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Abstract: A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element 
method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from 
undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is 
caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the 
forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes 
from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the 
primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of 
the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to 
remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with 
uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 
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1 Introduction 
 

Dendrite is a form of most casts during 
solidification. The dendrite growth is a complex physical 
process influenced by the transfer of heat, mass and 
momentum. The transfer of heat and mass in the process 
of solidification not only depends on the diffusion, but 
also closely relates to the flow of liquid metal. The 
macro-segregation, solidification shrinkage cavity and 
cast defects are influenced dramatically by the melt flow, 
and those factors restrain the performances of metal 
materials. 

In recent years, on the basis of pure diffusion phase- 
field model, the numerical simulation has provided a 
very convenient and effective method for the study of 
microstructures evolution [1−5]. TONG et al [6] and 
BECKERMANN and SUN [7] used phase-field method 
combined with SIMPLE algorithm to study the 

relationship between dendritic tip morphology of pure 
material and liquid fluid velocity. Finite difference 
method and SIMPLE algorithm were adopted to solve 
phase-field and flow field, respectively. The effects of 
flow velocity on the unsymmetrical dendritic growth and 
the temperature distribution were investigated 
numerically based on the phase-field model [8]. CHEN 
and CHEN [9] reported the phase-field model coupled 
with the flow field to simulate two-dimensional dendrite 
growth of metal by using finite difference method, and 
the effect of flow velocity on metal dendritic crystal 
growth was investigated. Based on the Wheeler model, a 
phase-field model was proposed by coupling with 
concentration field, temperature field and flow field. An 
explicit finite difference numerical method was used to 
solve the phase-field model [10,11]. 

However, the adaptive finite element method based 
on non-uniform grid is more efficient and less amount  
of calculation than the method based on uniform grid 
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[12,13]. When the mass and momentum conservation 
equations are calculated, projection method has the high 
efficiency through prediction and correction step to get 
the speed and pressure at the new time [14]. 

Based on the Wheeler diffusion model, a phase-field 
model incorporated both flow and thermal noise was 
proposed in this study, and the effect of gravity and 
dynamics was neglected. The adaptive finite element 
algorithm [15,16], the functional library AFEPack [17] 
and the projection algorithm [18] were employed to 
solve the phase-field model, momentum and mass 
conservation equations. The dendritic growth of nickel 
was simulated quantitatively, and the effects of flow 
velocity on the dendrite morphology and tip operating 
state were investigated. In addition, the influence of the 
dendrite growth on the fluid flow was studied. 
 
2 Simulation model 
 
2.1 Dimensionless 2D phase-field model equations 

Phase-field model represents the system’s physical 
state of each point by introducing a continuous order 
parameter φ. In this study, φ=0 represents the solid 
condition, φ=1 represents the liquid condition, and 
0<φ<1 represents solid−liquid interface. The phase-field 
model equation is defined by [19] 
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The form of thermal noise in Eq. (1) is given by 

[20] 
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where ε stands for the thickness of interfacial layer, and α 
is defined as 2

m m2 /(12 )plL c Tα σ= . The dimensionless 
temperature u is given by m m 0( ) /( )u T T T T= − − , Tm is 
the melting temperature, and T0 is the initial temperature 
of system. Dimensionless supercooling degree S is 
defined as m 0 m( ) /pS c T T L= − , cp is the heat capacity 
at constant pressure, and Lm is the latent heat, interfacial 
migration coefficient m is defined by m=μσTm/(κLm), μ 
denotes the interface migration rate, σ represents the 
interface energy, and κ stands for the thermal diffusivity. 
The anisotropic factor is defined by ( ) =η θ  
1 cos[ ( )]M+γ θ , γ represents the anisotropy strength, M 
denotes the mode of anisotropic, and θ reflects the angle 
between the preferred orientation of solidification and 

the positive direction of x axis. Moreover, /x xϕ ϕ= ∂ ∂  
and /y yϕ ϕ= ∂ ∂ . Applying l as the length scale and 

2/l=τ κ  as the time scale, all dimensional variables are 
cast into their dimensionless forms. { }1, 1R∈ − +  is the 
random number, and f is the thermal noise intensity. 
 
2.2 Thermal field equation coupled with flow field 

The thermal field equation takes the following  
form [21]:  
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where v stands for the dimensionless flow velocity 
0/ ,v Ud κ= U stands for the initial flow velocity, and 
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In Eq. (3), p′(φ) is defined as the derivative of 

potential function 3 2( ) (6 15 10)p ϕ ϕ ϕ ϕ= − +  for φ 
[19]. 

