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Abstract: The extrusion process of hybrid sheet metals through arbitrarily curved dies was analyzed by the method of upper bound. 
The material under deformation was divided into two deformation regions, bimetal and mono-metal regions, and the flow of the 
material in each region was assumed as plane strain state. The internal, shearing and frictional power terms were derived and they 
were used in the upper bound model. The extrusion forces for two types of die shapes, an optimum wedge shaped die and an 
optimum streamlined die shape for a hybrid sheet composed of copper as sleeve and aluminum as core were determined. The 
corresponding results for those two die shapes were also determined by using the finite element code, ABAQUS, and compared with 
the upper bound results. These comparisons show a good agreement. 
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1 Introduction 
 

Multilayered metal products are used in a variety of 
industries, such as fabrication of containers and pressure 
vessels, atomic energy applications and permanent 
storage of computer data. Hybrid sheet metal consists of 
two or more sheet metals bonded together and each sheet 
occupies a distinct position in the component. They are 
used for economic and structural reasons and production 
of them by metal forming has become an important 
subject. The compressive state of stress in extrusion and 
the possibility of producing metallurgical bonds between 
the two metals as shown for example in the work by 
KAZANOWSKI et al [1] in rod extrusion and by 
MAMALIS et al [2] in tube extrusion, make this process 
a suitable choice for producing hybrid sheet metals. In 
this process, alike other metal forming processes, 
estimation and minimization of the extrusion force are 
important. The upper bound technique as an analytical 
method and the finite element method have been widely 
used for the analysis of the extrusion of bars made of 
mono-metal and bimetal materials. A number of people 
have used the upper bound method and FEM to analyze 
the bimetal extrusion of circular sections with axial 
symmetry through a variety of die shapes. Finite element 

methods for the extrusion process are very complicated. 
To derive accurate results using FEM, the effects of 
many parameters must be considered. Using FEM for 
optimum die design is costly and time consuming. After 
the upper bound model has determined the optimal die 
shapes, a finite element model has been used to study 
extrusion through dies with these optimal shapes. 

OSAKADA et al [3] described the hydrostatic 
extrusion of bimetal rods with hard cores through conical 
dies by the upper bound method. AVITZUR [4] 
summarized the factors that affect simultaneous flow of 
layers in extrusion of a bimetal rod through conical dies. 
TOKUNO and IKEDA [5] verified the deformation in 
extrusion of composite bars by experimental and upper 
bound methods. YANG et al [6] studied the 
axisymmetric extrusion of composite rods through 
curved dies by experimental and upper bound methods. 
SLIWA [7] described the plastic zones in the forward 
extrusion of metal composites by experimental and upper 
bound methods. CHITKARA and ALEEM [8,9] 
theoretically studied the mechanics of extrusion of 
axisymmetric bi-metallic tubes from solid circular bars 
using fixed mandrel with application of generalized 
upper bound and slab method analyses. They 
investigated the effect of different parameters such as 
extrusion ratio, frictional conditions, and shape of the 
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dies and that of the mandrels on the extrusion pressures. 
KANG et al [10] designed the die for hot forward and 
backward extrusion process of Al-Cu clad composite rod 
by experimental investigation and FEM simulation. 
HWANG and HWANG [11] studied the plastic 
deformation behavior within a conical die during 
bimetallic rod extrusion by experimental and upper 
bound methods. HAGHIGHAT and ASGARI [12] 
proposed a generalized spherical velocity field for 
bimetal tube extrusion process through dies of any shape. 

As mentioned above, most researches were focused 
on the extrusion of rotation-symmetric bimetal rods or 
tubes. Regarding the extrusion of non-axisymmetric 
mono-metal and bimetal extrusion processes, 
ALTINBALIK and AYER [13] investigated the effect of 
die inlet and transition geometry on the extrusion loads 
and material flow for extrusion of clover sections. 
HAGHIGHAT and AMJADIAN [14] proposed two 
kinematically admissible velocity fields based on 
assuming proportional angles and proportional distances 
from the midline in the deformation zone in upper bound 
models for plane strain extrusion through arbitrarily 
curved dies. ENGELHARDT et al [15] investigated 
experimentally the extrusion of hybrid sheet metals 
through flat dies. 

To overcome deficiencies associated with the flat 
dies (more redundant work, formation of dead metal zone, 
etc.), streamlined dies have been used in the extrusion 
process. 

This work is focused on the analysis and finite 
element simulation of the extrusion of hybrid sheet 
metals through streamlined dies. An upper bound 
solution for flow of hybrid sheet metals during extrusion 
through any possible die shape is developed. Based on 
this model, for a given process parameter, optimum die 
shape and the required extrusion force are derived. The 
FEM simulation on the extrusion of a bimetal sheet 
composed of a copper sleeve layer and an aluminum core 
layer is also conducted. 
 
