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Abstract: Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a 
phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field 
model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious 
six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at 
the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the 
steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the 
steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity 
increases and reaches the maximum value at anisotropy strength of 0.04, then decreases. 
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1 Introduction 
 

Dendrites are common patterns observed after the 
solidification of a melt. They influence the 
microstructure and mechanical properties of materials 
obtained by casting [1]. Interfacial energy anisotropy is a 
very important parameter to influence the growth 
morphology of dendrite. When the interfacial energy 
anisotropy is weak, the morphology of dendrite is 
smooth and includes all possible orientations. As the 
reinforcement of anisotropy, the morphology of dendrite 
presents distortion [2]. Therefore, a better understanding 
of dendrite growth for strong interfacial energy 
anisotropy is an important theoretical and practical 
problem. 

In the past decade, the phase field method has been 
intensively studied as a model taken into account the 
strong interfacial energy anisotropy for solidification 
processes. In 2001, EGGLESTON et al [3] proposed a 
modification phase field method for the strong interfacial 
energy and originally studied a faceted dendrite growth. 

Subsequently, KASAJIMA et al [4] and KIM et al [5] 
made lots of researches on a facet dendrite of pure 
materials. SUZUKI et al [6] modeled the faceted dendrite 
growth of the Si−Ni alloy, and their simulation results 
were similar to the experimental observations. XIAO et 
al [7] and YUAN and DING [8,9] simulated the dendrite 
growth of Ni−Cu alloy with strong interfacial energy 
anisotropy in a forced flow. CHEN et al [10,11] further 
researched the influence of anisotropy strength and flow 
velocity on facet dendrite growth of the pure material 
and binary alloys. TORABI et al [12] presented a new 
regularized anisotropic Cahn−Hilliard phase field 
equation. These researches were mainly focused on the 
FCC structure materials and the function of interfacial 
energy anisotropy has four-fold symmetry. The research 
of HCP structure almost wholly confined to weaker 
interfacial energy anisotropy. BOTTGER et al [13] used 
the phase field method coupled to thermodynamic 
databases to simulate equiaxed solidification processes 
for ternary magnesium alloys. MIAO et al [14] analyzed 
the influence of phase filed parameters on dendritic 
morphology of magnesium alloys. YUAN et al [15] 
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further researched the single- and multi-grain dendrite 
growth of magnesium alloys in a forced flow. QIN et al 
[16] discovered that the apparent rate of crystal growth 
as a function of orientation in the phase field simulation 
of HCP metals agrees with predictions made by surface 
energy theory. In these simulation calculations, the 
interfacial energy anisotropy largely influences the 
dendrite growth morphology and the stability of the 
results. However, the study on dendrite growth 
morphology of HCP materials for strong interfacial 
energy anisotropy has been less much more reported. 

In this work, the dendrite growth process of HCP 
materials was simulated by phase field model 
considering the strong interfacial energy anisotropy. The 
effects of interfacial energy anisotropy strength on 
dendrite growth were investigated in detail. 
 
2 Effect of interfacial energy anisotropy on 

equilibrium shape 
 

As to a complete description of dendrite growth 
simulation, the anisotropy of solid−liquid interface must 
be considered. In the research, the interfacial energy 
anisotropy effect will take into account by assuming an 
angular dependence of gradient energy coefficient [2] as 
follows: 
 

0 0( ) ( ) [1 cos( )]kw θ w f θ w ε kθ= = +               (1) 
 
where θ is the angle between the interface normal and 
principal axis direction of dendrite; w0 is a constant; k is 
the modulus of anisotropy, and the value is 6 for HCP 
materials; εk is the strength of interfacial energy 
anisotropy; f(θ) is the gradient energy function. 
 
2.1 Function of interfacial energy anisotropy 

Figure 1 shows that the relationship between 
6( ) 1 cos(6 )f θ ε θ= +  and θ with different interfacial 

energy anisotropy strengths in rectangular coordinates. 
When graphed, this f(θ) function produces an 
ever-repeating wave of peaks and valleys, in which ε6 
values equal 0.02 and 0.1, and the extremums of function 
are different. Figure 2 shows that ε6 has influence on the 
shapes of f(θ) in polar coordinates. At ε6 of 0.02, the 
curves are smooth and overall presentation is elliptical in 
shape. When the ε6 is equal to 0.1, the protuberances 
bringing on the locals of θ are 0°, 60°, 120°, 180°, 240°, 
300°, and the shape of f(θ) changes from elliptical to 
star-like shape. 

