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Abstract: Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a
phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field
model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious
six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at
the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the
steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the
steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity
increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.
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1 Introduction

Dendrites are common patterns observed after the
solidification of a melt. They influence the
microstructure and mechanical properties of materials
obtained by casting [1]. Interfacial energy anisotropy is a
very important parameter to influence the growth
morphology of dendrite. When the interfacial energy
anisotropy is weak, the morphology of dendrite is
smooth and includes all possible orientations. As the
reinforcement of anisotropy, the morphology of dendrite
presents distortion [2]. Therefore, a better understanding
of dendrite growth for strong interfacial energy
anisotropy is an important theoretical and practical
problem.

In the past decade, the phase field method has been
intensively studied as a model taken into account the
strong interfacial energy anisotropy for solidification
processes. In 2001, EGGLESTON et al [3] proposed a
modification phase field method for the strong interfacial
energy and originally studied a faceted dendrite growth.

Subsequently, KASAJIMA et al [4] and KIM et al [5]
made lots of researches on a facet dendrite of pure
materials. SUZUKI et al [6] modeled the faceted dendrite
growth of the Si—Ni alloy, and their simulation results
were similar to the experimental observations. XIAO et
al [7] and YUAN and DING [8,9] simulated the dendrite
growth of Ni—Cu alloy with strong interfacial energy
anisotropy in a forced flow. CHEN et al [10,11] further
researched the influence of anisotropy strength and flow
velocity on facet dendrite growth of the pure material
and binary alloys. TORABI et al [12] presented a new
regularized anisotropic Cahn—Hilliard phase field
equation. These researches were mainly focused on the
FCC structure materials and the function of interfacial
energy anisotropy has four-fold symmetry. The research
of HCP structure almost wholly confined to weaker
interfacial energy anisotropy. BOTTGER et al [13] used
the phase field method coupled to thermodynamic
databases to simulate equiaxed solidification processes
for ternary magnesium alloys. MIAO et al [14] analyzed
the influence of phase filed parameters on dendritic
morphology of magnesium alloys. YUAN et al [15]

Foundation item: Project (10834015)supported by the National Natural Science Foundation of China; Project (12SKYO01-1)supported by the Doctoral Fund

of Shangluo University, China

Corresponding author: Xun-feng YUAN; Tel: +86-914-2329420; E-mail: yuanyang2011@163.com

DOI: 10.1016/S1003-6326(14)63426-9



2912 Xun-feng YUAN, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2911-2919

further researched the single- and multi-grain dendrite
growth of magnesium alloys in a forced flow. QIN et al
[16] discovered that the apparent rate of crystal growth
as a function of orientation in the phase field simulation
of HCP metals agrees with predictions made by surface
energy theory. In these simulation calculations, the
interfacial energy anisotropy largely influences the
dendrite growth morphology and the stability of the
results. However, the study on dendrite growth
morphology of HCP materials for strong interfacial
energy anisotropy has been less much more reported.

In this work, the dendrite growth process of HCP
simulated by phase field model
considering the strong interfacial energy anisotropy. The
effects of interfacial energy anisotropy strength on
dendrite growth were investigated in detail.

materials was

2 Effect of interfacial energy anisotropy on
equilibrium shape

As to a complete description of dendrite growth
simulation, the anisotropy of solid—liquid interface must
be considered. In the research, the interfacial energy
anisotropy effect will take into account by assuming an
angular dependence of gradient energy coefficient [2] as
follows:

w(0) = wy f(0) = wy[1+¢;, cos(k0)] (1)

where 0 is the angle between the interface normal and
principal axis direction of dendrite; wy is a constant; k is
the modulus of anisotropy, and the value is 6 for HCP
materials; ¢, is the strength of interfacial energy
anisotropy; f{#) is the gradient energy function.

