文章编号: 1004-0609(2014)09-2410-08

砷化镓真空热分解的理论计算与实验

胡 亮^{1,2}, 刘大春^{1,2}, 陈秀敏^{1,2}, 杨 斌^{1,2}, 白平平^{1,2}, 段少飞^{1,2}

(1. 昆明理工大学 真空冶金国家工程实验室,昆明 650093;2. 云南省有色金属真空冶金重点实验室,昆明 650093)

摘 要:利用密度泛函理论计算砷化镓(GaAs)的能带结构、态密度、密立根布居和差分电荷密度等参数,对其热 分解过程进行分子动力学模拟。计算模拟结果表明:在动力学模拟条件下,部分 Ga—As 键发生断裂,生成 Ga 和 As₂,Ga—As 键随模拟时间的延长分步断裂。同时,以GaAs 废料为原料,对其进行真空热分解实验研究,主 要考察蒸馏温度和恒温时间对Ga和As分离效果的影响。实验结果表明:当系统压力为 3~8 Pa、温度为 1273 K 和恒温时间为 3 h 时,残留物镓的品质较好,纯度高于 99.99%,砷主要以单质形态存在,危害小。计算模拟结果 与理论分析和实验结果吻合较好。

关键词: GaAs; 镓; 真空热分解; 动力学模拟 中图分类号: TF135; TF843.1 文献标志码: A

Thermal decomposition of gallium arsenide under vacuum: Theoretical calculation and experiment

HU Liang^{1, 2}, LIU Da-chun^{1, 2}, CHEN Xiu-min^{1, 2}, YANG Bin^{1, 2}, BAI Ping-ping^{1, 2}, DUAN Shao-fei^{1, 2}

(1. National Engineering Laboratory for Vacuum Metallurgy,

Kunming University of Science and Technology, Kunming 650093, China;

2. Key Laboratory of Vacuum Metallurgy for Nonferrous Metals of Yunnan Province, Kunming 650093, China)

Abstract: The theoretical calculation of energy band structure, density of states, Mulliken overlap population and electron density difference of GaAs was carried out by density functional theory (DFT). The dynamics simulations of GaAs about the process of thermal decomposition were performed. The calculated results show that a part of Ga—As bonds are broken, and Ga and As₂ are produced. Ga—As bonds are broken step by step with prolonging time. Meanwhile, the thermal decomposition experiment was carried out by using GaAs scraps as raw material. The effects of distillation temperature and distillation time on the separation of Ga and As were investigated. The experiment results show that the metallic gallium obtained is good and the content of which is larger than 99.99% at 1273 K for 3 h when the system pressure is 3-8 Pa. And arsenic obtained exists in the form of simple substance which has little damage. The calculated results are in good agreement with the theoretical analysis and experiment results.

Key words: GaAs; gallium; thermal decomposition under vacuum; dynamics simulation

砷化镓(GaAs)是III~V族化合物中最重要的半导体材料,其具有电子载流子迁移率高、直接带隙、禁带较宽、衬底半绝缘、耐热和耐辐射等特征,是微电子和光电子的关键基础材料,广泛应用于新一代移动

通讯、电子信息技术和全球卫星定位系统等民用领域 及电子对抗、巡航制导和卫星雷达等国防军用领 域^[1-2]。2003~2008年,半绝缘 GaAs 市场需求增长了 54%^[2]。预计今后 GaAs 衬底市场额每年将以 11%的增

基金项目: 国家自然科学基金和云南省联合基金资助项目(U1202271); 教育部创新团队发展计划项目(IRT1250)

收稿日期: 2013-10-08; 修订日期: 2014-05-20

通信作者:刘大春,教授,博士;电话: 13608858239; E-mail: lcd_2002@sina.com

长率增长,到 2017 年达到 6.5 亿美元^[3]。由于在其生 长、切割、研磨和抛光等过程中产生大量的废料,主 要成分是 GaAs,最后的成品率很低,常常低于 20%^[4], 所以,GaAs 废料成为生产再生镓的重要原材料,其中 Ga 含量接近 50%。而镓是一种重要的稀有金属,在自 然界中没有形成单独的具有开采价值的镓矿床,所以 如何在无二次污染情况下,简便、低耗、高效地分离 回收有价金属镓成为研究者孜孜不倦追求的目标。

