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Abstract: The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in 
the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the 
plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The 
results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly 
accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is 
proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique. 
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1 Introduction 
 

Thin films have been widely used in many 
important applications such as integrated circuits and 
microelectromechanical systems [1,2]. To improve the 
reliability, lifespan and stability of thin films and make 
full use of these materials, an insight into the mechanical 
properties of thin films is becoming extremely important. 
Unfortunately, the deformation behavior and dimension 
of thin film materials are generally different from those 
of the corresponding bulk materials, hence specialized 
mechanical testing techniques have had to be developed 
[3,4]. There are several specialized techniques for 
measuring the mechanical properties of thin films 
including nanoindentation tests [5,6], uniaxial tensile 
tests [7,8], beam bending tests [9,10] and bulge tests 
[11,12]. Despite the availability of these techniques to 
measure the mechanical properties of thin films, 
specimen preparation, the test setup, and even data 
analysis are still challenges in the field [13]. 

One of the most promising techniques for 
characterizing the mechanical behavior of thin films is 
the bulge test. Since the bulge test was first introduced 
by BEAMS [14] in 1959, it has been used to measure the 

mechanical properties of thin films. In this technique, the 
deflection of a suspended film is measured as a function 
of applied pressure. By measuring the applied pressure 
and the resulting deflection, the elastic modulus, residual 
stress, Poisson ratio and other important parameters such 
as strength and fracture toughness can be determined by 
this method [15−18]. Traditionally, the test has suffered 
from a number of problems related to sample processing 
and handling ever since it was born; however, with the 
recent rapid development of Si micromachining 
technology, these problems are largely solved 
[3,4,11,19,20]. In general, bulge test experiments can be 
classified into three categories with respect to the shape 
of the tested membrane: circular, square, and rectangular. 
The plane-strain bulge test, which uses a rectangular 
membrane with aspect ratio larger than 4, results in a 
state that approximate plane strain is currently the most 
widely utilized bulge test for freestanding thin film 
testing, due to its unique advantages [12]: 1) its favorable 
application of micromachining routes, 2) a more accurate 
determination of elastic modulus when Poisson ratio is 
not exactly known and 3) an ideal technique for studying 
the plastic deformation behavior of thin films. But it 
should be noted that the plane-strain bulge analytical 
model was derived by assuming that a long rectangular 
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membrane is in a perfectly plane-strain state. In fact, the 
resulting stress state in the film is quite complicated [21]. 

The accuracy and reliability of the bulge test have 
been analyzed by many researchers. PAN et al [22] 
verified analytical models of circular and square 
membrane by finite element analysis. By the same 
method, SMALL and NIX [23] systematically analyzed 
the influence of initial conditions such as residual stress 
and initial height of circular membrane, and then 
proposed a new approach to improve the accuracy of the 
spherical membrane bulge equations. VLASSAK [12] 
and HOHLFELDER [24] investigated the influence of 
bending stiffness on the deflection of a membrane and 
showed that bending moment can be ignored except for 
the edge of the membrane. However, these analyses 
focused on circular and square membrane bulge test 
rather than the plane-strain bulge test. Meanwhile, most 
current work emphasized the importance of controlling 
the experimental uncertainties instead of improving the 
accuracy of the method of data analysis in the 
plane-strain bulge test [17,18,25,26]. So, it is necessary 
to define a method which can analyze bulge test data to 
obtain more accurate results. 

In this study, finite element method simulations are 
used to define virtual experiments, allowing a 
comparison between the actual mechanical properties of 
thin films and the mechanical properties calculated by 
the bulge analytical model (using the pressure−deflection 
data from the simulation). This provides a direct 
approach to verify the accuracy of the bulge equation in 
terms of our finite element results. The objectives of this 
research are to systematically investigate the effects of 
geometrics, initial condition (residual stress) and material 
properties on the existing bulge test model, and to define 
a method of data analysis to improve the accuracy of the 
plane-strain bulge model. 
 