2.1 Function of interfacial energy anisotropy

Figure 1 shows that the relationship between
f(@)=1+¢5cos(60) and O with different interfacial
energy anisotropy strengths in rectangular coordinates.
When graphed, this f{#) function produces an
ever-repeating wave of peaks and valleys, in which &
values equal 0.02 and 0.1, and the extremums of function
are different. Figure 2 shows that g has influence on the
shapes of f{#) in polar coordinates. At g of 0.02, the
curves are smooth and overall presentation is elliptical in
shape. When the & is equal to 0.1, the protuberances
bringing on the locals of 4 are 0°, 60°, 120°, 180°, 240°,
300°, and the shape of f{#) changes from elliptical to
star-like shape.

Figure 3 illustrates missing orientations using 1/{6)
plot and tangent lines for £=0.1. According to inversion
method [17], if the 1/{6) plot is convex, then all of its
tangent lines will lie outside, and all orientations will
appear in the equilibrium shape. Otherwise, there will be
missing orientations and “ears” occur. If the 1/f{6) plot
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Fig. 1 Relationship between f(#) and 6 in rectangular
coordinates: (a) £=0.02; (b) &=0.1

is non-convex, we can convexity it by adding tangent
lines. The portions of the 1/{#) between these tangent
lines(see line AB in Fig. 3) and the origin will correspond
to missing orientations, and all other orientations will

appear.
In two dimensions, the curvature of 1//0) is
K=(f+ fo)ll+(fy /7T 2)

where a subscript 6 denotes differentiation with
respect to 6. Defining interface stiffness S(6)=ftfp=
1-35¢5c0s(66), convexity is lost, whenever

S(0) =1-35z4 cos(60) < 0 3)

The shape of S(6) with different & in polar
coordinates is shown in Fig. 4. At & of 0.02, all the
values of S(0) were positive, and the curve displays
obviously six-fold symmetry. When &g>1/(k*—1), the
value of S(f) was negative at some positions in
anisotropy strengthened, and the curve is sunken
corresponding to missing orientations(see Fig. 4(b)).

The curve of 1/f(#) displays six-fold symmetry and
its cycle is m/3 as shown in Fig. 3. Restricting attention to
the sextant |f|<n/6, all orientations will appear on the
equilibrium shape over the range of 6,,<|0|<n/6, but the
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Fig. 2 Shapes of f{6) with different & in polar coordinates:
(a) £=0.02; (b) =0.1

270°

Fig. 3 Determination of missing orientations using 1//(8) plot

and tangent lines for £¢=0.1

180°

270°

(b)
Fig. 4 Shapes of S(@)with different & in polar coordinates:
(a) £6=0.02; (b) £=0.1

missing of orientations occurs over the range of |0]<6,,.
In order to obtain the equilibrium morphology without
so-called “ears” corresponding to the missing orientation,
we adopted the method reported by EGGLESTON et al
[3] to regularize the function of interfacial energy
anisotropy:

10, 6, <|6|<n/6

0)= 4
1021 16n) cosd, 0| <6, @
cosd,,
The regularized interface stiffness is as follows:
1-35co0s(66), 0 <|6|<7n/6
5(0) = (60 on <41 (5)
0, 6] <6,

2.2 Determination of the first missing orientation
Considering the vertical tangent line on the right



2914 Xun-feng YUAN, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2911-2919

side of the figure, the angles at the tangent points (4 and
B) are extrema in the abscissa coordinate (see Fig. 3):

i cos® _0 ©)
do\ f(0)

The first missing orientation, 6, follows from
Eq. (6) and therefore satisfies

f(0,)sin0,, + f,(0,,)cos0,, =0 0

We can solve the equation and get the value of 6,

2.3 Equilibrium shapes of crystals
In two dimensions, the equilibrium shape of crystals
can be determined by the following formulas [18]:

X = A(f cos@— f,sin0) g
{Y:A(fsin¢9+f9cos€) ®
where X and Y are dimensionless distances and A4 is a
constant.

For the function of interfacial energy
anisotropy f(8) =1+ & cos(66), the equilibrium shape
of crystals follows from Eq. (8) and therefore satisfies
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Y = A[(1+ &4 cos(68))sin 8 — 6, sin(68) cos 6]

The equilibrium shape of crystals changes with the
variety of ¢ as shown in Fig. 5. It can be found that,
when £¢<1/35, all orientations appear on the equilibrium
shape and the crystal shape is smooth and continuous.
When &¢>1/35, some orientations with strong interfacial
energy disappear from the equilibrium shape, the
interface of the preferential growth direction tip becomes
discontinuous, where “‘ears” occur. These “ear” parts
enlarge with increase in the interfacial energy anisotropy.
After the f(0) is regularized, the “ear” parts degenerate
into a point.