多年来,国内外研究人员在 GaAs 的结构及电子 性质和提镓方法等方面进行了较多的研究工作,包括 理论计算[5-8]和实验研究[9-15]。陈启燊等[5]采用第一性 原理研究了 GaAs 的能带结构、态密度等电子结构及 光学性质: ARABI 等^[7]采用第一性原理计算了不同相 结构 GaAs 的结构参数和电子结构; ZHANG 等^[8]利用 从头算分子动力学方法研究了液态 GaAs 的结构和电 子性质,但是对于其在真空高温下的热分解过程机理 方面的理论研究尚未见报道。鉴于此,本文作者采用 真空热分解法处理 GaAs 废料,在真空(3~8 Pa) 条件 下研究蒸馏温度和恒温时间等对 Ga 和 As 分离效果的 影响,同时采用基于密度泛函理论(DFT)^[16-17]的从头 算分子动力学方法计算了 GaAs 分解反应前后的能带 结构、态密度、密立根布居和差分电荷密度等结构和 电子性质,对其热分解过程进行动力学模拟,从微观 层面解释 GaAs 真空热分解过程中 Ga 和 As 之间相互 作用的变化等宏观现象,并与实验现象和结果进行了 对比,从而揭示其在真空高温过程中的分解机理,为 GaAs 废料真空热分解工艺中对 Ga 和 As 等有价金属 的综合回收提供理论和技术依据。

1 GaAs 真空热分解热力学分析

室温下, GaAs 的化学性质稳定, 在空气中不与氧 气、水蒸汽等发生化学反应, 并且不被非氧化性的酸 侵蚀。GaAs 真空热分解需要一定的热力学条件, 式 (1)~(4)是其热分解过程中可能发生的主要反应。考虑 到真空热分解实验一般是在 1~100 Pa 条件下进行的, 因此, 通过查阅相关热力学数据^[18], 采用"物质吉布 斯自由能函数法"计算各反应在不同系统压力条件下 吉布斯自由能(Δ*G*₇)与温度(*T*)的关系, 结果如图 1 和 2 所示。

GaAs = Ga + As(g) (1)

 $2GaAs = 2Ga + As_2(g) \tag{2}$

 $3GaAs = 3Ga + As_3(g)$ (3)

图 1 常压下反应(1)~(4)吉布斯自由能与温度的关系 **Fig. 1** Relationship between Gibbs free energy and temperature for reactions (1)–(4) at normal pressure

图 2 10 Pa 下反应(1)~(4)吉布斯自由能与温度的关系 Fig. 2 Relationship between Gibbs free energy and temperature for reactions (1)-(4) at 10 Pa

 $4GaAs = 4Ga + As_4(g)$

(4)

由图 1 和 2 可知,在不同系统压力下,反应(2)都 是最先进行,即优先生成 As₂气体,然后依次是 As₄、 As₃,最后是单体 As,并且随着温度的升高,反应的 摩尔吉布斯自由能逐渐降低,反应驱动力增大。图 1 显示,常压下 GaAs 直接热分解温度为 1771 K,此时 反应(2)开始反应,而其他 3 个反应在 2273 K 以下都 还没有发生。在 10 Pa 的系统压力条件下,如图 2 所 示,GaAs 开始反应温度为 1203 K,生成 Ga 和 As₂, 反应(4)和(3)的温度分别为 1322 K 和 1454 K,而反应 (1)在 1500 K 内的吉布斯自由能总为正值,可知其需 要在更高温度下才能发生反应。由此可见,与常压相 比,GaAs 在真空中热分解具有很大的优越性,起 始 反应温度比在常压下的降低了 550 K 以上,并且在一 定范围内,系统压力越低越好。 由 Ga-As 二元合金相图^[19]可知, Ga 和 As 之间形成"同分熔点化合物",分子间作用力较强。1083.15 K 以下,固体 GaAs 很稳定,Ga 和 As 不易分开;1083.15 K 以上,有液相生成,使 Ga、As 分离变得可能。

图 4 所示为 Ga-As 的压力与温度的关系平衡 图^[20]。从图 4 中可以看出,700 K 以上,As₂ 的饱和蒸 气压均远大于 Ga 的饱和蒸气压,更容易挥发,而使 Ga 和 As 分离开来,并且随着 As 的分压和温度的增加,气相的种类由 As₂ 变为 As₂和 As₄ 的混合物。当 温度在 1373 K 以上时,气相中 Ga 的含量显著增大,导致冷凝物中 Ga 含量较多,而影响 Ga 的回收率。

