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氢氧化钠分解不溶性钼酸盐的浸出热力学 
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摘 要：辉钼矿经氧化焙烧转化成 MoO3 的过程中，伴生的铜铅铁等硫化矿亦被氧化，并与 MoO3 生成难溶钼酸 

盐。为减少因难溶钼酸盐带来的钼损失，需要对这些钼酸盐进行再浸出处理。针对这些钼酸盐湿法浸出过程进行 

热力学分析，绘制了 25℃时Me­Mo­H2O(Me：Cu，Pb，Fe)系组分的浓度对数−pH图。利用热力学平衡图对氢氧 

化钠分解钼酸盐进行热力学分析。结果表明：整个 pH 值范围可分为 H2MoO4 的稳定区、难溶钼酸盐的稳定区、 

Me(OH)n 的稳定区。 高pH区钼酸盐中的Me转变为稳定的Me(OH)n 物相， 即实现了钼酸盐的碱分解。 而Fe2(MoO4)3、 
CuMoO4 和 PbMoO4 的碱浸出难度依次递增，达到一定碱度时这 3 种难溶盐都能很好地分解，并实现 Me 与 Mo 

的分离。但过高的碱度又使大量的金属以羟基配合物离子的形式进入溶液，增加了后续除杂难度。 
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Leaching thermodynamics of decomposing sparingly 
soluble molybdate by sodium hydroxide 

LI Fei, CHEN Xing­yu, HE Li­hua, WU Jin­ling 

(School of Metallurgy and Environment, Central South University, Changsha 410083, China) 

Abstract: When molybdnite was roasted, MoS2  converts to MoO3. Meanwhile, sulfides associated with concentrate are 
oxidized to copper oxide and lead oxide and iron oxide or partial copper sulfate and lead sulfate and iron sulfate, which 
will react with MoO3  to form sparingly soluble molybdate. Aiming to decrease the loss of molybdenum in the slag, these 
sparingly  soluble  salts  have  to  be  handled  with.  According  to  the  laws  of  conservation  of  mass  and  simultaneous 
equilibria, the logarithm concentration−pH diagram of Me­Mo­H2O (Me: Cu, Pb, Fe) system was established on the basis 
of thermodynamic data at 25 ℃. Thermodynamic analysis was carried out to discuss the technology of sodium hydroxide 
disintegrating sparingly soluble molybdate. The results show that the whole pH value of the system is divided into three 
areas. The first one is the stable area of H2MoO4,  the second area is  the stable area of sparingly soluble molybdate, the 
third  one  is  the  stable  area  of Me(OH)n.  In  the  third  area, Me(OH)n is  gradually  supersaturated  in  solution  with  the 
increase of pH value, so the Me(OH)n is deposited as sediment, and MoO4 

2− goes into solution. As a result, the processing 
of sparingly soluble molybdate leached by sodium hydroxide is carried out. The incremental difficulty of alkali leaching 
order is as follows: Fe2(MoO4)3, CuMoO4, PbMoO4. Over a certain alkalinity, copper, lead and iron could be leached out 
of molybdenum. But these metals will be dissolved numerously as hydroxyl complexes in the case of excessive basicity, 
which increases the difficulty of subsequent purification. 
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钼属于高熔点金属之一，具有高导热系数、低热 

膨胀系数。因此，钼金属被广泛用于各个行业。钢厂 

是钼的最大消费者，钼在钢铁冶金的消费量约占钼总 

消费量的 81%~82% [1] 。随着科技的进步，性能越来越 
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优异的各类含钼合金钢不断问世，以及钼催化剂、钼 