3 Phase field model

Based on the Karma model [19] and the Eggleston
regularization technique [3] of the strong interfacial
energy anisotropy, a new phase-field model is presented
to simulate dendrite shape for HCP materials. Phase-field
and thermal field equations are given by

for 6,,<|0|<n/6,
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Fig. 5 Equilibrium shapes of crystals with different &: (a) £5=0.02; (b) £,=0.05; (c) £6=0.1; (d) £=0.5
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where u=(T-T,)/(L/c,) is a dimensionless thermal
variable; A is a coupling parameter between the phase
field and the thermal field; ¢ is the phase field variable;
Tw, L and c, are the melting point, latent and specific
heat, respectively; D=aty/w,> is the dimensionless
thermal diffusivity; ¢ is dimensionless time; 7, is the
mean of relaxation time; o is the thermal conductivity.

Using an asymptotic expansion, the capillary length
dy and the kinetic coefficient expression S are related to
the phase field parameters [19] as follows:

dy=aywy/ 2 (13)
@), Aw)
B=q zw(a)[l a, T(H)D] (14)

where a; and a, are constant and depend on the double-
well potential and other functions of the phase field
equation. In this work, we used the values from Ref. [19],
a;=0.8839 and a,=0.6267. Therefore, the interface
kinetics can be eliminated by choosing A=D/a,.

4 Numerical simulation

4.1 Initial conditions and boundary conditions

A square computational domain of sizes 600x600
grids is used in the simulations. An initial crystal is in a
undercooled melt and its radius is assumed to be R,. For
the phase field ¢ and thermal field u are taken as

Zero—Neumann boundary conditions. The initial
conditions are given by
(X —300)* + (Y =300)* <R3, p=1Lu=0 (15)
(X =300)* +(Y =300)* > RZ, p=—lu=-A

where X is the (100) direction and Y is the (010) direction
[20], 4 is a dimensionless undercooling.

4.2 Simulation method

For the numerical calculation, Eqgs. (10)—(12) are
made discrete on the uniform grids using explicit finite
difference methods. The space steps AX and time steps At
should comply with AX<w, and Ar<to(AX)*/(4wy>),
respectively. V¢ is made discrete by a nine-point
formula with the nearest and next nearest neighbors,
which reduces the grid anisotropy.

On the basis of the phase field model mentioned
above, a program for two-dimensional dendrite growth
was written in Visual C++ to simulate the evolution of
crystal growth for HCP materials. For convenience, the
following parameters were chosen: time steps A=0.01,
space steps AX=AY=0.6, 4=0.55, dy=0.139, we=r1=1,
£6=0.1, 1=6.359, D=4.0, R=5AX. Unless otherwise state,
these phase field parameters are not varied.

5 Results and discussion

5.1 Dendrite growth for strong interfacial energy

anisotropy

Figure 6 shows the phase field and thermal field
profile of dendrite growth for HCP materials with strong
interfacial energy anisotropy. From Fig. 6(a), it can be
seen that dendrite growth along (110) crystallographic
directions and six preferential growth orientations exist
in the two-dimensional XY-plane. The root region of
main branch is smooth and includes all possible
orientations. At the tips of the main stem and side
branches, discontinuity in the variation of interface
orientation occurs due to the presence of missing
orientations, solid—liquid interface becomes unstable,
resulting in the corners formed at the corresponding
places. Figure 6(b) shows the thermal field profile of
dendrite  growth corresponding to phase field
morphology in Fig. 6(a). Under strong interfacial energy
anisotropy conditions, the thermal diffusion layer around
the dendrite tip is thin, and the thermal diffusion is
timely, leading to the dendrite growing rapidly.
Furthermore, in the root of main branch between the
dendrite arms, the thermal diffusion is difficult, leading
to the dendrite growing slowly.