Fig. 3 Ga-As binary phase diagram^[19]

图 4 Ga-As 体系压力与温度的关系^[20]

Fig. 4 Pressure-temperature relationship for Ga-As system^[20]

2 理论计算与模拟

2.1 计算模型及方法

GaAs的晶体结构为面心立方闪锌矿结构,其空间 群为 F43_m,原子结构类型为 B3,晶格常数为 0.5654 nm^[6]。

GaAs 分子动力学模拟的计算模型如下:截取 GaAs(100)面,然后膨胀成一个 2×1×2 的超晶胞,其 中含有 16 个 Ga 原子和 16 个 As 原子的,共 32 个原 子,在优化步骤过程中,使各原子充分弛豫到能量和 应力最低的位置。

基于密度泛函理论从头算量子力学程序,采用 Accelrys 公司开发的 Materials Studio 中的 CASTEP(Cambridge serial total energy package)模块进 行结构优化和性质计算。计算中交换关联能采用广义 梯度近似(GGA)与 PBE 泛函^[21-22], 它更优于局域密度 近似(LDA)^[23],是目前较为准确的电子结构计算的理 论方法。利用平面波赝势方法,使用超软赝势,忽略 系统的旋转极化,平面波截断能(Energy cutoff)取 280 eV,两临近真空层厚度为10.0Å。能量收敛的准确性 优于 2×10^{-5} eV/atom, 能带结构在布里渊区 k 矢量取 1×1×1, 分离精度为 0.08 Å, 所有计算均在 medium 网格散点下完成。在模型的结构优化中,采用 BFGS(Broyden, Fletcher, Goldfarb 和 Shanno)算法^[24]。 使用超软赝势描述价电子与芯态关系时, Ga 的结构为 [Ar]3d¹⁰4s²4p¹, 价电子取 3d¹⁰、4s²和 4p¹; As 的结构 为[Ar]3d¹⁰4s²4p³,价电子取 4s²和 4p³。

在 CASTEP 分子动力学模拟中, Haminton 运动方 程的求解采用速度蛙跳法。在每运行完一步后,均通 过优化电子结构来使电子始终保持在波恩-奥本海默 面上,虽计算中比较耗费时间,但步长本身不对运算 速度产生影响^[25]。同样采用 CASTEP 模块,在温度为 1273 K、系统压力为 10 Pa 的实验条件下,对已优化 的 GaAs 超晶胞的热分解过程进行分子动力学模拟计 算。在 NPT 系综下模拟 10.0 ps,步长为 1.0 fs,共 10000 步。采用超软赝势在 medium 网格散点下进行计算, 平面波截断能设为 280 eV,真空板厚度设为 10.0 Å, 能量收敛精度优于 2×10⁻⁶ eV/atom。选用 NOSÉ^[26]热 浴和 ANDERSEN^[27]等压浴。然后,在 NVT 系综下模 拟 2 ps,步长为 1.0 fs,共 2000 步,而其他条件设置 与 NPT 系综下的一致。

2.2 计算结果与讨论

计算和模拟结果分别如表 1~3 和图 5~9 所示。表 1 和 2 所列为 GaAs 动力学模拟前后 Ga—As 键的键长 和密立根布居;表 3 所列为动力学模拟后生成 As₂的 键长和布居。图 5 所示为结构优化后 GaAs 的超晶胞; 图 6 所示为动力学模拟后得到的最后构型。

与最优结构的 GaAs 超晶胞图(见图 5)相比,由表 1 和图 6 可知,Ga—As 键的键长计算结果表明反应前

表1 最优结构和动力学模拟后结构中 Ga—As 键的键长和布居

700 I I 4	D 11 /1 11 1	1		1	1
Table I	Bond length and bond	nonulation of o	ntimized structure and	dynamics simil	ulation structure of Gamas
Table 1	Dona longin una bona	population of 0	pullized subcure and	aynannes sinna	nution structure of Ou 715

Dand	Optimized	d structure	Dynamic simulation structure		
Bond -	Bond length/Å	Bond population	Bond length/Å	Bond population	
Ga(27)—As(29)	2.39	0.54	2.71	0.17	
Ga(19)—As(29)			2.68	0.08	
Ga(4)—As(24)			2.64	0.08	
Ga(18)—As(8)			2.54	0.11	