 
2.3 Conservation equations of mass and momentum 

The conservation equations for mass and 
momentum take the following forms [22]: 

 
( ) 0F vϕ ∇ ⋅ =                                 (5) 
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where p is the dimensionless pressure, and Re denotes 
Reynolds number. 
 
3 Numerical simulation parameters and 

methods 
 
3.1 Initial condition and boundary condition 

An initial nucleus of the radius r0 can be defined as 
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where x and y are the coordinate axes, vx and vy are the 
convection velocities along axes x and y, respectively. 
The supercooled melt enters the domain from the top 
boundary with a uniform velocity v0 and exits at the 
bottom boundary. The Zero-Neumann boundary 
conditions are imposed at the boundaries of the 
computational domain for phase field and thermal field, 
while the mass and momentum equations employed 
no-slip boundary conditions. The initial condition of 
simulation domain is shown in Fig. 1. The simulation 
domain size dimensions 4.0l×4.0l (l=1.33×104d0), where 
d0 is the capillary length. 

The material parameters of phase-field model are 
shown in Table 1. 
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Fig. 1 Initial condition of simulation domain 
 
Table 1 Physical parameters of pure Ni 

Parameter Value Parameter Value 
Tm/K 1728 S 0.65 

Lm/(J·cm−3)  2350 θ/(°) 0 
cp/(J·K−1·cm−3)  5.42 ε 0.002 
κ/(cm2·s−1)  0.155 M 4 

μ/(cm·K−1 ·s−1)  285 ∆x=∆y 0.04 
σ/(J·cm−2)  3.7×10−5 γ 0.05 

l/cm 21×10−4 ∆t 6.0×10−6 
 
3.2 Numerical simulation methods 
3.2.1 Adaptive finite element method 

According to the adaptive finite element method, 
the partial differential Eqs. (1) and (3) should be 
transformed into the corresponding week forms. The trial 
functions v1(x, y) and z(x, y) are introduced. The time 
domain is dispersed by using the time interval ∆t. 
According to Green’s theorem, the weak forms of Eqs. (1) 
and (3) are defined by 
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3.2.2 Efficiency of adaptive finite element method 

The results of solving phase field model based on 
adaptive finite element method are shown in Fig. 2, 
where the domain dimensions are 3.0l×3.0l. Figure 2(a) 
shows the initial mesh and Fig. 2(b) shows the dendrite 
morphology at t=6900∆t. Figure 2(c) shows the 
amplified result of box in Fig. 2(b). It can be found that, 
the grids are refined in region A close to the solid−liquid 
interface, and the grids are coarsened in regions B, C and 
D far away from the interface. The number of the nodes 
is just 2.79×105 by using adaptive finite element method, 
which is less than 1.6×106 by using the uniform grid 
method at the termination of the calculation [12]. So, the 
adaptive finite element method reduces the 
computational cost and improves the computational 
efficiency dramatically. 

The relationship among the CPU running time, 
speed-up ratio and computational domain size is shown 
in Table 2, where ta represents the CPU running time of 
adaptive finite element method, tu stands for the CPU 
running time of uniform grid method, and LB denotes the 
computational domain size of the system. The functional 
relationship between the CPU running time and the 
computational domain size is given by 

 
2

a 1.68 Bt L=                                 (10) 
 

3
u 1.54 Bt L=                                 (11) 

 
The functional relationship between the speed-up 

ratio and the computational domain size is defined by 
 

 
Fig. 2 Graphs of grid subdivision: (a) Initial mesh; (b) Dendrite morphology; (c) Amplified result 
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Table 2 Relationship among CPU running time, speed-up ratio 
and domain size of system 

LB ta/h Tu/h tu/ta (tu/ta)/LB 
2.5 9.83 22.83 2.32 0.93 
3.0 15.8 47.0 2.97 0.99 
3.5 20.5 63.3 3.07 0.88 
4.0 28.6 107.6 3.76 0.94 
5.0 40.8 179.8 4.41 0.88 
6.0 59.7 318.1 5.33 0.89 

 
u a/ 0.92 Bt t L=                               (12) 

 
Time complexities of adaptive finite element 

method and uniform grid method are 2
a ( )BO L and 

3
u ( )BO L , respectively. What’s more, the speed-up ratio 

u a/t t  is proportional to the domain size. By using the 
non-uniform grid adaptive finite element method, the 
greater the computational domain size is, the higher 
computational efficiency is. 
3.2.3 Projection algorithm 

The mass and momentum equations were solved 
numerically by using the fractional-step projection 
algorithm [18]. As the fractional-step projection 
algorithm can get higher computational efficiency in 
solving incompressible Navier−Stokes equations, the 
algorithm has been more and more widely used [23]. 