5.2 Effect of interfacial energy anisotropy strength
Figure 7 shows the phase field morphology of
dendrite growth at various interfacial energy anisotropy
strengths. When the interfacial energy anisotropy is
lower than the critical value (1/35), the variation of
interface orientation is continuity, the protuberances
appear on the tips of the principal branch but they grow
slowly, and the equilibrium morphology of the crystal is
smooth (see Figs. 7(a) and (b)). As the interfacial energy
anisotropy becomes larger than the critical value, the
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Fig. 6 Dendrite growth of HCP materials with strong interfacial energy anisotropy: (a) Phase field; (b) Thermal field
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Fig. 7 Phase field morphologies of dendrite growth for various interfacial energy anisotropy strengths: (a) €=0.01; (b) £=0.02;

(¢) £=0.06; (d) £=0.5

variation of interface orientation is discontinuous, and
the corners are formed at the tips of the main branches
and side branches of the dendrites (see Fig. 7(c)). With
further increase in interfacial energy anisotropy, the
principal branches grow slowly and side branches
disappear due to geometrical restrictions arising from the

presence of missing orientations.

Figure 8 shows the relationship between the
dendrite arm tip temperature and velocity vs time at
various interfacial energy anisotropy strengths. With
increasing solidification time, the tip temperature of
dendrite increases gradually, namely, undercooling
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decreases, leading to the arm tip velocity of dendrite
decreasing gradually. Finally, the dendrite arm tip
temperature and velocity at various interfacial energy
anisotropy strengths tend to be stable.

Figure 9 shows the effect of interfacial energy
anisotropy strength g5 on dendrite growth. When the
interfacial energy anisotropy is lower than the critical
value, the steady-state tip velocity of dendrite increases
with anisotropy as expected, and the tip temperature and
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radius of dendrite decrease. As the anisotropy strength
crosses the critical value(1/35), the steady-state tip
velocity drops down by about 0.89% (see Fig. 9(b)), and
the tip temperature and radius rise by about 0.20% and
1.14%, respectively. With further increase in anisotropy
strength, the steady-state tip velocity increases and
reaches the maximum value at anisotropy strength of
0.04, then tends to decrease, and the dendrite arm tip
temperature and velocity tend to be stable.
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Fig. 8 Dendrite arm tip temperature (a) and velocity (b) vs time at various interfacial energy anisotropy strengths
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Figure 10 shows the dendrite tip missing orientation
angle for various interfacial energy anisotropy strengths.
With increase in anisotropy above the critical value, the
range of missing orientations increases linearly and then
increases parabolically, and the tip velocity of dendrite
decreases first quickly, then slowly. Thus, the decrease in
tip velocity in strong interfacial energy anisotropy region
may result from the increase in the range of missing
orientations.
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Fig. 10 Dendrite tip missing orientation angle for various
interfacial energy anisotropy strengths

6 Conclusions

1) Under strong interfacial energy anisotropy
conditions, the dendrite morphology presents obvious
six-fold symmetry, at the tips of the main stem and side
branches, discontinuity in the variation of interface
orientation occurs, resulting in the corners formed at the
corresponding places.

2) When the interfacial energy anisotropy strength
is lower than the critical value, the equilibrium
morphology of the crystal is smooth, the steady-state tip
velocity of dendrite increases with anisotropy as
expected, but the tip temperature and radius of dendrite
decrease. As the anisotropy strength crosses the critical
value (1/35), the variation of interface orientation is
discontinuous, the steady-state tip velocity drops down
by about 0.89%, the tip temperature and radius rise by
about 0.20% and 1.14%, respectively. With further
increase in anisotropy strength, the steady-state tip
velocity increases and reaches the maximum value at
anisotropy strength of 0.04, then decreases, and the
dendrite arm tip temperature and velocity tend to be
stable.

3) With increase in interfacial energy anisotropy
above the critical value, the range of missing orientations
increases linearly and then increases parabolically, the tip
velocity of dendrite decreases first quickly, then slowly.
Thus, the decrease in tip velocity may result from the

Xun-feng YUAN, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2911-2919

increase in the range of missing orientations.
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