表 2 最优结构和动力学模拟后结构中 Ga—As 键的键长和布居

Table 2 Bond length and bond population of optimized structure and dynamics simulation structure of Ga—As

Dond	Optimized	l structure	Dynamic simulation structure		
Bolid	Bond length/Å	Bond population	Bond length/Å	Bond population	
Ga(20)—As(14)	2.39	0.54	2.37	0.60	
Ga(18)—As(24)			2.32	0.54	
Ga(11)—As(13)			2.32	0.48	
Ga(26)—As(32)			2.43	0.47	

表 3 动力学模拟生成的 As2 的键长和布居

 Table 3
 Bond length and bond population of dynamics simulation structure of As₂ produced

Dond	Optimized	l structure	Dynamic simulation structure		
Bolid	Bond length/Å	Bond population	Bond length/Å	Bond population	
As(21)—As(31)	Null	Null	2.08	1.12	
As(13)—As(29)			2.31	0.56	
As(5)—As(15)			2.50	0.12	
As(8)—As(30)			2.33	-0.50	

图 5 结构优化后的 GaAs 超晶胞

Fig. 5 Supercell of GaAs after structure optimization

最优结构的键长均为 2.39 Å,但是动力学模拟后得到的 Ga(27)—As(29)、Ga(18)—As(8)等键长增大,均大于 2.50 Å,且与反应前的 Ga—As 键密立根布居 0.54 相比,这些键的布居均在 0.08~0.25 之间,表明当模拟时间进一步延长后,这部分键可能发生断裂,生成 Ga 和 As 原子。

与反应前最优结构的 GaAs 超晶胞结构(见图 5)相比,图 6 中显示 GaAs 超晶胞在分子动力学模拟后有

图 6 动力学模拟后 GaAs 的最终构型 Fig. 6 Final configuration of GaAs after dynamic simulation

Ga和As₂分子形成,表3中生成的4个As—As键的 键长分别为 2.08、2.31、2.50 和 2.33 Å,但是 As(8)—As(30)键的密立根布居为-0.50,可知其电子处 于反键态填充,不稳定,而其他键的布居都为正,说 明电子填充于成键轨道上,这些键可能在模拟时间延 长后与另一端的 Ga 断开, 生成 As₂。与正常 As₂分子 的实验键长(2.10 Å)^[28]相比,除 As(21)—As(31)键的键 长与其接近外(键长为 2.08 Å),其他键的键长都比它 大,因为它们受到了另外两端原子的吸引力,还有可 能是由于热分解过程导致键长的进一步弱化。另外, 对其中生成的 As₂进行差分电荷密度分析,图 7 显示 As₂分子的电子云均匀分布在中间,说明 As 原子间以 共价键形式存在,比较稳定。

图 7 最终构型中 As₂的差分电荷密度图

Fig. 7 Difference electron density of As_2 in final structure

与最优结构的态密度图相比(见图 8),图 9 中显示 GaAs 动力学模拟后费米能级以下-9.8~-7.7 eV 区域 相连,表明电子的非局域化加强;在-3.3~1.8 eV 费米 能级附近,主要由 As 4p 和 Ga 4p 电子组成,各自的 4s 轨道电子的贡献变小; 1.3~3.6 eV 区域的态密度整 体负移,且 Ga 和 As 的 4s 轨道电子贡献也相应变小, Ga 和 As 间作用力变弱,已呈现出金属化的特征。反

图 8 GaAs 最优结构的 PDOS 图

Fig. 8 PDOS of optimized structure of GaAs

图 9 GaAs 动力学模拟后的 PDOS 图 Fig. 9 PDOS of GaAs structure after dynamics simulation

应后总能量变得更负,趋向稳定。

在模拟过程中发现了一个现象:在动力学模拟后, 有少部分键的密立根布居在 0.47~0.60 之间,与反应 前的布居十分接近,且这些键的键长相比反应前有所 减小,如表 2 中的 Ga(26)—As(32)、Ga(20)—As(14) 等键(其具体原因有待进一步研究)。说明在该模拟条 件下,经过 2 ps 的 NVT 系综模拟后,这部分 Ga—As 键间作用力仍然很大,较难断裂分解,可能以气态小 团簇形式挥发(有关理论研究仍在进行),导致冷凝物 中含有 Ga,造成 Ga 的损失,在实验中也不乏这种现 象出现。

3 实验研究与讨论

3.1 实验原料

实验原料取自日本某半导体工厂的半导体废料, 主要成分是 GaAs,其组成如表 4 所列。

3.2 GaAs 真空热分解实验

3.2.1 实验设备及操作过程 实验设备如图 10 所示。其具体操作过程如下:将

表4 半导体废料的化学成分

Table 4Chemical composition of semiconductor scraps(mass fraction, %)

Ga	As	Zn	Cu	Fe	Si	Others
48.20	49.82	1.0	0.3	0.03	0.1	Bal.