Figure 3 illustrates missing orientations using 1/f(θ) 
plot and tangent lines for ε6=0.1. According to inversion 
method [17], if the 1/f(θ) plot is convex, then all of its 
tangent lines will lie outside, and all orientations will 
appear in the equilibrium shape. Otherwise, there will be 
missing orientations and “ears” occur. If the 1/f(θ) plot 

 

 
Fig. 1 Relationship between f(θ) and θ in rectangular 
coordinates: (a) ε6=0.02; (b) ε6=0.1 
 
is non-convex, we can convexity it by adding tangent 
lines. The portions of the 1/f(θ) between these tangent 
lines(see line AB in Fig. 3) and the origin will correspond 
to missing orientations, and all other orientations will 
appear. 

In two dimensions, the curvature of 1/f(θ) is 
 

2 3/ 2( )[1 ( / ) ]θθ θK f f f f −= + +                   (2) 
 
where a subscript θ denotes differentiation with   
respect to θ. Defining interface stiffness S(θ)=f+fθθ=         
1−35ε6cos(6θ), convexity is lost, whenever 
 

6( ) 1 35 cos(6 ) 0S θ ε θ= − <                      (3) 
 

The shape of S(θ) with different ε6 in polar 
coordinates is shown in Fig. 4. At ε6 of 0.02, all the 
values of S(θ) were positive, and the curve displays 
obviously six-fold symmetry. When ε6>1/(k2−1), the 
value of S(θ) was negative at some positions in 
anisotropy strengthened, and the curve is sunken 
corresponding to missing orientations(see Fig. 4(b)). 

The curve of 1/f(θ) displays six-fold symmetry and 
its cycle is π/3 as shown in Fig. 3. Restricting attention to 
the sextant |θ|≤π/6, all orientations will appear on the 
equilibrium shape over the range of θm≤|θ|≤π/6, but the 
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Fig. 2 Shapes of f(θ) with different ε6 in polar coordinates:    
(a) ε6=0.02; (b) ε6=0.1  
 

 
Fig. 3 Determination of missing orientations using 1/f(θ) plot 
and tangent lines for ε6=0.1 

 

 
Fig. 4 Shapes of S(θ)with different ε6 in polar coordinates:    
(a) ε6=0.02; (b) ε6=0.1 
 
missing of orientations occurs over the range of |θ|<θm. 
In order to obtain the equilibrium morphology without 
so-called “ears” corresponding to the missing orientation, 
we adopted the method reported by EGGLESTON et al 
[3] to regularize the function of interfacial energy 
anisotropy: 
 

m

m
m

m

( ),  π / 6
( ) ( )

cos ,  
cos

f
f f

θ θ θ
θ θ

θ θ θ
θ

⎧ ≤ ≤
⎪= ⎨ <⎪
⎩

                  (4) 

 
The regularized interface stiffness is as follows: 

 
m

m

1 35cos(6 ),  π / 6
( )

0,
S

θ θ θ
θ

θ θ

⎧ − ≤ ≤⎪= ⎨
<⎪⎩

            (5) 

 
2.2 Determination of the first missing orientation 

Considering the vertical tangent line on the right 
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side of the figure, the angles at the tangent points (A and 
B) are extrema in the abscissa coordinate (see Fig. 3): 
 

d cos 0
d ( )

θ
θ f θ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

                              (6) 

 
The first missing orientation, θm, follows from   

Eq. (6) and therefore satisfies 
 

m m m m( )sin ( )cos 0θf θ θ f θ θ+ =                 (7) 
 

We can solve the equation and get the value of θm. 
 
2.3 Equilibrium shapes of crystals 

In two dimensions, the equilibrium shape of crystals 
can be determined by the following formulas [18]: 
 

( cos sin )
( sin cos )

X A f f
Y A f f

θ

θ

θ θ
θ θ

= −⎧
⎨ = +⎩

                     (8) 

 
where X and Y are dimensionless distances and A is a 
constant. 

