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Welding deformations of 6061-T651 Al alloy thin-plate joints

YE Yan-hong, HE Jing, CAI Jian-peng, SUN Jia-min, DENG De-an

(College of Materials Science and Engineering, Chongqing University, Chongqging 400044, China)

Abstract: Based on the commercial software ABAQUS, a thermo-elastic-plastic finite element method (T-E-P FEM) was
developed in consideration of material nonlinearity, geometrical nonlinearity and moving heat source to simulate the
thermo-mechanical behavior during welding process. The welding temperature fields, residual stress distribution and
deformation in a thin-plate bead-on joint performed by TIG welding process and those in a butt joint with V-groove
welded by MIG welding process were simulated. Meanwhile, the transverse shrinkages and out-of-plane deformations in
thin-plate welded joints were measured by experiments. The transverse shrinkages and the out-of-deformations simulated
by the T-E-P FEM are in good agreement with the measured data, and the effectiveness of the developed computational
approach was verified by experiment. In addition, the formation mechanisms of out-of-plane deformation in thin-plate Al
alloy joints were clarified based on the numerical and experimental results.

Key words: aluminum alloy; transverse shrinkage; out-of-plane deformation; numerical simulation
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Table 3 Comparison of transverse shrinkages length between

simulation and experiment

' Shrinkage length/mm

l Experiment 1 Experiment2  Simulation

1 0.52 0.45 0.47

2 0.72 0.74 0.70

3 0.72 0.65 0.67
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6 0.46 0.37 0.35
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