图 10 真空炉示意图

Fig. 10 Schematic diagram of vacuum furnace: 1 — Adjustment knob; 2—Cooling water outlet; 3—Water cooled walls; 4—Graphite condensing system; 5—Thermal insulating layer; 6—Graphite heater; 7—Vacuum pump; 8—Steel condensing system; 9—Reaction crucible; 10—Cooling water inlet; 11—Thermocouple

实验原料置于图 10 所示坩埚中,密封真空炉。打开冷却水,抽真空,抽至真空炉极限真空(3 Pa)时升温,以 8~12 K/min 的速率升温至实验温度 1073~1373 K 后进 行恒温反应,恒温 1~3 h;切断电源,继续抽真空并 水冷直室温;取样进行化验。

3.2.2 实验结果与讨论

实验结果表明:在1173 K 以下, GaAs 的真空热 分解基本不能进行,而在1373 K时,残留物 Ga部分 挥发,冷凝物中含 Ga 达 20.54%,说明此时温度过高, 这与前面的理论分析结果一致。通过对不同分解温度 和恒温时间下得到的挥发物进行 XRD 成分检测,发 现挥发物中镓大部分是以 GaAs 形式存在。采用英国 Thermo Elemental 公司制造的 VG9000 辉光放电质谱 仪将在蒸馏温度为1273 K、恒温时间为3h时得到的 产品金属 Ga 进行全元素含量分析,检测时样品采用 液氮冷却,其检测结果如表5所列。从表5中可以看 出,除在检测时铁可能被干扰而导致其含量偏高外, 其杂质含量都优于粗镓的品质标准[15]。通过实验研究 得知: 在系统压力为 3~8 Pa下, GaAs 真空热分解最 佳实验条件为蒸馏温度为 1273 K, 恒温时间为 3 h, 残留物 Ga 的品质较好,纯度在 99.99%以上,挥发物 中 As 含量为 87.97%, Ga 含量为 6.72%, 此时可实现 Ga 和 As 的最大限度富集。由此可见,实验过程与理 论计算研究基本一致。

3.3 GaAs 的热分解过程

为了研究 GaAs 废料在加热过程中质量随温度变

表 5 残留物 Ga 中杂质的 GDMS 检测结果

Table 5 GDMS test results of Ga in residues (mass fraction, 10^{-6})

Na	Mg	Al	Si	Ca	Ti	V
0.07	< 0.002	0.22	3.6	0.62	0.49	< 0.3
Cr	Mn	Fe ¹⁾	Ni	Cu	Zn	Ge
0.03	0.8	70	< 0.007	< 0.009	< 0.02	< 0.03
In	Cd	Sn	Hg	Pb	Bi	
< 0.003	<1	< 0.01	< 0.04	< 0.006	< 0.003	

1) Disturbance may be present.

化的情况,采用德国耐驰 STA449F3 同步热分析仪从 室温到 1323 K 进行非恒温 TG-DTG 真空热分析。在 真空下进行热重实验时,先在常温下通氮气 10 min, 称量样品放入仪器内的天平上,继续通氮气 10 min, 关闭进气阀,启动真空泵。当仪器内压力降低至 10 kPa 时,即开始程序升温,升温速率为 10 K/min,实验结 果如图 11 所示。

图 11 中显示: 从 867.2 K 开始到 968 K 时, GaAs 质量有较小的减少,约 0.94%,主要是因为废料中 As 有小部分过量,在沸点 887 K 附近吸热升华。随着温度继续升高,在 1017.2~1197.2 K 温度范围内,TG 曲线很陡,质量损失较快,为 49.2%,期间发生了剧烈的化学反应,GaAs 废料受热分解生成 Ga 和 As,其理论质量损失率为 51.80%,与实验值非常接近。温度自 1197.2 K 一直增加到 1323 K,TG 曲线相对变得平缓,质量损失速率变小,最后的残留物质量为 43.80%,小于理论的残留物质量(48.20%),因为此时有部分 Ga 受热挥发。