2 Bulge test principle 
 

Approximated solutions using other different 
approaches for various membrane shapes have been 
derived by a number of researchers [18]. VLASSAK and 
NIX [3] derived an equation including the influence of 
residual stress to model the deformation of linear elastic 
rectangular membranes following an energy 
minimization approach originally developed by 
TIMOSHENKO [27]. In such a case, the deflection, h, at 
the center of a membrane of dimensions of 2a×2b is a 
function of the applied pressure, p, the membrane 
geometry, and various material parameters: 
 

),,,,,,( 0 tbavEpfh σ=                        (1) 
 
where E is the elastic modulus; ν is the Poisson ratio; t is 
the thickness of the film; σ0 is the residual stress of the 

film; a and b are the half width and the half length of the 
membrane, respectively. The dimensionless form of the 
above function is:  
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For a linear elastic membrane, this relationship can 

be approximated by the following expression:  
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where C1 is a constant that depends on the membrane 
geometry; C2 is a function of the membrane geometry 
and the Poisson ratio. Once the aspect ratio, a/b, of a 
rectangular membrane exceeds 4, the deflection at the 
center of the membrane is nearly independent of a/b and 
can be approximated with the exact solution for an 
infinitely long rectangular membrane [3,4]. In other 
words, an infinitely long membrane is a good 
approximation for rectangular membranes with large a/b. 
As a result, the stress and strain are distributed uniformly 
across the width of the membrane, except for the outer 
edge, where the bending moment is significant. The 
exact solution for an infinitely long rectangular 
membrane can be obtained in this case, and Eq. (3) is 
then rewritten as follows: 
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where M=E/(1−ν2) is the plane-strain modulus. From the 
above equations, we can find that by plotting p/h−h2 
curve it will generate a straight line with a slope which 
relates to M and the intercept that is proportional to the 
residual stress. Therefore, the thickness and width of the 
thin film are known, and both the plane-strain modulus 
and residual stress can be calculated readily by 
measuring the deflection versus pressure, and fitting the 
data to Eq. (4). 

Nevertheless, it is important to point out that the 
real deformation of a rectangular membrane is 
commonly more complex than a hypothetical 
deformation, and the plane-strain state is only found near 
the center of the rectangular membrane. Consequently, 
the bulge equation is often applied to tests far less   
ideal [21,28]. In the case, the validity of the plane-strain 
bulge model will be analyzed by the finite element 
analysis in the rest of this paper. 
 
3 Finite element model 
 

In order to model the deformation behavior of thin 
films and verify the preceding analytical solutions of the 
plane-strain bulge test, finite element method simulations 
are carried out by using the commercial nonlinear finite 
element code ABAQUS [29]. Because of symmetry, only 
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one quarter of the rectangular membrane is modeled with 
a finite element model using 9600 3D quadratic shell 
elements (element S8R5, an 8-node doubly curved thin 
shell, reduced integration, and using five degrees of 
freedom per node) with five Simpson integration points 
through the thickness, in which 1-, 2- and 3-axis of 
Cartesian coordinates refer to the directions of width, 
length and thickness, respectively. The edges of the 
membrane are assumed to be clamped and any rotation 
of the edges is completely constrained. The symmetry 
boundary condition along 2-axis requires that the 
displacement in the direction of the 1-axis and the 
rotations about the 2-axis and 3-axis are zero 
(U1=UR2=UR3=0). Similar boundary conditions are 
formulated along the 1-axis. The mesh used in 
calculations and boundary conditions of the model are 
shown in Fig. 1. 
 

 

Fig. 1 Schematic illustration of mesh distribution and boundary 
conditions of finite element model 
 

The FEM models are built by inputting a series of 
geometric parameters, material parameters and initial 
conditions (residual stress) into the FEM program and 
utilize the pressure−deflection output of finite element 
model to simulate bulge tests. The thin freestanding film 
is specified as an isotropic elastic material, and the 
corresponding parameters used for simulations are listed 
in Table 1. It should be pointed out that no model 
currently available is suited to wrinkled films caused by 
compressive residual stress [23], so we will also take no 
account of this case further. The equal-biaxial tensile 
residual stress is imposed by manual modification of the 
input file in the finite element analysis. 
 