2 Upper bound analysis 
 

The upper bound method is a limit analysis 
technique that relaxes some of the requirements of an 
exact solution and in this method, solutions are found by 
minimizing the total power formulated from a chosen 
kinematically admissible velocity field. Due to its 
relaxation of the requirements of an exact solution, upper 
bound analysis is less computational intensive than finite 
element method and can quickly evaluate a large number 
of die shapes. 

 
2.1 Geometric description of deformation zones 

Extrusion process of the bimetal sheet through an 

arbitrary curved die is shown in Fig. 1. An initially sheet, 
made of two different ductile materials with the mean 
flow stresses σc and σs is considered. The subscripts “c” 
and “s” denote inner material, core, and outer material, 
sleeve, respectively. The material starts as a hybrid sheet 
with sleeve thickness 1o2t and core thickness 2o2t and it 
extrudes into a product of thicknesses 2t2f and 2t1f for 
sleeve and core through a curved die, respectively. 
Widths of sleeve and core materials are denoted by bs and 
bc, respectively, as shown in Fig. 1. 
 

 
Fig. 1 Extrusion process of hybrid sheet metal through 
arbitrarily curved die 
 

To analyze the process, the material under 
deformation is divided into two regions, bimetal region 
and mono-metal region, and the flow of the material in 
each region is assumed as plane strain. Figures 2 and 3 
show the process parameters in a schematic diagram for 
mono-metal and bimetal regions, respectively. Taking 
into account the symmetry of the problem, only half of 
the section is considered. 

To analyze the process by using the upper bound 
method, the material under deformation in mono-metal 
region is subdivided into three zones, as shown in Fig. 2. 
In zones 1 and 3, the material moves rigidly with the 
velocity Vo and Vf, respectively. The surfaces A1 and A2 
are located at distances ro and rf from the origin O, 
respectively. The mathematical equations for radial 
positions of two velocity discontinuity surfaces A1 and A2 
are given by 

 
1o 1f

o f,  
sin sin
t t

r r
α α

= =                          (1) 
 

where α is the angle of the line connecting the initial 
point of the curved die to the final point of the die and 

 
1o 1ftan
t t

L
α

−
=                               (2) 

where L denotes die length. 
The die surface, which is labeled as ψ(r) in Figs. 2 

and 3, is given in the cylindrical coordinate system (r, θ, z) 
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Fig. 2 Schematic diagram of mono-metal sheet extrusion through curved die 
 

 
Fig. 3 Schematic diagram of bimetal sheet extrusion through curved die 
 
where ψ(r) is the angular position of the die surface as a 
function of the radial distance from the origin. The origin 
of cylindrical coordinate system is located at point O, as 
shown in Figs. 2 and 3. 

Two types of die shapes are examined in the present 
investigation. The first die shape is wedge shaped die as a 
linear die profile. This profile has a single constant value, 
i.e. ψ(r)=α. The second die shape is from the work by 
YANG and HAN [16]. They created a streamlined die 
shape as a fourth-order polynomial whose slope is 
parallel to the axis at both entrance and exit. The die 
profile of YANG and HAN in Cartesian coordinate 
system, shown in Fig. 4, is given by the following 
fourth-order polynomial as  

2
o f o o f o f2 3

1 1( ) [ 3( )] [2( )h x t C t t t x t t
L L

= + − − + − −  

   3 4
f o f o4

12 ]C t x C t x
L

+                       (3) 
 
Subjected to h′(0)=h′(L)=0, h(0)=to, h(L)=tf and  

Cf=
f o f

2
f f

3(1 / )(1 2 / )
1 6 / 6( / )

t t L L
L L L L

− −

− +
 

where Lf/L is the relative position of the inflection point 
for the die and can vary from 0 to 1. 

Die shape of YANG and HAN was expressed in 
polar coordinate system, (r, ψ), by Ref. [17] as 

 

Fig. 4 Sketch of the die shape of YANG and HAN in Cartesian 
coordinate system 
 

2f
2

o f o of o

sin 3 cos1 ( ) ( 1)
sin 1 / cos(1 / )

Cr r
r t t rt t

ψ ψ
α α

= + − − + +
−−

       3f
2 3

of o f o

22 cos( ) ( 1)
cos(1 / ) (1 / )

C r
rt t t t

ψ
α

− − + +
− −

 

4f
4

of o

cos( 1)
cos(1 / )

C r
rt t

ψ
α

− +
−

            (4) 