To guarantee unconditional stability and avoid any 
restriction on the time step, the advection term ( )v v⋅∇  
in Eq. (6) is replaced by its skew-symmetric form 
( ) 1/ 2( )v v v v⋅∇ + ∇ ⋅ , and the advection–diffusion step is 
given by [18,21]  
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The projection step is taken by the following 

incremental form: 
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The Poisson equation for the pressure increment is 

given by 
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where 1kv +  stands for the intermediate velocity, and 
vk+1 denotes divergence-free velocity field. The velocity 

field and pressure field are updated by 
 

1 1 1( ) ( )k k k kv v F t p pϕ+ + += − Δ ∇ −               (16) 
 

1k k
ip p p+ = + Δ                              (17) 

 
4 Results and discussion 
 
4.1 Dendrite morphologies at different flow velocities 

Figure 3 shows the dendrite morphologies and 
thermal distribution at t=6500∆t, where the thermal noise 
intensity f=2.0. It can be seen from Fig. 3 that, the 
dendrite grows symmetrically without forced flow   
(Fig. 3(a)), and the thermal diffusion layer distributes 
symmetrically as well (Fig. 3(c)). Figures 3(b) and (b) 
show the dendritic morphology and the thermal diffusion 
layer distribution with flow velocity of v=0.0026. 
Dendrite shapes show asymmetry, and the growth rates 
of dendrites are different in preferentially growing 
directions. The main dendrite arm in the upstream region 
is longer and wider compared with the main dendrite arm 
in the downstream. Due to the erosion of convection 
effect on upstream dendrite, it reduces the thickness of 
thermal diffusion layer and leads to high temperature 
gradient, and the release of latent heat is propitious. The 
actual undercooling is increscent and the dendrite grows 
up quickly. Therefore, the development of primary 
dendrite and secondary dendrite arms is promoted. 

In downstream region, the diffusion layer of the 
dendrite tip is thinner and the temperature gradient is 
higher without forced flow, as shown in Fig. 3(c). In the 
case of forced flow, the thermal diffusion layer of the 
dendrite tip is thicker than the former situation, as shown 
in Fig. 3(d). In addition, the temperature gradient and the 
actual undercooling are low, thus the dendrite growth 
velocity is slow. The thermal diffusion layer prevents the 
release of the latent heat, so the disturbance of interface 
is restrained. At horizontal direction, the growth velocity 
of the dendrite lies between the middle of downstream 
region and upstream region. 
 
4.2 Relationship between forced flow and dendrite 

growth 
4.2.1 Effect of forced flow on dendrite growth 

The effect of forced flow on the growth velocities of 
upstream, normal and downstream dendrites is obvious. 
Figure 4 shows the dendrite shape at growth time of 
t=6500∆t and the initial flow velocities v=0, 0.0011, 
0.0025, 0.0026 and 0.0036, respectively, where the 
supercooling degree is S=0.65. 

It can be found that, the primary dendrites do not 
shrink dramatically in the downstream region when the 
flow velocity is less than 0.0026. The effect of forced 
flow on the dendrite morphology is slight when the flow  
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Fig. 3 Dendrite morphologies (a, b) and thermal diffusion layer distribution (c, d) of phase-field modeling at t=6500∆t: (a, c) Without 
forced flow; (b, d) With forced flow 
 

 
Fig. 4 Effect of flow velocity on morphologies of main branches at t=6500∆t: (a) v=0; (b) v=0.0011; (c) v=0.0025; (d) v=0.0026;   
(e) v=0.0036 
 
velocity is low, and the dendrite growth is mainly 
controlled by thermal diffusion. With the increase of 
flow velocity, the dendrite growth process is controlled 
by the convection gradually. On one hand, the growth 
rate of primary dendrites in upstream region increases 
with the increase of the flow velocity, and the primary 
dendrites and side-branches become more and more 
developed. On the other hand, the growth rate of main 
dendrites in downstream region reduces with the increase 
of the flow velocity, and the growth of the main branches 

and side-branches is restrained strongly in this region. 
Figure 5 shows the dendrite shape and deflection 

angle of the horizontal dendritic tip under different flow 
velocities at t=6500∆t. It can be seen that, the 
morphology of the dendrite is symmetric completely 
without forced flow, as shown in Fig. 5(a), and the 
deflection angle of the horizontal dendritic tip is 0°. The 
horizontal dendrite tip deviates the horizontal line 
towards the fluid direction under the condition of forced 
flow. With the increase of forced flow velocity, the 
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deflection angle increases, as shown in Figs. 5(b), (c)  
and (d). 
4.2.2 Effect of dendrite growth on flow field 