Table 1 Parameters used for finite element simulations 

E/GPa v t/mm a/mm b/mm σ0/MPa

30−300 0.1−0.5 0.004 2 4−20 0−400

 
4 Results and discussion 
 

From the preceding section it has become clear that 
the plane-strain bulge equation was derived by assuming 
that an infinitely long rectangular membrane under 
pressure could stay in a perfectly plane-strain state. In 
fact, the real deformation of a rectangular membrane is 
much more complex than an assumed deformation. As 
shown in Fig. 2, the load−deflection output of the plane 
strain solution is compared with the finite element 
calculation result. This comparison shows the stiffness of 
the film to be slightly higher than predicted one. 
Therefore, the mechanical properties of thin films 
obtained by applying the existing bulge equation to bulge 
test data will be somewhat higher than the actual values, 
and one would not expect that the equation has very high 
accuracy. 
 

 
Fig. 2 Pressure−deflection curves calculated using finite 
element calculation and plane-strain solution for rectangular 
membrane 
 

In order to analyze and improve the accuracy of the 
plane strain bulge equation, we systematically scrutinize 
the effect of geometric sizes, residual stress and material 
properties on the deformation behavior of thin films by 
varying the relevant parameters. Moreover, in an attempt 
to quantify all of these effects on the accuracy of the 
bulge test equation, we analyze the bulge equation in 
terms of our finite element results and define a new 
method of data analysis to improve the accuracy of the 
plane-strain bulge test. 
 
4.1 Effect of aspect ratio on accuracy of plane-strain 

bulge equation 
By using the finite element model, the deflection at 

center of a rectangular membrane is calculated as a 
function of applied pressure, membrane geometric size 
and materials parameters. Pressure−deflection curves 
obtained from the finite element method for various 
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aspect ratios are shown in Fig. 3, and it is confirmed that 
once the aspect ratio of a rectangular membrane is equal 
to 5, the deflection of a rectangular membrane is nearly 
independent of the aspect ratio(b/a) and the membrane is 
almost in a state of plane strain. Accordingly, the 
following analysis will be established on this fact that the 
deflection at center of the membrane with b/a=5 can be 
approximated with the exact solution for an infinitely 
long rectangular membrane. Figure 4 shows the contour 
of the von Mises equivalent stress and displacement 
obtained from the finite element simulation. Stress and 
strain distributions in the rectangular film are shown in 
Fig. 5. As expected, both stress and strain are distributed 
uniformly across the width of the membrane except for 
the edge, where high local curvatures induce significant 
bending moments in the film. It can also be seen that  
the transverse and longitudinal components of stress and  

 

 

Fig. 3 Pressure−deflection curves obtained from finite element 
method for various aspect ratios (b/a=2, 4,5,6,7 and 10) 

 

  
Fig. 4 Contours of von Mises equivalent stress (a) and displacement distribution (b) of rectangular membrane with b/a=5 (The 
applied pressure is 0.5 MPa) 
 

 

Fig. 5 Finite element model calculations of stress (a) and strain (b) distributions along width of rectangular membrane with b/a=5 
(The applied pressure is 0.5 MPa) 
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strain are almost constant, while the strain (ε22) in the 
longitudinal direction is nearly zero. So, it is also proved 
that the membrane is indeed in a state that closely 
approximates plane strain. 
 
4.2 Effects of elastic constants on deformation 

behavior of thin films 
The constants E and v are varied independently to 

investigate the effect. It is found that both elastic 
modulus and Poisson ratio have effect on the 
deformation behavior of thin films. Figure 6 shows that 
the deformation of films becomes difficult with 
increasing elastic modulus and Poisson ratio, and it is 
obvious that elastic constants have a large effect on the 
measured pressure−deflection curve. Figure 7 shows the 
deflection distribution in the film at an applied pressure 
of 1 MPa. From Fig. 7 we can observe that although the 
deflection decreases rapidly as the elastic modulus and 
the Poisson ratio increase, the elastic modulus seems to 
influence much on stiffening the film deformation 
behavior compared with the Poisson ratio. 
 