 
The material under deformation in bimetal region is 

subdivided into six zones, as shown in Fig. 3. In zones Is 
and Ic, the incoming sheet is assumed to flow 
horizontally as rigid body with velocity Vo. In zones IIIs 
and IIIc, the extruded sheet is assumed to flow 
horizontally as rigid body with velocity Vf. Zones IIs and 
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IIc are the deformation zones, where the velocity is 
complex. These zones are surrounded by four velocity 
discontinuity surfaces S1, S2, S3 and S4. In addition to 
these surfaces, there are two frictional surfaces between 
sleeve and container and die surface and sleeve S5. The 
surfaces S1 and S3 are located at distance ro from the 
origin and the surfaces S2 and S4 are located at distance rf 
from the origin. The mathematical equations for radial 
positions of four velocity discontinuity surfaces S1, S3 and 
S2, S4 are given by Eq. (2). 

The interface surface between the inner and the 
outer materials is defined by ψi(r) which is the angular 
position of the interface surface as a function of the radial 
distance from the origin. Angle β, shown in Fig. 3, is 
given by 

αβ sinsin
o1

o2

t
t

=                              (5) 

 
2.2 Velocity fields in deformation zones 

The velocity component in the radial direction 
within the deformation zone, ,rU&  can be obtained by 
assuming volume flow balance. In Fig. 2, assuming 
proportional distances from the midline in the 
deformation zone, then the velocity components in the 
deformation zone can be given by [14] 

 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

∂
∂

−=

−=

0

sincot
sin
sin

cos
sin
sin

oo

o
o

z

r

U
r

rVU

r
r

VU

&

&

&

θψψ
ψ
α

θ
ψ
α
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Based on the established velocity field, the strain 

rate field for deformation zones can be obtained. The 
strain rates components in cylindrical coordinates are 
defined as 
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The strain rate components can be obtained by using 

group Eqs. (6) and (7) as 
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(8) 
With the velocity field and the strain rates in the 

deformation zone, internal power and the power 
consumed on the shear and frictional surfaces can be 
given in usual matter. 

 
2.3 Internal power of deformation 

The internal power of deformation for a material 
with mean flow stress of σ0 in an upper bound model is 

∫=
V ijiji VW
 0 d

2
1

3
2 εεσ &&&                         (9) 

Internal powers of zones 1 and 3 are zero and the 
equation to calculate the internal power of deformation in 
zone 2, shown in Fig. 2, can be given by 

 
o

f

 ( ) 2 2 2s
2 s c 0

2 1 1( ) d d
2 23

r r
i rr rr

W b b r r
ψ

θθ θ
σ

ε ε ε θ= − + +∫ ∫& & & &            

(10) 
where σs is the mean flow stress of sleeve material and is 
determined by 

 

0 1o s 2o c
s

1f s 2f c

d
, ln

t b t b
t b t b

ε
σ ε

σ ε
ε

−
= =

−

∫              (11) 

 
Internal powers of zones Is, Ic, IIIs and IIIc, as shown 

in Fig. 3, are zero and the equation to calculate the 
internal power of deformation in zone IIs is 

 
o

s f

( ) 2 2 2s
II c ( )

2 1 1 d d
2 23 i

r r
i rr rr r

W b r r
ψ

θθ θψ

σ
ε ε ε θ= + +∫ ∫& & & &   (12) 

 
And ψi(r) is the angular position of the interface 

surface as a function of the radial distance from the 
origin O and is given by 

 

)(sin
sin
sin)(sin rri ψ

α
βψ =                       (13) 

 
The general equation to calculate the internal power 

of deformation in zone IIc is determined as 
 

o

c f

( ) 2 2 2c
II c 0

2 1 1  d d
2 23

ir r
i rr rr

W b r r
ψ

θθ θ
σ

ε ε ε θ= + +∫ ∫& & & &     (14) 

where σc is the mean flow stress of core material and is 
given by 
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0 2o
c

2f

d
, ln

t
t

ε
σ ε

σ ε
ε

= =
∫                      (15) 

 
2.4 Shear power losses 

The equation for the power losses along a shear 
surface of velocity discontinuity in an upper bound 
model is 

 

SvW
SS d 

3  
0 ∫= Δ

σ&                                   (16) 

 
So, the shear power loss along the velocity 

discontinuity surface A1, as shown in Fig. 2, becomes 

1 o

 s
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3SA r rW V r b b r

r
ασ ψ α θ θ=

∂
= − +
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(17) 
And the shear power loss along the surface of 

velocity discontinuity A2 becomes 

2 f

 s 1o
o o s c o 0

1f
( ) (1 cot )