以上理论计算和实验结果表明:理论计算结果与 热力学分析及实验结果吻合较好,分别从微观和宏观 角度较好地揭示了 GaAs 在真空高温条件下的分解和

图 11 GaAs 废料的 TG-DTG 曲线

Fig. 11 TG-DTG curves of GaAs scraps

挥发行为的机理,具有很好的可靠性。借助量子化学 方法发现了许多实验过程难以观察和检测到的现象, 为某些化合物通过真空热分解提供了一种很好的理论 计算方法。

4 结论

1) 通过第一性原理分子动力学模拟得知, 在温度为 1273 K、系统压力为 10 Pa 的实验条件下, 在 NPT 系综下模拟 10 ps 及 NVT 系综下模拟 2 ps 后, GaAs 中大部分 Ga—As 键的键长增大, 布居变小, 键间作 用力变小, 容易断裂, 生成 Ga 和 As₂。有少部分键的 键长减小, 布居变化不大, 键间作用力很强, 较难断 裂。

2) GaAs 在真空高温条件下的分解和挥发实验中, 蒸馏温度和恒温时间对 Ga 和 As 的分离的影响较大。 当温度高于 1373 K 时, Ga 剧烈挥发,气相中 Ga 的 含量会显著增大,影响 Ga 的回收率。当系统压力为 3~8 Pa、蒸馏温度为 1273 K、恒温时间为 3 h 时,残 留物 Ga 的纯度在 99.99%以上,Ga 的回收率为 89%, 质量好于粗 Ga 的品质标准。

3) 将理论计算结果与理论分析、实验结果进行对 比可知,三者吻合较好。通过动力学模拟发现:在热 分解过程中 GaAs 中可能存在小团簇,它以气态的形 式挥发到冷凝物中,造成 Ga 的损失,解释了实验过 程中挥发物中含 GaAs 的现象,为 GaAs 真空热分解 实验研究及改进提供了很好的理论依据。

4) 对于 GaAs 废料,采用真空热分解法能有效回 收其中的有价金属 Ga。与传统的处理方法相比,该法 流程简单,无废水、废气等污染物产生,而砷以金属 态 As 回收,危害小。

REFERENCES

[1] 蒋荣华,肖顺珍. 砷化镓材料的发展与前景[J]. 世界有色金属, 2002(8): 7-13.

JIANG Rong-hua, XIAO Shun-zhen. Developments and prospects of GaAs material industry[J]. World Nonferrous Metals, 2002(8): 7–13.

 [2] 上海有色网. 砷化镓材料国内外市场供应现状及主要需求
 [EB/OL]. [2013-08-25]. http://www.smm.cn/news/3482809. html.

Shanghai Metals Market. Current supply situation and main demands of GaAs materials in domestic and overseas markets [EB/OL]. [2013–08–25]. http://www.smm.cn/news/3482809.

html.

- JASKULA B W. Gallium [EB/OL]. [2013–09–15]. http:// minerals.usgs.gov/minerals/pubs/commodity/gallium/mcs-2013galli.pdf.
- [4] KOZLOV S A, POTOLOKOV N A, FEDOROV V A, AGANICHEV M P, SIDOROV O L, SAZHIN M V, PETRUKHIN I O. Preparation of high-purity gallium from semiconductor fabrication waste[J]. Inorganic Materials, 2003, 39(12): 1257–1266.
- [5] 陈启燊, 雷天民. GaAs 第一性原理研究[J]. 电子科技, 2009, 22(4): 69-71.

CHEN Qi-shen, LEI Tian-min. Study of the first-principles of GaAs[J]. Electronic Science and Technology, 2009, 22(4): 69–71.

[6] 刘其军,刘正堂,冯丽萍.闪锌矿型 GaX(X= P, As, Sb)电子结构和光学性质的第一性原理计算[J].苏州科技学院学报:自然科学版,2010,27(3):35-39.

LIU Qi-jun, LIU Zheng-tang, FENG Li-ping. First principle calculation of electronic structure and optical properties of zinc blende GaX(X=P, As, Sb)[J]. Journal of Suzhou University of Science and Technology: Natural Science, 2010, 27(3): 35–39.