润滑剂添加剂、钼酸盐颜料的应用与发展对钼的市场 

需求量亦不断增加，致使对于钼资源的研究开发越来 

越受到各国科研机构及企业的重视 [2−3] 。 钼在自然界中 

主要以辉钼矿(MoS2)的形式赋存，还伴生着方铅矿、 

黄铁矿和黄铜矿等多种硫化矿 [4] ，如金堆城钼矿床中 
86%铅金属量赋存于方铅矿中 [5] 。 

工业处理辉钼矿的传统方法主要是焙烧法 [6] ，氧 

化焙烧是火法处理辉钼矿中占统治地位的方法。辉钼 

精矿经氧化焙烧生成氨溶性质好的三氧化钼，三氧化 

钼经氨浸得到钼酸铵溶液，再经一系列流程使钼转变 

为钼酸铵产品。 但是在辉钼矿的焙烧过程中， 550~600 
℃时精矿中伴生的硫化铜、硫化铅和硫化铁等也会发 

生氧化反应生成铜、铅和铁的氧化物和部分地生成硫 

酸盐，进一步与氧化钼结合生成铜、铅和铁等的难溶 

钼酸盐。这些难溶钼酸盐在后续 MoO3 氨浸过程中不 

被浸出，使相当数量的钼损失在渣中，严重影响钼的 

回收率。随着钼金属的日益消费，高品位钼资源逐渐 

枯竭， 低品位矿 [7−8] 的开发利用已成必然趋势。 据报道， 

塞浦路斯阿马克斯公司 [9] 以低品位矿制造的工业氧化 

钼中含大量的钼酸铜、钼酸铅、钼酸铁等杂质，必须 

利用回收。另外，成分复杂的废钼酸盐催化剂 [10−12] 、 

钼酸盐颜料等是非常宝贵的二次钼资源，由于主要矿 

物资源日渐匮乏，二次资源的回收利用对钼行业的可 

持续发展具有重要意义。 

目前，从钼酸盐矿物中提取回收钼的技术手段不 

多，尤其对  CuMoO4 
[13−14] 、Fe2(MoO4)3 [15−16] 的研究却 

鲜见报道。分解难溶钼酸盐通常使用的浸出剂有硫化 

钠 [17] 、氢氧化钠 [18] 和碳酸钠等，其中比较常用的工艺 

有硫化钠浸出和氢氧化钠浸出。但目前关于钼酸铜、 

钼酸铅和钼酸铁湿法处理方面的研究报道都处于工艺 

研究阶段，对其浸出过程的理论问题研究报道很少， 

本文作者从热力学角度对氢氧化钠浸出不溶性 
PbMoO4−Fe2(MoO4)3−CuMoO4 混合盐进行理论分析， 

通过研究  Me­Mo­H2O 体系的溶解平衡，根据质量守 

恒原理和同时平衡原理 [19−20] ，并运用已有的热力学数 

据和热力学计算方法绘制 25℃时Me­Mo­H2O体系的 

浓度对数−pH图。 

1  lgc−pH 图的绘制及计算过程 

1.1  Me­Mo­H2O体系相关平衡反应及热力学数据 

溶液中存在的平衡反应式表述如下，在缺少有关 

离子活度的情况下，实验中计算均以浓度代替活度。 

由所有平衡关系式可得出，溶液中各游离离子均满足 

表中所列方程。25℃时，Pb­Mo­H2O系平衡方程式及 

平衡常数 [21] ： 

H2MoO4(s) =2H + + − 2 
4 MoO 

Ksp=1×10 −13.33[22] ，[H + ] 2 ∙[ − 2 
4 MoO  ]=1×10 −13.33  (1) 

H2MoO4(aq)=2H + + − 2 
4 MoO  ， 

K=1×10 −6.85 ，[H2MoO4(aq)]= 1×10 6.85 [H + ] 2 ∙[ − 2 
4 MoO  ]
(2) 