3SA r r
t

W V r b b r
t r

ασ ψ α=
∂

= − + ⋅
∂∫&  

     sin dθ θ                                (18) 
 
The shear power loss along the velocity 

discontinuity surfaces S1, S2, S3 and S4 can be given by  

1 o

 s
o o c o 

( cot )sin d
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r
α
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2.5 Friction power losses and extrusion force 

The frictional shear stress is given by 3/0σmy = , 
where the constant friction factor, m, can take on values 
from 0 to 1. The general equation for the friction power 
losses for a surface with a constant friction factor is 

 
0

f  
d
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W m v S
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= Δ∫&                                                                                                                                  (23) 
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and 

cos sin |rv U Uθ θ ψη η =Δ = +& &                                                (25) 

Angle η is shown in Fig. 5 and it is local angle of 
the die wall with respect to the local radial velocity 
component and 

 

 
Fig. 5 Angle η between tangent to die profile and radial velocity 
component at a point on die profile 
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Placing Eqs. (24)−(26) in Eq. (23), the frictional 
power losses along die wall, S5, can be determined as 

 
o

f

 2s
f 5 1 0 s o  

sin [1 ( ) ]d
tan3

r

r
W m V b r r r

r r
σ α ψ

ψ
∂

= +
∂∫&                             (27) 

 
where m1 is the constant friction factor between the 
sleeve and the die. 

For the present work, the bonding condition 
between the core and the sleeve is assumed to be sticky 
and there is no slippage between core and sleeve 
materials. 

Based on the upper bound model, the total power 
needed for a bimetal sheet extrusion process can be 
obtained by summing the internal power and the power 
dissipated on all frictional and velocity discontinuity 
surfaces. Then, the total upper bound solution for 
extrusion force is given by 
 

S c 1 2 1 2 3e 2 II II( i i i SA SA S S SF W W W W W W W W= + + + + + + + +& & & & & & & &  

 0f /
54

VWWS
&& +                           (28) 

 
A MATLAB program has been implemented for the 

previously derived equations and is used to study the 
plastic deformation for different die shapes and extrusion 
conditions. It includes a parameter L, die length that 
should be optimized. Initial bimetal sheet geometry, 
friction coefficients, core and sleeve sheet materials 
properties, reduction in area (RA) and the die shape are 
input data of the computer program and the computer 
program calculates the required extrusion force for a 
given die length. 
 
3 Results and discussion 
 

To make a comparison with the developed model, a 
bimetal sheet composed of aluminum and copper is used. 



 H. HAGHIGHAT, et al/Trans. Nonferrous Met. Soc. China 24(2014) 3285−3292 

 

3290 

The flow stresses for copper and aluminum at room 
temperature are obtained as [11] 

 
239.0

Al 2.189 εσ = MPa                                                            (29) 
 

113.0
Cu 2.335 εσ = MPa                                                           (30) 

 
Friction factor m1=0.15, m2=0.9 and reduction in 

area (RA) 30% are adopted during the analytical solution 
and the FEM simulation. The configuration of the inner 
and outer materials is shown in Fig. 6. The extrusion 
conditions used in the analysis are presented in Table 1. 
 

 
Fig. 6 Cross-section of bimetal sheet before extrusion (Unit: 
mm) 
 
Table 1 Extrusion conditions used in analysis 

Description Value

t1o, half thickness of sleeve layer in initial sheet/mm 10 

t2o, half thickness core layer in initial sheet/mm 5 

bs, widths of sleeve layer/mm 80 

tc, widths of core layer/mm 40 

Vo, velocity of initial bimetal sheet/mm 1 

m1, friction factor between sleeve and die 0.15 

m2, friction factor between core and sleeve 0.9 

Reduction in area(rRA)/% 30, 50
and 65

 
The developed upper bound solution can be used for 

the analysis of bimetal sheet extrusion process through 
dies of any possible shape if the die profile is expressed 
as equation ψ(r). Two types of die shapes are examined 
in the present investigation. The first die shape is wedge 
shaped die as a linear die profile. The second die shape is 
YANG and HAN die shape as a curved die profile. 

In Fig. 7, extrusion forces for the wedge shaped die 
and the YANG and HAN die shape obtained from the 
upper bound method are compared with each other. As 
shown in Fig. 7, the extrusion force of YANG and HAN 
die shape is lower than that of wedge shaped die. 
Because this curved die has a smooth transition at the die 
entrance and exit and shearing in the velocity 
discontinuity surfaces is zero. At the optimum die length, 
the extrusion force is minimized. 

As shown in Fig. 8, the optimum die length in the 
case of wedge shaped die is 16 mm and that in the case 
of YANG and HAN die shape is 15 mm. 