For the function of interfacial energy 
anisotropy 6( ) 1 cos(6 )f θ ε θ= + , the equilibrium shape 
of crystals follows from Eq. (8) and therefore satisfies 

6 6

6 6

[(1 cos(6 )) cos 6 sin(6 )sin ]
[(1 cos(6 ))sin 6 sin(6 )cos ]

X A
Y A

ε θ θ ε θ θ
ε θ θ ε θ θ

= + +⎧
⎨ = + −⎩

    (9) 

 
The equilibrium shape of crystals changes with the 

variety of ε6 as shown in Fig. 5. It can be found that, 
when ε6≤1/35, all orientations appear on the equilibrium 
shape and the crystal shape is smooth and continuous. 
When ε6>1/35, some orientations with strong interfacial 
energy disappear from the equilibrium shape, the 
interface of the preferential growth direction tip becomes 
discontinuous, where ‘‘ears’’ occur. These “ear” parts 
enlarge with increase in the interfacial energy anisotropy. 
After the f(θ) is regularized, the “ear” parts degenerate 
into a point. 

 
3 Phase field model 
 

Based on the Karma model [19] and the Eggleston 
regularization technique [3] of the strong interfacial 
energy anisotropy, a new phase-field model is presented 
to simulate dendrite shape for HCP materials. Phase-field 
and thermal field equations are given by 
 
for θm≤|θ|≤π/6, 

 

 
Fig. 5 Equilibrium shapes of crystals with different ε6: (a) ε6=0.02; (b) ε6=0.05; (c) ε6=0.1; (d) ε6=0.5 
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2 2 2 20
2 2
0 0

1 [ (1 )](1 )u f
tw w

τ φ φ λ φ φ φ∂
= − − − + ∇ +

∂
 

[2cos 2 sin 2 ( )]XY YY XXf fθ θφ θ φ φ⋅ + − −  

21 ( )[2sin 2
2 XYf f fθ θθ θφ+ ⋅ −  

2 cos 2 ( )]YY XXφ θ φ φ∇ − −                  (10) 
 
for |θ|<θm, 
 

2 20
2 2
0 0

1 [ (1 )](1 )u
tw w

τ φ φ λ φ φ∂
= − − − +

∂
 

2
2 2m

2
m

( )
{cos sin cos [2cos 2

cos XY
f θ

θ φ θ θ θφ
θ

⋅∇ − +  

1sin 2 ( )] cos 2 [2sin 2
2YY XX XYθ φ φ θ θφ− − −  

2 cos 2 ( )]}YY XXφ θ φ φ∇ − −                 (11) 

2 1
2

u D u
t t

φ∂ ∂
= ⋅∇ +

∂ ∂
                         (12) 

 
where u=(T−Tm)/(L/cp) is a dimensionless thermal 
variable; λ is a coupling parameter between the phase 
field and the thermal field; φ is the phase field variable; 
Tm, L and cp are the melting point, latent and specific 
heat, respectively; D=ατ0/w0

2 is the dimensionless 
thermal diffusivity; t is dimensionless time; τ0 is the 
mean of relaxation time; α is the thermal conductivity. 

Using an asymptotic expansion, the capillary length 
d0 and the kinetic coefficient expression β are related to 
the phase field parameters [19] as follows:  

λ/010 wad =                               (13) 
 

2

1 2
( ) ( )[1 ]
( ) ( )

wa a
w D
τ θ λ θβ
λ θ τ θ

= −                   (14) 
 
where a1 and a2 are constant and depend on the double- 
well potential and other functions of the phase field 
equation. In this work, we used the values from Ref. [19], 
a1=0.8839 and a2=0.6267. Therefore, the interface 
kinetics can be eliminated by choosing λ=D/a2. 
 
4 Numerical simulation 
 
4.1 Initial conditions and boundary conditions 

A square computational domain of sizes 600×600 
grids is used in the simulations. An initial crystal is in a 
undercooled melt and its radius is assumed to be R0. For 
the phase field φ and thermal field u are taken as 
Zero−Neumann boundary conditions. The initial 
conditions are given by 
 

2 2 2
0

2 2 2
0

( 300) ( 300) , 1, 0

( 300) ( 300) , 1,

X Y R u

X Y R u

φ

φ Δ

⎧ − + − < = =⎪
⎨

− + − ≥ = − = −⎪⎩
    (15) 

 
where X is the (100) direction and Y is the (010) direction 
[20], Δ is a dimensionless undercooling. 