HMoO 4 
−  =H + + − 2 

4 MoO  ， 

K=1×10 −5.01 ，[ − 
4 HMoO  ]=1×10 5.01 [H + ]∙[ − 2 

4 MoO  ]  (3) 

+ 2 
2 MoO  + 2H2O= 4H + + − 2 

4 MoO  ， 

K=1×10 −8.33 ，[ + 2 
2 MoO  ]=1×10 8.33 [H + ] 4 ∙[ − 2 

4 MoO  ]    (4) 

MoO2(OH) + + H2O=3H + + − 2 
4 MoO  ， 

K=1×10 −7.88 ， 

[MoO2  (OH) + ]=1×10 −7.88 [H + ] 3 ∙[ − 2 
4 MoO  ]  (5) 

PbMoO4(s)=Pb 2+ + − 2 
4 MoO  ， 

Ksp=1×10 −13 ，[Pb 2+ ]∙[ − 2 
4 MoO  ]=10 −13  (6) 

Pb(OH)2(s)=Pb 2+ +2OH − ， 

Ksp =1×10 −15.1 ， [Pb 2+ ]∙[OH − ] 2 =1×10 −15.1  (7) 

Pb 2+ +2OH − =Pb(OH)2(aq)， 

K=1×10 10.9 ， [Pb(OH)2  ]= 1×10 10.9 [Pb 2+ ]∙[OH − ] 2  (8) 

Pb 2+ +OH − =PbOH + ， 

K=1×10 6.3 ，[PbOH + ]=1×10 6.3 [Pb 2+ ]∙[OH − ]                (9) 

Pb 2+ +3OH − = − 
3 Pb(OH)  ， 

K=1×10 13.9 ， [ − 
3 Pb(OH)  ]=1×10 13.9 [Pb 2+ ]∙[OH − ] 3  (10) 

2Pb 2+ +OH − =Pb2(OH) 3+ ， 

K=1×10 7.6 ，[Pb2(OH) 3+ ] =1×10 7.6 [Pb 2+ ] 2 ∙[OH − ]      (11) 

3Pb 2+ + 4OH − = + 2 
4 3 (OH) Pb  ， 

K = 1×10 32.1 ，[ + 2 
4 3 (OH) Pb  ]=1×10 32.1 [Pb 2+ ] 3 ∙[OH − ] 4 

(12) 

4Pb 2+ +4OH − = + 4 
4 4 (OH) Pb  ， 

K=1×10 35.1 ，[ + 4 
4 4 (OH) Pb  ]=1×10 35.1 [Pb 2+ ] 4 ∙[OH − ] 4 

(13) 

6Pb 2+ +8OH − = + 4 
8 6 (OH) Pb  ， 

K=1×10 68.4 ， [ + 4 
8 6 (OH) Pb  ]=1×10 68.4 [Pb 2+ ] 6 ∙[OH − ] 8  (14) 

25 ℃时 Fe­Mo­H2O系平衡方程式及平衡常数：
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Fe(OH)3(s) = Fe 3+ +3OH − ， 

Ksp=1×10 −38 ，[Fe 3+ ]∙[OH − ] 3 =1×10 −38  (15) 

Fe2(MoO4)3(s)=2 Fe 3+ + 3  2 
4 MoO − ， 

Ksp =1×10 −52[23] ，[Fe 3+ ] 2 ∙[  2 
4 MoO − ] 3 =1×10 −52  (16) 

Fe 3+ +OH − =FeOH 2+ ， 

K=1×10 11.81 ，[FeOH 2+ ]=1×10 11.81 [Fe 3+ ]∙[OH − ]  (17) 

Fe 3+ + 2OH − = + 
2 Fe(OH)  ， 

K =1×10 22.32 ，[ + 
2 Fe(OH)  ]=1×10 22.32 [Fe 3+ ]∙[OH − ] 2  (18) 

Fe 3+ +3OH − =Fe(OH)3 (aq)， 

K=1×10 30 ，[Fe(OH)3]=1×10 30 [Fe 3+ ]∙[OH − ] 3  (19) 

Fe 3+ + 4OH − = − 
4 Fe(OH)  ， 

K =1×10 34.4 ， [ − 
4 Fe(OH)  ]=1×10 34.4 [Fe 3+ ]∙[OH − ] 4  (20) 

