™) 2350 0/(°) 0
¢,/ K -em™) 5.42 € 0.002

©/(em?*s ") 0.155 M 4
w(emK s 285 Ax=Ay 0.04
o/(J-em™?) 3.7x107° y 0.05

I/em 21x107* At 6.0x10°°

3.2 Numerical simulation methods
3.2.1 Adaptive finite element method

According to the adaptive finite element method,
the partial differential Eqgs. (1) and (3) should be
transformed into the corresponding week forms. The trial
functions vi(x, y) and z(x, y) are introduced. The time
domain is dispersed by using the time interval At
According to Green’s theorem, the weak forms of Egs. (1)
and (3) are defined by
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3.2.2 Efficiency of adaptive finite element method

The results of solving phase field model based on
adaptive finite element method are shown in Fig. 2,
where the domain dimensions are 3.0/x3.0/. Figure 2(a)
shows the initial mesh and Fig. 2(b) shows the dendrite
morphology at 7=6900At. Figure 2(c) shows the
amplified result of box in Fig. 2(b). It can be found that,
the grids are refined in region A4 close to the solid—liquid
interface, and the grids are coarsened in regions B, C and
D far away from the interface. The number of the nodes
is just 2.79x10° by using adaptive finite element method,
which is less than 1.6x10° by using the uniform grid
method at the termination of the calculation [12]. So, the
adaptive  finite element method reduces the
computational cost and improves the computational
efficiency dramatically.

The relationship among the CPU running time,
speed-up ratio and computational domain size is shown
in Table 2, where ¢, represents the CPU running time of
adaptive finite element method, ¢, stands for the CPU
running time of uniform grid method, and Lz denotes the
computational domain size of the system. The functional
relationship between the CPU running time and the
computational domain size is given by

1, =1.68 13 (10)
t, =1.54 L, (11)

The functional relationship between the speed-up
ratio and the computational domain size is defined by

(e) 55
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Table 2 Relationship among CPU running time, speed-up ratio
and domain size of system

Ly t,/h T,/h t,/t, (t/t)/Ly
2.5 9.83 22.83 2.32 0.93
3.0 15.8 47.0 2.97 0.99
35 20.5 63.3 3.07 0.88
4.0 28.6 107.6 3.76 0.94
5.0 40.8 179.8 4.41 0.88
6.0 59.7 318.1 5.33 0.89
t,/t, =0.92L, (12)

Time complexities of adaptive finite element
method and uniform grid method are O,(L%) and
0, (L3B), respectively. What’s more, the speed-up ratio
t,/t, 1is proportional to the domain size. By using the
non-uniform grid adaptive finite element method, the
greater the computational domain size is, the higher
computational efficiency is.

3.2.3 Projection algorithm

The mass and momentum equations were solved
numerically by using the fractional-step projection
algorithm [18]. As the fractional-step projection
algorithm can get higher computational efficiency in
solving incompressible Navier—Stokes equations, the
algorithm has been more and more widely used [23].

To guarantee unconditional stability and avoid any
restriction on the time step, the advection term (v-V)v
in Eq. (6) is replaced by its skew-symmetric form
(v-V)v+1/2(V-v)v, and the advection—diffusion step is
given by [18,21]
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The projection step is taken by the following
incremental form:
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The Poisson equation for the pressure increment is
given by
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where v*™! stands for the intermediate velocity, and

V1 denotes divergence-free velocity field. The velocity

field and pressure field are updated by

P =p" +Ap, (17)
4 Results and discussion

4.1 Dendrite morphologies at different flow velocities

Figure 3 shows the dendrite morphologies and
thermal distribution at =6500A¢, where the thermal noise
intensity f/=2.0. It can be seen from Fig. 3 that, the
dendrite grows symmetrically without forced flow
(Fig. 3(a)), and the thermal diffusion layer distributes
symmetrically as well (Fig. 3(c)). Figures 3(b) and (b)
show the dendritic morphology and the thermal diffusion
layer distribution with flow velocity of v=0.0026.
Dendrite shapes show asymmetry, and the growth rates
of dendrites are different in preferentially growing
directions. The main dendrite arm in the upstream region
is longer and wider compared with the main dendrite arm
in the downstream. Due to the erosion of convection
effect on upstream dendrite, it reduces the thickness of
thermal diffusion layer and leads to high temperature
gradient, and the release of latent heat is propitious. The
actual undercooling is increscent and the dendrite grows
up quickly. Therefore, the development of primary
dendrite and secondary dendrite arms is promoted.