4.2 Simulation method 
For the numerical calculation, Eqs. (10)−(12) are 

made discrete on the uniform grids using explicit finite 
difference methods. The space steps ΔX and time steps Δt 
should comply with ΔX≤w0 and Δt≤τ0(ΔX)2/(4w0

2), 
respectively. 2φ∇  is made discrete by a nine-point 
formula with the nearest and next nearest neighbors, 
which reduces the grid anisotropy. 

On the basis of the phase field model mentioned 
above, a program for two-dimensional dendrite growth 
was written in Visual C++ to simulate the evolution of 
crystal growth for HCP materials. For convenience, the 
following parameters were chosen: time steps Δt=0.01, 
space steps ΔX=ΔY=0.6, Δ=−0.55, d0=0.139, w0=τ0=1, 
ε6=0.1, λ=6.359, D=4.0, R0=5ΔX. Unless otherwise state, 
these phase field parameters are not varied. 

 
5 Results and discussion 
 
5.1 Dendrite growth for strong interfacial energy 

anisotropy 
Figure 6 shows the phase field and thermal field 

profile of dendrite growth for HCP materials with strong 
interfacial energy anisotropy. From Fig. 6(a), it can be 
seen that dendrite growth along 〈110〉 crystallographic 
directions and six preferential growth orientations exist 
in the two-dimensional XY-plane. The root region of 
main branch is smooth and includes all possible 
orientations. At the tips of the main stem and side 
branches, discontinuity in the variation of interface 
orientation occurs due to the presence of missing 
orientations, solid−liquid interface becomes unstable, 
resulting in the corners formed at the corresponding 
places. Figure 6(b) shows the thermal field profile of 
dendrite growth corresponding to phase field 
morphology in Fig. 6(a). Under strong interfacial energy 
anisotropy conditions, the thermal diffusion layer around 
the dendrite tip is thin, and the thermal diffusion is  
timely, leading to the dendrite growing rapidly. 
Furthermore, in the root of main branch between the 
dendrite arms, the thermal diffusion is difficult, leading 
to the dendrite growing slowly. 
 
5.2 Effect of interfacial energy anisotropy strength 

Figure 7 shows the phase field morphology of 
dendrite growth at various interfacial energy anisotropy 
strengths. When the interfacial energy anisotropy is 
lower than the critical value (1/35), the variation of 
interface orientation is continuity, the protuberances 
appear on the tips of the principal branch but they grow 
slowly, and the equilibrium morphology of the crystal is 
smooth (see Figs. 7(a) and (b)). As the interfacial energy 
anisotropy becomes larger than the critical value, the 



Xun-feng YUAN, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2911−2919 

 

2916 
 

 

 
Fig. 6 Dendrite growth of HCP materials with strong interfacial energy anisotropy: (a) Phase field; (b) Thermal field 
 

 
Fig. 7 Phase field morphologies of dendrite growth for various interfacial energy anisotropy strengths: (a) ε6=0.01; (b) ε6=0.02;    
(c) ε6=0.06; (d) ε6=0.5 
 
variation of interface orientation is discontinuous, and 
the corners are formed at the tips of the main branches 
and side branches of the dendrites (see Fig. 7(c)). With 
further increase in interfacial energy anisotropy, the 
principal branches grow slowly and side branches 
disappear due to geometrical restrictions arising from the 

presence of missing orientations. 
Figure 8 shows the relationship between the 

dendrite arm tip temperature and velocity vs time at 
various interfacial energy anisotropy strengths. With 
increasing solidification time, the tip temperature of 
dendrite increases gradually, namely, undercooling 
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decreases, leading to the arm tip velocity of dendrite 
decreasing gradually. Finally, the dendrite arm tip 
temperature and velocity at various interfacial energy 
anisotropy strengths tend to be stable. 