2Fe 3+ + 2OH − = + 4 
2 2 (OH) Fe  ， 

K =1×10 25.1 ，[ + 4 
2 2 (OH) Fe  ]=[Fe 3+ ] 2 ∙[OH − ] 2 10 25.1  (21) 

3Fe 3+ + 4OH − = + 5 
4 3 (OH) Fe  ， 

K =1×10 49.7 ，[ + 5 
4 3 (OH) Fe  ]=1×10 49.7 [Fe 3+ ] 3 ∙[OH − ] 4 

(22) 
Cu­Mo­H2O系平衡方程式及平衡常数(25℃)： 

Cu 2+ +OH − =Cu(OH) + ，K =1×10 6.3 ， 

[Cu(OH) + ]=10 6.3 [Cu 2+ ]∙[OH − ]  (23) 

CuMoO4(s) = Cu 2+ + − 2 
4 MoO  ， 

Ksp=2.8×10 −7[24] ，[Cu 2+ ]∙[ − 2 
4 MoO  ]=2.8×10 −7  (24) 

Cu 2+ +2OH − =Cu(OH)2(aq)， 

K =1×10 12.8 ，[Cu(OH)2(aq)]= 1×10 12.8 [Cu 2+ ]∙[OH − ] 2
(25) 

Cu 2+ +3OH − = − 
3 Cu(OH)  ， 

K=1×10 14.2 ，[ − 
3 Cu(OH)  ]=1×10 14.2 [Cu 2+ ]∙[OH − ] 3  (26) 

Cu 2+ +4OH − = − 2 
4 Cu(OH)  ， 

K=1×10 16.4 ，[ − 2 
4 Cu(OH)  ]=1×10 16.4 [Cu 2+ ]∙[OH − ]  (27) 

2Cu 2+ +2OH − = + 2 
2 2 (OH) Cu  ， 

K=1×10 17.7 ，[ + 2 
2 2 (OH) Cu  ]=1×10 17.7 [Cu 2+ ] 2 ∙[OH − ] 2 

(28) 
Cu(OH)2(s)=Cu 2+ +2OH − ， 

Ksp=1×10 −19.32 ， [Cu 2+ ]∙[OH − ]=1×10 −19.32  (29) 

1.2  溶解组分  lgc−pH 图的绘制 

由质量守恒和同时平衡原理可知，溶液中总铅、 

总铜、总铁、总钼分别满足： 

[Pb]T=[Pb 2+ ]+[PbOH + ]+[ − 
3 Pb(OH)  ]+2[Pb2(OH) 3+ ]+ 

3[ + 2 
4 3 (OH) Pb  ]+4[ + 4 

4 4 (OH) Pb  ]+6[ + 4 
8 6 (OH) Pb  ]  (30) 

[Cu]T=[Cu 2+ ]+[ Cu(OH) + ]+[Cu(OH)2(aq)]+ 

[ − 
3 Cu(OH)  ]+[ − 2 

4 Cu(OH)  ]+2[ + 2 
2 2 (OH) Cu  ]  (31) 

[Fe]T=[Fe 3+ ]+[FeOH 2+ ]+[ + 
2 Fe(OH)  ]+[Fe(OH)3]+ 

[ − 
4 Fe(OH)  ]+  2[ + 4 

2 2 (OH) Fe  ]+3[ + 5 
4 3 (OH) Fe  ]  (32) 

[Mo]T=[ − 2 
4 MoO  ]+[H2MoO4(aq)]+[ − 

4 HMoO  ]+ 

[ + 2 
2 MoO  ]+[MoO2(OH) + ]  (33) 

难溶钼酸盐的分解过程中恒有  4 MoO Me x  的溶 

解平衡，故 + n Me  和 − 2 
4 MoO  的浓度恒满足如下关系 

式: 