 
Fig. 6 Pressure−deflection curves generated by finite element 
model for films of varying Poisson ratio with fixed elastic 
modulus (a) and of varying elastic modulus with fixed Poisson 
ratio (b) 
 
4.3 Effects of residual stress on deformation behavior 

of thin films 
In practice, residual stress is inevitably introduced 

into thin films on substrates and its presence may 
influence the film deformation behavior. If residual stress 
is neglected, erroneous material data may be obtained in 
bulge tests. Like the elastic constants, residual stress also 
alters the behavior of thin films to some extent. As 
demonstrated in Fig. 8, with the increase of residual 
stress, the deflection at the center of the film decreases. 
Apparently, it is concluded that residual stress can 
improve the ability to resist the deformation of films.  
 

 

Fig. 7 Deflection distributions along width of film obtained 
from finite element model for films of varying Poisson ratio 
with fixed elastic modulus (a) and of varying elastic modulus 
with fixed Poisson ratio (b) (The applied pressure is 1 MPa) 
 

 
Fig. 8 Deflection distributions along width of rectangular film 
for various residual stresses (The applied pressure is 1 MPa) 
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Figure 9(a) shows a plot of pressure−deflection 
“data” extracted from the finite element simulation for 
various levels of tensile residual stress. And the 
corresponding p/h−h2 curve is shown in Fig. 9(b), where 
the slope and the intercept should be proportional to the 
plane strain modulus and the residual stress, respectively. 
As expected, the slopes of all the curves are almost the 
same and the intercepts are evenly spaced. 
 

 

Fig. 9 Pressure−deflection curves for films with different 
residual stress (a) and corresponding p/h−h2 curves for films 
with different residual stress (b) 
 
4.4 Effects of elastic constants and residual stress on 

accuracy of plane-strain bulge equation 
Since it is assumed in deriving the plane-strain 

bulge equation that the film is in a perfect plane-strain 
state, it is evident that this equation will cause the 
inconsistency between the measured and actual results. 
In other words, the determination of materials properties 
of thin films may be affected by the accuracy of the 
plane-strain bulge equation, namely the pressure− 
deflection relation. If the actual materials properties of 
thin films are known exactly, changes in calculated 
values of plane-strain modulus and residual stress can be 
detected according to the existing equation, so that it 
provides an approach to allow a comparison of the actual 
materials properties of thin films with the calculated 

materials properties (using the pressure−deflection data 
from the simulation). Undoubtedly, it is a feasible 
method to analyze the accuracy of the plane-strain bulge 
test model. 

In an effort to quantify effects of elastic constants 
and residual stress on the accuracy of the plane-strain 
bulge test model, a series of virtual bulge experiments 
are conducted by making the relevant parameters varied 
systematically. The subscript “calc” refers to the 
calculated result obtained by inputting the finite element 
“data” to the plane-strain bulge equation Eq. (4), and at 
the same time the accuracy of the bulge equation is 
illustrated by comparisons with the calculated and the 
actual materials properties. As shown in Fig. 10, ratio of 
the calculated to the actual plane-strain modulus is a 
function of Poisson ratio and residual stress (Fig. 10(a)) 
and also a function of elastic modulus and residual stress      
(Fig. 10(b)). It is found that the ratio of calculated-to- 
actual plane strain modulus is nearly unity, and slightly 
greater than one. Both E and v have little effect on the 
ratio of calculated to actual plane-strain modulus, in 
addition, increasing σ0 makes the calculated modulus 
 

 
Fig. 10 Ratio of calculated-to-actual plane-strain modulus as a 
function of residual stress and Poisson ratio (a) and ratio of 
calculated-to-actual plane-strain modulus as a function of 
residual stress and elastic modulus (b) 
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decrease, and the error of the calculated modulus is 
always less than 1.3%. This means that the effect of 
elastic constants and residual stress on the accuracy of 
the plane-strain bulge test in determining the plane strain 
modulus can be ignored, and the existing bulge equation 
is sufficiently accurate to measure the plane strain 
modulus. 