The extrusion process is simulated by using the 
finite element code, ABAQUS. Simulations are done for 

 

 
Fig. 7 Comparison of analytical extrusion force values versus 
die length for wedge shaped die and YANG and HAN die shape 
for Al−Cu sheet 
 

 

Fig. 8 Finite element mesh and deformed mesh in bimetal sheet 
extrusion process: (a) Finite element mesh; (b) Deformed mesh 
for Al−Cu bimetal sheet; (c) Deformed mesh for Cu−Al bimetal 
sheet 
 
two types of bimetal sheets: aluminum as core, copper as 
sleeve (Al−Cu) and copper as core, aluminum as sleeve 
(Cu−Al). Taking into account the symmetries of the 
process, only one-fourth of the die and the bimetal sheet 
is considered and the whole model is meshed with 
C3D8R elements. The punch and the die are modeled as 
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rigid materials. The die model is fixed by applying 
displacement constraint on its nodes while the punch 
model is loaded by specifying displacement in the axial 
direction. Figure 8(a) illustrates the mesh used to analyze 
the deformation of the optimum YANG and HAN die 
shape. Deformed models of sleeve and core for two types 
of sheets (Al−Cu and Cu−Al) are shown in Figs. 8(b) and 
8(c), respectively. 

The FEM results show that in both types of bimetal 
sheets, aluminum leaves the deformation zone sooner 
than copper. Since flow stress of aluminum is lower than 
that of copper, the former is extruded first. As the applied 
stress increases to flow stress of copper, simultaneous 
flow of the two metals continues. 

In Figs. 9 and 10, the extrusion force variations 
during the whole extrusion process obtained from the 
upper bound solution are compared with the FEM 
simulation data for the optimum wedge shaped die and 
optimum YANG and HAN die shape. As shown Figs. 9 
and 10, at the early stage of extrusion, unsteady state 
deformation occurs, and the materials have not yet filled 
up the cavity of the die completely. Thus, the extrusion 
force increases as the extrusion process proceeds. After 
the materials have filled up the cavity of the die 
completely, the extrusion force decreases gradually. The 
gradual decrease in the load–displacement curves is due 
to decreasing the frictional surface area in the container 
as the punch is advanced. 
 

 

Fig. 9 Comparison of upper bound and FEM extrusion force− 
displacement curves for optimum wedge shaped for Al−Cu 
bimetal sheet 
 

As shown in Figs. 9 and 10, the analytically 
predicted forces are about 13% higher than the FEM 
results, which is due to the nature of the upper bound 
theory. 

In Fig. 11, the extrusion forces obtained from the 
upper bound solution are compared with the results 
obtained by FEM for YANG and HAN die with three 
different reductions in area, rRA=30%, 50% and 65%. It is 

obvious that the increase of reduction in area (rRA) 
increases the extrusion force. The results show good 
agreement. 

The effect of die length on the extrusion force for 
different values of friction factor is shown in Fig. 12. As 
 

 
Fig. 10 Comparison of upper bound and FEM extrusion force− 
displacement curves for optimum YANG and HAN die shape 
and for Al−Cu bimetal sheet 
 

 

Fig. 11 Comparison of analytical and FEM data for different 
reductions in area for YANG and HAN die shape 
 

 
Fig. 12 Optimum die length for different values of friction 
factor m1 for YANG and HAN die shape 
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expected, for a given value of friction factor, the 
extrusion force is minimized in an optimum die length. It 
is observed that the optimum die length decreases when 
shearing friction factor increases. This figure, also, shows 
that an increase in the friction factor tends to increase the 
extrusion force. 
 
4 Conclusions 
 

1) By using the developed upper bound model, 
optimum die lengths for a wedge shaped die and also for 
Yang and Han die shape were determined. 

2) The extrusion force for those two dies have been 
determined by using the finite element code, ABAQUS, 
and compared with analytical results. These comparisons 
show a good agreement. 

3) Extrusion pressure of YANG and HAN die shape 
was lower than wedge shaped die. 
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复合金属板材曲面模具挤压的上限法分析 
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摘  要：通过上限法分析了复合金属板材经反复曲面模具的挤压过程。变形材料可以分为双金属区和单金属区 2

个变形区域。每个区域材料的流变状态都设为平面应变状态。得到内能，剪切能和摩擦能的表达式，并应用到上

限模型中。确定了铜包覆铝复合材料采用楔形模具和流线曲面模具的挤压力。通过有限元软件 ABAQUS 模拟得

到 2 种模具的相应结果，并与上限法模型进行对比，比较结果表明，两者具有很好的一致性。 
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