) MoO sp(Me 
2 
4 

+ 
4 

= ] [MoO ] [Me 
x 

K n − ⋅ 

从表  1~3 中提供的平衡关系式可知，在不同  pH 

条件下，生成的沉淀物不同。若不考虑钼的各种复杂 

同多酸，当  pH  值较低时，体系中 − 2 
4 MoO  转变为 

H2MoO4 沉淀，金属则以 Me n+ 形式存在；当 pH 值较 

高时， Me n+ 转变为Me(OH)n 沉淀。 以此作为限定条件， 

对该体系进行热力学分析计算。 

根据平衡关系式，当体系中只有 H2MoO4 时，在 

Pb­Mo­H2O  体系中，溶液中各游离组分满足式 
(1)~(14)、(30)和(33)；Fe­Mo­H2O 体系中，溶液中各 

游离组分满足式(1)~(5)、(16)~(22)、(32)  、(33)； 

Cu­Mo­H2O体系中， 溶液中各游离组分满足式(1)~(5)、 

(23)~(29)、(31)和(33)。 

当体系中固体只有  4 MoO Me x  时，可得 

[Mo] = [Me] x  (46) 

此时，Pb­Mo­H2O体系中，溶液中各游离组分满 

足式(2)~(6)、(8)~(14)、(30)和(33)；Fe­Mo­H2O 体系 

中，溶液中各游离组分满足式(2)~(5)、(16)~(22)、(32) 

和(33)；Cu­Mo­H2O 体系中，溶液中各游离组分满足 

式(2)~(5)、(23)~(28)、(31)和(33)。 

当体系中固体只有  Me(OH)n 时，在  Pb­Mo­H2O 
体系中，溶液中各游离组分满足式(2)~(14)、(30)和 
(33)；在 Fe­Mo­H2O 体系中，溶液中各游离组分满足 

式(2)~(5)、(15)~(22)、(32)和(33)；在  Cu­Mo­H2O 体 

系中，溶液中各游离组分满足式(2)~(5)、(23)~(29)、 
(31)和(33)。 

根据以上计算和平衡关系，可求得生成  H2MoO4 

和  Me(OH)n 的边界线 a和 b处对应的 pH值，列于表
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1；并绘制出 25℃时 Pb­Mo­H2O体系、Fe­Mo­H2O体 