In downstream region, the diffusion layer of the
dendrite tip is thinner and the temperature gradient is
higher without forced flow, as shown in Fig. 3(c). In the
case of forced flow, the thermal diffusion layer of the
dendrite tip is thicker than the former situation, as shown
in Fig. 3(d). In addition, the temperature gradient and the
actual undercooling are low, thus the dendrite growth
velocity is slow. The thermal diffusion layer prevents the
release of the latent heat, so the disturbance of interface
is restrained. At horizontal direction, the growth velocity
of the dendrite lies between the middle of downstream
region and upstream region.

4.2 Relationship between forced flow and dendrite
growth
4.2.1 Effect of forced flow on dendrite growth

The effect of forced flow on the growth velocities of
upstream, normal and downstream dendrites is obvious.
Figure 4 shows the dendrite shape at growth time of
=6500A¢ and the initial flow velocities v=0, 0.0011,
0.0025, 0.0026 and 0.0036, respectively, where the
supercooling degree is $=0.65.

It can be found that, the primary dendrites do not
shrink dramatically in the downstream region when the
flow velocity is less than 0.0026. The effect of forced
flow on the dendrite morphology is slight when the flow
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Fig. 3 Dendrite morphologies (a, b) and thermal diffusion layer distribution (¢, d) of phase-field modeling at =6500A¢: (a, c) Without

forced flow; (b, d) With forced flow

(b)

(d)

Fig. 4 Effect of flow velocity on morphologies of main branches at =6500Az: (a) v=0; (b) v=0.0011; (c) v=0.0025; (d) v=0.0026;

(e) v=0.0036

velocity is low, and the dendrite growth is mainly
controlled by thermal diffusion. With the increase of
flow velocity, the dendrite growth process is controlled
by the convection gradually. On one hand, the growth
rate of primary dendrites in upstream region increases
with the increase of the flow velocity, and the primary
dendrites and side-branches become more and more
developed. On the other hand, the growth rate of main
dendrites in downstream region reduces with the increase
of the flow velocity, and the growth of the main branches

and side-branches is restrained strongly in this region.
Figure 5 shows the dendrite shape and deflection
angle of the horizontal dendritic tip under different flow
velocities at =6500At. It can be seen that, the
morphology of the dendrite is symmetric completely
without forced flow, as shown in Fig. 5(a), and the
deflection angle of the horizontal dendritic tip is 0°. The
horizontal dendrite tip deviates the horizontal line
towards the fluid direction under the condition of forced
flow. With the increase of forced flow velocity, the



the negative

-

(d)

b

field model of pure material combined

and the flow of the melt in the vortex region
-field model is solved by using the efficient

and the remelting of the dendrite occurs.

According to the fluid mechanics,
pressure becomes stronger gradually in the downstream

region

1) A phase
with the projection algorithm is applied to simulating

(©

>

leads to the change of thermal distribution near the
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Fig. 5 Effect of flow velocity on deflection angle of horizontal dendritic tip flow at =6500A¢: (a) v=0; (b) v=0.0011; (c) v=0.0026;

(d) v=0.0036

the vortex does not appear, as shown in

b

i

Figure 6 shows the flow field distribution and grids

of temperature field of the dendritic tips at v=0.0036 and
direction of the arrow represent fluid particle position
and flow direction, and the length of the arrow stands for
the velocity of fluid particle. It can be seen that, arrows
is the longest near the primary dendrites, and the flow
velocity is the largest in this region. When the dendrite

direction of the main dendritic tip. The length of arrows
size is small

change their directions when the fluid passes the normal

deflection angle increases, as shown in Figs. 5(b), (c)
t=6500At, 6100Az, 6900A¢, respectively. The position and
Fig. 6(a). With the increase of the dendrite size

and (d).
4.2.2 Effect of dendrite growth on flow field

region, as shown in Fig. 6(b)
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Fig. 6 Flow field distribution and grids of temperature field at v=0.0036 and different growth time: (a, d) =1300A¢; (b, €) =6100Az;

(c, ) =6900A¢
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improved dramatically.

2) When the flow velocity is low, the effect of the
forced flow on the dendrite morphology is slight. But the
symmetry of dendrite shape is collapsed obviously with
the increase of the flow velocity. The main dendrite arms
in the upstream region are more developed than those in
the downstream region, and the side-branches are
developed as well in the upstream region. The horizontal
dendritic tip deviates the horizontal line under the
condition of the forced flow.

3) The effect of the dendrite growth on the flow
field is evident. With the increase of dendrite size, the
vortex is present in the downstream regions. The actual
temperature is higher than the melting point of the melt
in the vortex region, and the remelting of the dendrite
occurs.
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