Figure 9 shows the effect of interfacial energy 
anisotropy strength ε6 on dendrite growth. When the 
interfacial energy anisotropy is lower than the critical 
value, the steady-state tip velocity of dendrite increases 
with anisotropy as expected, and the tip temperature and 

radius of dendrite decrease. As the anisotropy strength 
crosses the critical value(1/35), the steady-state tip 
velocity drops down by about 0.89% (see Fig. 9(b)), and 
the tip temperature and radius rise by about 0.20% and 
1.14%, respectively. With further increase in anisotropy 
strength, the steady-state tip velocity increases and 
reaches the maximum value at anisotropy strength of 
0.04, then tends to decrease, and the dendrite arm tip 
temperature and velocity tend to be stable. 

 

 
 
Fig. 8 Dendrite arm tip temperature (a) and velocity (b) vs time at various interfacial energy anisotropy strengths 
 

 
 
Fig. 9 Effect of interfacial energy anisotropy strength ε6 on dendrite growth: (a, b) Steady-state tip velocity; (c) Tip temperature;   
(d) Tip radius (Rtip) 
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Figure 10 shows the dendrite tip missing orientation 
angle for various interfacial energy anisotropy strengths. 
With increase in anisotropy above the critical value, the 
range of missing orientations increases linearly and then 
increases parabolically, and the tip velocity of dendrite 
decreases first quickly, then slowly. Thus, the decrease in 
tip velocity in strong interfacial energy anisotropy region 
may result from the increase in the range of missing 
orientations. 

 

 
Fig. 10 Dendrite tip missing orientation angle for various 
interfacial energy anisotropy strengths 
 
6 Conclusions 
 

1) Under strong interfacial energy anisotropy 
conditions, the dendrite morphology presents obvious 
six-fold symmetry, at the tips of the main stem and side 
branches, discontinuity in the variation of interface 
orientation occurs, resulting in the corners formed at the 
corresponding places. 

2) When the interfacial energy anisotropy strength 
is lower than the critical value, the equilibrium 
morphology of the crystal is smooth, the steady-state tip 
velocity of dendrite increases with anisotropy as 
expected, but the tip temperature and radius of dendrite 
decrease. As the anisotropy strength crosses the critical 
value (1/35), the variation of interface orientation is 
discontinuous, the steady-state tip velocity drops down 
by about 0.89%, the tip temperature and radius rise by 
about 0.20% and 1.14%, respectively. With further 
increase in anisotropy strength, the steady-state tip 
velocity increases and reaches the maximum value at 
anisotropy strength of 0.04, then decreases, and the 
dendrite arm tip temperature and velocity tend to be 
stable. 

3) With increase in interfacial energy anisotropy 
above the critical value, the range of missing orientations 
increases linearly and then increases parabolically, the tip 
velocity of dendrite decreases first quickly, then slowly. 
Thus, the decrease in tip velocity may result from the 

increase in the range of missing orientations. 
 
References 
 
[1] MEDVEDEV D, KASSNER K. Lattice−Boltzmann scheme for 

dendrite growth in presence of convection [J]. J Cryst Growth, 2005, 
275(1−2): 1495−1500. 

[2] ZHANG G W, HOU H, CHENG J. Phase field model for strong 
anisotropy of kinetic and highly anisotropic interfacial energy [J]. 
Transactions of Nonferrous Metals Society of China, 2006, 16(S2): 
s307−s313. 

[3] EGGLESTON J J, MCFADDEN G B, VOORHEES P W. A 
phase-field model for highly anisotropic interfacial energy [J]. 
Physica D, 2001, 150(1−2): 91−103. 

[4] KASAJIMA H, NAGANO E, SUZUKI T, KIM S G, KIM W T. 
Phase-field modeling for facet dendrite growth of silicon [J]. Sci 
Technol Adv Mater, 2003, 4(6): 553−557. 

[5] KIM S G, KIM W T. Phase field modeling of dendrite growth with 
high anisotropy [J]. J Cryst Growth, 2005, 275(1−2): 355−360. 

[6] SUZUKI T, KIM S G, KIM W T. Two-dimensional facet crystal 
growth of silicon from undercooled melt of Si−Ni alloy [J]. Mater 
Sci Eng A, 2007, 449: 99−104. 