系和 Cu­Mo­H2O体系溶液组分的  lgc−pH 图， 分别如 

图 1、2和 3所示。 

表 1  MexMoO4 分解的边界 pH 

Table 1  Boundary pH of MexMoO4 decomposition 

Boundary pH 
Line 

PbMoO4  Fe2(MoO4)3  CuMoO4 

a  6.17  5.13  4.94 

b  11  5.83  5.97 

图 1  25℃时 Pb­Mo­H2O体系的 lgc−pH图 

Fig. 1  lgc−pH diagram of Pb­Mo­H2O system at 25℃ 

图 2  25℃时 Fe­Mo­H2O体系的 lgc−pH图 

Fig. 2  lgc−pH diagram of Fe­Mo­H2O system at 25℃ 

2  结果与讨论 

由于钼酸盐性质相近，各体系中离子的存在形式 

相似，故 3 个体系的 lgc−pH 图非常相似。由图 1、2 

图 3  25℃时 Cu­Mo­H2O体系的 lgc−pH图 

Fig. 3  lgc−pH diagram of Cu­Mo­H2O system at 25℃ 

和 3 可见，3 个体系中各离子浓度变化趋势一致，在 
pHa＜pH＜pHb 范围内，MexMoO4 稳定存在，pH低于 

或高于这个范围时， 难溶盐开始分解。 在 pH＜pHa 时， 
− 2 
4 MoO  会结合 H + 生成  H2MoO4 沉淀，该过程实际上 

是钼酸盐的酸分解。该过程耗酸高，效率低、设备腐 

蚀严重，一般不被采纳。 

在 pHa＜pH＜pHb 时，即MexMoO4 的稳定区内， 

溶液中所有离子基团都由沉淀的溶解平衡所制约，其 

溶 度 积 在 所 有  pH  值 范 围 内 为 一 定 值 ， 即 

sp 
2 
4 

+  = ] [MoO ] [Me  K x n − ⋅ 。 随着溶液 pH值的上升， OH − 

浓度逐渐增加，其与Me n+ 的结合能力也逐渐增强，因 

而 3 个图中 Me 的各种羟基配合物浓度不断增加，而 

游离的Me n+ 离子浓度则受到强烈抑制而不断下降。 由 

于  4 MoO Me x  的溶度积一定，游离Me n+ 浓度下降，相 

应的 − 2 
4 MoO  浓度则迅速上升。 其他各种含钼离子基团 

的浓度变化则与 − 2 
4 MoO  离子之间的平衡而变化。 而且 

由于 pH值增加时OH − 的活度增加， 当可溶性Me(OH)n 
浓度恒定时，游离Me n+ 浓度必定迅速下降，如图 1~3 
中Me n+ 浓度曲线所示；而由于  4 MoO Me x  溶解平衡的 

制约关系，相应地 − 2 
4 MoO  浓度则会迅速增加，并且随 

着溶液碱性的增强，钼的平衡浓度增大；当溶液  pH 
值高于图中虚线 a处的 pH(pHa)值时， 可溶性Me(OH)n 
的浓度不再恒定，而是呈不断增加的趋势，当到达  b 
线对应的  pH(pHb)值时，其浓度达到过饱和，溶液中 

开始析出 Me(OH)n 的固体，也就是说  4 MoO Me x  将不 

断转变成  Me(OH)n 固体和 − 2 
4 MoO  而被浸出，这在工 

业 上称为 碱性浸 出，其 反应为  + (s) MoO Me  4 x 
− − =  2 

4 MoO + (s) Me(OH) OH  x x xn  n  ，Me(OH)n 在此区 

域内为惟一稳定固相物质。值得注意的是，[Me]T 浓 

度的变化趋势仍然是随着溶液  pH 值的升高而增加，
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其原因是金属离子与氢氧根生成了各种羟基配合物而 

进入溶液。 

对比图 1~3可见， pH稳定区域宽度由小到大依次 

为 CuMoO4、Fe2(MoO4)3、PbMoO4，但转化成氢氧化 

物沉淀的开始  pH 值的稳定区域宽度由小到大的顺序 

依次为  Fe2(MoO4)3 、CuMoO4 、PbMoO4 ，这表明 
Fe2(MoO4)3 的转化较 CuMoO4 容易，CuMoO4 的转化 

较 PbMoO4 容易，在足够碱度时，这 3 种难溶盐都能 

很好地浸出并实现Me和Mo分离。 

图 4~6 所列为 Me­Mo­H2O 体系中[Me]T 与[Mo]T 
的  lgc−pH 图。由图 4~6 可见，在 b 线的右边，随着 
pH 值上升，[Me]T 与[Mo]T 之间的距离愈来愈远，而 

且[Mo]T 直线上升，表明在强碱体系中难溶钼酸盐能 

被显著浸出并分离 Me和 Mo。值得注意的是，当 pH 
值超过 12以后，[Me]T 浓度明显上升，这是因为随着 
pH 的增大，羟基的活度增加，使得 Me n+ 与 OH － 