- [7] ARABI H, POURGHAZI A, AHMADIAN F, NOURBAKHSH Z. First-principles study of structural and electronic properties of different phases of GaAs[J]. Physica B, 2006, 373: 16–22.
- [8] ZHANG Q M, CHIAROTTI G, SELLONI A. Atomic structure and bonding in liquid GaAs from ab initio molecular dynamics[J]. Physical Review B, 1990, 42(8): 5071–5081.
- [9] ABRJUTIN V N, BELSKY A A, EZHKOV V P, IVANOVA R V, KALASHNIK O N, KIRICHENKO V A, KOZHEMYAKIN V V, MASJUK G E, PEREDEREEV A V, PUKHOV J G. Process for producing high-purity gallium: United States, US 4362560[P]. 1982–12–07.
- [10] MATSUMURA T, FUJIMOTO A. Recovery of gallium from material containing intermetallic compound of gallium and arsenic: Japan, JP 61215214A[P]. 1986–09–25.
- [11] 周令治,陈少纯.稀散金属提取冶金[M].北京:冶金工业出版社,2008:343-346.
 ZHOU Ling-zhi, CHEN Shao-chun. Extractive metallurgy of rare metals[M]. Beijing: Metallurgical Industry Press, 2008:

343-346.

- [12] 郭学益,李 平,黄 凯,刘荣义. 从砷化镓工业废料中回收 镓和砷的方法:中国,ZL200510031531.8[P]. 2005-11-09.
 GUO Xue-yi, LI Ping, HUANG Kai, LIU Rong-yi. A method of recovering gallium and arsenic from industrial GaAs scraps: China, ZL 200510031531.8[P]. 2005-11-09.
- [13] INOOKA M. Process for recovering metallic gallium from gallium compound-containing waste: United States, US4812167[P]. 1989–03–14.
- [14] KOZLOV S A, POTOLOKOV N A, FEDOROV V A, AGANICHEV M P, SIDOROV O L, SAZHIN M V,

PETRUKHIN I O. Preparation of high-purity gallium from semiconductor fabrication waste[J]. Inorganic Materials, 2003, 39(12): 1257–1266.

- [15] 刘大春,杨 斌,戴永年,刘自力,刘永成,吴昆华. 真空处 理砷化镓废料回收镓的研究[J]. 真空,2004,41(3):18-20.
 LIU Da-chun, YANG Bin, DAI Yong-nian, LIU Zi-li, LIU Yong-cheng, WU Kun-hua. Study on recovering Ga from GaAs scraps by vacuum metallurgy[J]. Vacuum, 2004, 41(3): 18-20.
- [16] PARR R G. Density functional theory[J]. Annual Review of Physical Chemistry, 1983, 34(1): 631–656.
- [17] 徐光宪,黎乐民,王德民.量子化学:基本原理和从头计算法 (中册)[M].北京:科学出版社,2009:467-583.
 XU Guang-xian, LI Le-min, WANG De-min. Quantum chemistry: Basic principle and ab initio (Vol.2)[M]. Beijing: Science Press, 2009: 467-583.
- [18] 叶大伦,胡建华. 实用无机物热力学数据手册[M]. 第二版. 北京: 冶金工业出版社, 2002: 175-925.
 YE Da-lun, HU Jian-hua. Practical themodynamics data of inorganic substances[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002: 175-925.
- [19] 戴永年. 二元合金相图集[M]. 北京: 冶金工业出版社, 2009: 80-83.
 DAI Yong-nian. Binary alloy phase diagrams[M]. Beijing:

Metallurgical Industry Press, 2009: 80–83.

- [20] STRINGFELLOW G B. Organometallic vapor-phase epitaxy: Theory and practice[M]. London: Academic Press, 1989: 39–46.
- [21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized

gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

- [22] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048–5079.
- [23] CEPERLEY D M, MDER B J. The ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566–569.
- [24] FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24): 9768–9774.
- [25] ARIAS T A, PAYNE M C, JOANNOPOULOS J D. Ab initio molecular dynamics: Analytically continued energy functions and insights into iterative solutions[J]. Physical Review Letters, 1992, 69(7): 1077–1080.
- [26] NOSÉ S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1980, 52(2): 255– 268.
- [27] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics, 1980, 72(4): 2384–2393.
- [28] ZHAO Y, XU W, LI Q, XIE Y, SCHAEFER H F. The arsenic clusters As_n (n=1-5) and their anions: Structures, thermochemistry, and electron affinities[J]. Journal of Computational Chemistry, 2004, 25(7): 907–919.

(编辑 陈卫萍)