[7] XIAO R Z, WANG Z P, ZHU C S, LI W S, FENG L. Influence of 
anisotropy on dendritic growth in binary alloy with phase-field 
simulation [J]. ISIJ International, 2009, 49(8): 1156−1160. 

[8] YUAN Xun-feng, DING Yu-tian. Phase-field simulation of dendrite 
growth process for binary Ni−Cu alloy with anisotropy of strong 
interface energy [J]. The Chinese Journal of Nonferrous Metals, 2011, 
21(7): 1656−1663. (in Chinese) 

[9] YUAN Xun-feng, DING Yu-tian. Phase field simulation of dendrite 
growth for binary alloy with strong anisotropy [J]. The Chinese 
Journal of Nonferrous Metal, 2011, 21(9): 2216−2222. (in Chinese) 

[10] CHEN Z, CHEN C L, HAO L M. Numerical simulation of facet 
dendritic growth in a forced flow [J]. Can J Phys, 2009, 87(2): 
117−123. 

[11] CHEN Z, HAO L M, CHEN C L. Simulation of faceted dendrite 
growth of non-isothermal alloy in forced flow by phase field method 
[J]. J Cent South Univ Technol, 2011, 18(6): 1780−1788. 

[12] TORABI S, LOWENGRUB J, VOIGT A, WISE S. A new 
phase-field model for strongly anisotropic systems [J]. Proceedings 
of the Royal Society A, 2009, 465(2105): 1337−1359. 

[13] BOTTGER B, EIKEN J, STEINBACH I. Phase field simulation of 
equiaxed solidification in technical alloys [J]. Acta Mater, 2006, 
54(10): 2679−2704. 

[14] MIAO Jia-ming, JING Tao, LIU Bai-cheng. Numerical simulation of 
dendritic morphology of magnesium alloys using phase field method 
[J]. Acta Metall Sin, 2008, 44(4): 483−488. (in Chinese) 

[15] YUAN Xun-feng, DING Yu-tian, GUO Ting-biao, HU Yong. 
Numerical simulation of dendritic growth of magnesium alloys using 
phase-field method under forced flow [J]. The Chinese Journal of 
Nonferrous Metals, 2010, 20(8): 1474−1480. (in Chinese) 

[16] QIN R S, BHADESHIA H K D H. Phase-field model study of the 
crystal morphological evolution of hcp metals [J]. Acta Mater, 2009, 
57(11): 3382−3390. 

[17] SEKERKA R F. Analytical criteria for missing orientations on 
three-dimensional equilibrium shapes [J]. J Cryst Growth, 2005, 
275(1−2): 77−82. 

[18] BURTON W K, CABRERA N, FRANK F C. The growth of crystals 
and the equilibrium structure of their surfaces [J]. Phil Trans R Soc, 
1951, 243(866): 299−358. 

[19] KARMA A, RAPPLE W J. Phase field method for computationally 
efficient modeling of solidification with arbitrary interface kinetics 
[J]. Phys Rev E, 1996, 53(4): 3017−3020. 

[20] TONHARDT R, AMBERG G. Phase-field simulation of dendritic 
growth in a shear flow [J]. J Cryst Growth, 1998, 194(3−4): 
406−425. 



Xun-feng YUAN, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2911−2919 

 

2919
 
 

HCP 材料强界面能各向异性的相场模型 
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摘  要：基于 Karma 模型和 Eggleston 修正强界面能各向异性的方法，建立 HCP 材料的强界面能各向异性相场模

型。采用有限差分法对控制方程进行数值求解，模拟研究 HCP 材料的枝晶生长行为。结果表明：枝晶形貌呈现

出明显的六重对称性，界面方向不连续，导致在主枝和侧枝的尖端出现棱角。当界面能的各向异性强度低于临界

值(1/35)时，枝晶尖端稳态生长速度随着各向异性强度的增加而增加；当界面能各向异性强度值超过临界值时，

尖端稳态生长速度降低 0.89%；当进一步增加各向异性强度值时，尖端稳态速度增加且在各向异性强度值为 0.04

时达到极大值，随后减小。 

关键词：相场；枝晶生长；界面能；各向异性强度；HCP 材料 
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