的配 

图 4  25℃时 Pb­Mo­H2O体系中[Pb]T 与[Mo]T 的 lgc−pH图 

Fig.  4  lgc−pH  diagram  of  [Pb]T and  [Mo]T  in  Pb­Mo­H2O 

system at 25℃ 

图 5  25℃时 Fe­Mo­H2O体系中[Fe]T 与[Mo]T 的 lgc−pH图 

Fig.  5  lgc−pH  diagram  of  [Fe]T  and  [Mo]T  in  Fe­Mo­H2O 

system at 25℃ 

图 6  25℃时Cu­Mo­H2O体系中[Cu]T 与[Mo]T 的 lgc−pH图 

Fig.  6  lgc−pH  diagram  of  [Cu]T and  [Mo]T  in  Cu­Mo­H2O 

system at 25℃ 

合能力大大加强，Me n+ 与羟基生成多种羟基配合物进 

入溶液，由于有较多的杂金属存在于浸出液，故在后 

续的冶炼操作中 pH回调时，就会因 Me n+ 浓度上升， 

而抑制 − 2 
4 MoO  浓度，造成 − 2 

4 MoO  与Me n+ 重新结合生 

成难溶钼酸盐二次沉淀而影响总回收率。解决的办法 

是添加  Na2S 作为抑制剂，使之形成更稳定的硫化物 

沉淀，过滤除去，反应如下： 

Na2S(aq)+Me n+ =MeSn(s)+2Na +  (47) 

由图 4~6可见，在碱浸出区域体系中游离的物质 

浓度：[Fe]T＜[Cu]T＜[Pb]T。再次印证这些难溶钼酸盐 

回收利用的困难程度：  PbMoO4 的高于 CuMoO4 的， 
CuMoO4 的高于 Fe2(MoO4)3。 

以上分析结果与文献研究结果是吻合的，如赵德 

平等 [25] 报道了用  KOH 处理含  Mo  25.62  %的彩钼铅 

矿、 含Mo 8.21%的高铁钼铅矿以及含Mo 58.40%的辉 

钼矿，浸出率见表 2 [25] 。 

表 2  用 20% KOH的浸出各矿的浸出结果 [25] 

Table 2  Leaching result of concentrates by 20% KOH [25] 

Concentrate  Molybdnite  Wulfenite  Iron wulfenite 

Leaching rate  0.77%  97.09%  98.64% 

廖元双等 [26] 报道了用 NaOH处理含Mo 13.48%、 

含 Pb 40.1%的彩钼铅矿，当 NaOH用量为理论用量的 
4.3倍、 温度为 80℃、 浸出 120 min、 液固比为  ，1时׃4
Mo的浸出率达到 95.3%。 

综上所述，在合适的  pH 范围内，NaOH 分解不 

溶 PbMoO4­Fe2(MoO4)3­CuMoO4 混合盐中的钼是可行 

的，不但碱耗量低，而且钼与杂金属分离效果好。
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3  结论 

1) 绘制出  25 ℃时 Me­Mo­H2O 的浓度对数−pH 
图， PbMoO4 的稳定范围为 6.17＜pH＜11， Fe2(MoO4)3 
的稳定范围为  5.13＜pH＜5.83，CuMoO4 的稳定范围 

为 4.94＜pH＜5.97，转化的困难程度为 Fe2(MoO4)3 的 

转化较 CuMoO4 容易，CuMoO4 的转化较 PbMoO4 容 

易。 
2) 阐述了溶液中铁、 铜和铅与钼的各种离子基团 

随 pH值的变化规律，指出钼酸盐在溶液 pH低于 pHa 

时，为酸性浸出，钼转变为 H2MoO4 固体形式被分解； 
pH高于 pHb 时， 实现钼酸盐的碱性浸出， 钼以MoO4 

2− 

的形式进入溶液，而此时浸出液中的金属主要以羟基 

配离子的形式存在，高碱度区域体系中游离的物质浓 

度：[Fe]T＜[Cu]T＜[Pb]T。 
3)  NaOH  分 解 不 溶 性  PbMoO4­Fe2(MoO4)3­ 

CuMoO4 混合盐是可行的，控制碱度让铜、铅和铁等 

少进入溶液体系。针对过量的铜、铁和铅羟基配离子， 

添加  Na2S 为抑制剂，形成更稳定的硫化物沉淀过滤 

除去。不但碱耗量低，而且钼与杂金属分离效果好。 
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