Figure 6 shows the flow field distribution and grids 
of temperature field of the dendritic tips at v=0.0036 and 
t=6500∆t, 6100∆t, 6900∆t, respectively. The position and 
direction of the arrow represent fluid particle position 
and flow direction, and the length of the arrow stands for 
the velocity of fluid particle. It can be seen that, arrows 
change their directions when the fluid passes the normal 
direction of the main dendritic tip. The length of arrows 
is the longest near the primary dendrites, and the flow 
velocity is the largest in this region. When the dendrite 
size is small, the vortex does not appear, as shown in  
Fig. 6(a). With the increase of the dendrite size, the 
rotation of the small arrows is present in the downstream 
region, as shown in Fig. 6(b), and the vortex area 
increases gradually, as shown in Fig. 6(c). 

According to the fluid mechanics, the negative 
pressure becomes stronger gradually in the downstream 
region, and the flow of the melt in the vortex region 
leads to the change of thermal distribution near the 
dendritic tips, as shown in Figs. 6(e) and (f). The latent 
heat gathered in this region makes the actual temperature 
at the vortex region higher than the melting point of the 
melt, and the remelting of the dendrite occurs. 
 
5 Conclusions 
 

1) A phase-field model of pure material combined 
with the projection algorithm is applied to simulating 
dendrite growth under the condition of forced flow. The 
phase-field model is solved by using the efficient 
adaptive finite element method. The computational cost 
is reduced by an order of magnitude by using the 
non-uniform grid, and the computational efficiency is 

 

 

Fig. 5 Effect of flow velocity on deflection angle of horizontal dendritic tip flow at t=6500∆t: (a) v=0; (b) v=0.0011; (c) v=0.0026;  
(d) v=0.0036 
 

 
Fig. 6 Flow field distribution and grids of temperature field at v=0.0036 and different growth time: (a, d) t=1300∆t; (b, e) t=6100∆t; 
(c, f) t=6900∆t 
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improved dramatically. 

2) When the flow velocity is low, the effect of the 
forced flow on the dendrite morphology is slight. But the 
symmetry of dendrite shape is collapsed obviously with 
the increase of the flow velocity. The main dendrite arms 
in the upstream region are more developed than those in 
the downstream region, and the side-branches are 
developed as well in the upstream region. The horizontal 
dendritic tip deviates the horizontal line under the 
condition of the forced flow. 

3) The effect of the dendrite growth on the flow 
field is evident. With the increase of dendrite size, the 
vortex is present in the downstream regions. The actual 
temperature is higher than the melting point of the melt 
in the vortex region, and the remelting of the dendrite 
occurs. 
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基于自适应有限元相场模型模拟 

强制流动条件下的枝晶生长 
 

朱昶胜 1,2，雷 鹏 1，肖荣振 2，冯 力 2 

 
1. 兰州理工大学 计算机与通信学院，兰州 730050； 

2. 兰州理工大学 有色金属先进加工与再利用国家重点实验室，兰州 730050 

 
摘  要：应用投影算法与相场法相结合的数学模型，采用基于非均匀网格的自适应有限元法求解该模型，并对强

制流动作用下镍过冷熔体中枝晶生长行为进行模拟。模拟结果表明，强迫对流的引入导致枝晶生长的不对称性。

当流速小于临界值时，流动对枝晶的不对称生长影响较小；当流速达到或超过临界值时，枝晶生长的控制因素逐

渐从热扩散过渡到对流。随着流速的增大，流动法向的一次枝晶臂朝逆流方向倾斜角度增大。而枝晶生长对熔体

流动具有明显的影响。随着枝晶尺寸的增大，在顺流区域产生涡流效应，涡流区逐渐扩大并在枝晶尖端出现重熔

现象。此外，非均匀网格的自适应有限元方法的 CPU 耗费时间比均匀网格方法降低一个数量级，并且加速比与

计算域尺寸成正比。 

关键词：枝晶生长；相场模拟；强制流动；自适应有限元法 
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