Being different from the calculated plane strain 
modulus, the effects of elastic constants and residual 
stress have a relative large influence on calculated 
residual stress, as shown in Fig. 11. Furthermore, since 
the deformation behavior of thin films is dominated by 
elastic modulus and residual stress rather than Poisson 
ratio, it is apparent that both of them have a greater 
impact on the ratio of calculated-to-actual residual stress 
compared with the influence of Poisson ratio. It can be 
seen that the ratio of calculated-to-actual residual stress 
is not a function of Poisson ratio (Fig. 11(a)), and the 
effect of Poisson ratio on the calculated residual stress is 
relatively insignificant. Conversely, the variations of 
elastic modulus and residual stress play a more important 
role in determining the calculated residual stress 
 

 
Fig. 11 Ratio of calculated-to-actual residual stress as a 
function of Poisson ratio and residual stress (a) and ratio of 
calculated-to-actual residual stress as a function of elastic 
modulus and residual stress (b) 

(Fig. 11(b)). Note that if the effect of elastic modulus is 
neglected, especially at lower level of residual stress, 
erroneous value of the calculated residual stress may be 
obtained. This may be due to the fact that the low 
residual stress has some effect on the stiffness. Clearly, it 
is nearly impossible to obtain accurate results without 
defining a method which can analyze bulge test data. 
Thus, an approach that aims to improve the accuracy of 
the calculated residual stress must be proposed. 

Figure 12(a) shows the 3D scatter diagram of the 
‘data’ in Fig. 11(b). By means of nonlinear surface fitting, 
an expression for the residual stress as a function of 
calculated elastic modulus and calculated residual stress 
can be obtained as follows: 
 

9857.0
0

9265.0
calc

0
0726.0023.1 −+

=
σ

σ
σ

E
             (5) 

 
The corresponding fitting surface is shown in    

Fig. 12(b), and the correlation coefficient of the fitting 
surface is 0.99912. Subsequently, the values of residual 
stress corrected by Eq. (5) are plotted in Fig. 13, with the 
uncorrected curve for E=120 GPa plotted for comparison. 
The result shows that a quite satisfactory agreement 
between the corrected value and the actual value of 
residual stress is obtained. Due to a fact that the variation 
of calculated residual stress with elastic modulus and 
residual stress is systematic, and the existing plane  
 

  
Fig. 12 3D scatter diagram of calculated data obtained from 
FEA results (a) and corresponding nonlinear fitting surface (b) 
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Fig. 13 Values of calculated-to-actual residual stress ratio 
corrected by using Eq. (5) (An uncorrected curve is plotted for 
comparison) 
 
bulge equation can provide a more accurate 
determination of elastic modulus even though Poisson 
ratio is not known exactly, this formulation should be 
possible to improve the accuracy of the plane-strain 
bulge test in determining the residual stress, especially 
for a lower level of residual stress. 
 
5 Conclusions 
 

1) The finite element results show that a long 
rectangular film will be in a state that closely 
approximates plane strain as long as the membrane 
aspect ratio is greater than or equal to 5. 

2) Although determination of the plane-strain 
modulus in the light of the existing plane-strain bulge 
equation is highly accurate, the calculation of the 
residual stress is not satisfied as expected, especially for 
low residual stress. 

3) In addition, it is shown that the proposed Eq. (5) 
for data analysis of the plane-stain bulge test will 
considerably improve the accuracy of the determination 
of residual stress. 
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摘  要：采用有限元法系统地研究了平面应变鼓包实验中鼓包尺寸、薄膜初始条件以及材料参数对薄膜变形行为

的影响。然后，根据有限元结果，分析平面应变鼓包实验测量薄膜力学性能的精度。结果表明：尽管原有的平面

应变鼓包理论模型测量平面应变模量的精度很高，但是依其测量残余应力的精度并不高，尤其是在低残余应力阶

段。最后，根据上述情况，提出一种新的分析鼓包实验数据的方法以提高平面应变鼓包技术的精度和可靠性。 

关键词：薄膜；力学性能；鼓包实验；精度；有限元 
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