文章编号: 1004-0609(2014)08-2083-07

热处理型中强度铝合金导体材料的组织与性能

刘东雨^{1,2}, 李文杰¹, 高 f_{1}^{1} , 侯世香^{1,2}, 韩 钰^{1,3}, 祝志祥³

(1. 华北电力大学 能源动力与机械工程学院,北京 102206; 2. 国家火力发电工程技术研究中心,北京 102206;

3. 国网智能电网研究院 电工新材料及微电子研究所,北京 102211)

摘 要:采用扫描电镜和能谱仪观察 Al-Mg-Si 合金铸态样和拉拔变形样中富铁相 AlFeSi 的微观形貌和微区成分, 并利用万能材料试验机和电阻测试仪测定 Al-Mg-Si 合金单丝的抗拉强度和电导率。结果表明,在强度相同的条 件下, Mg₂Si 含量≤0.6%(质量分数)的 Mg 过剩型 Al-Mg-Si 合金具有较高的电导率,且 Mg 过剩型合金的富铁相 为 a(AlFeSi)相; Mg,Si 含量为 0.6%的 Mg 过剩型 Al-Mg-Si 合金在抗拉强度为 230 MPa 时,其电导率为 59.0% (IACS); 开发强度为 230~250 MPa 的高电导率、中强度铝合金导体材料时应在 Mg₂Si 含量≤0.6%的 Mg 过剩型 Al-Mg-Si 合金的基础上进行。

关键词:导体材料;铝合金;AlFeSi相;电导率;时效处理 中图分类号: TG146.2 文献标志码: A

Microstructure and properties of heat treatable medium strength aluminium alloy conductor material

LIU Dong-yu^{1, 2}, LI Wen-jie¹, GAO Qian¹, HOU Shi-xiang^{1, 2}, HAN Yu^{1, 3}, ZHU Zhi-xiang³

(1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;

2. National Thermal Power Engineering & Technology Research Center, Beijing 102206, China;

3. Department of Electrical Engineering New Materials & Microelectronics,

State Grid Smart Grid Research Institute, Beijing 102211, China)

Abstract: The microstructure and composition of Fe-rich AlFeSi phase in the cast and drawn Al-Mg-Si alloy specimens were studied by scanning electron microscopy assisted with energy dispersive spectroscopy of X-ray. The tensile strength and electrical conductivity of the experimental alloy wire were tested by material testing machine and electrical resistance testing instrument. The results show that the Al-Mg-Si alloy with excess Mg has a higher electrical conductivity than the balanced and with excess Si alloy in the same tensile strength as the amount of Mg₂Si \leq 0.6% (mass fraction). The Al-Mg-Si alloy with excess Mg possesses α (AlFeSi) phase. The Al-Mg-Si alloy with excess Mg and 0.6% Mg₂Si has 59.0% (IACS) in electrical conductivity and 230 MPa in tensile strength. The development of medium strength conductor material with 230-250 MPa tensile strength and higher conductivity should be based on Al-Mg-Si alloy with excess Mg and content Mg₂Si $\leq 0.6\%$.

Key words: conductor material; aluminum alloy; AlFeSi phase; electrical conductivity; ageing treatment

的 Al-Mg-Si 系铝合金单丝绞制成的中强度全铝合金 系铝合金导体材料由 a(A1)、亚稳态 Mg_Si 相和 AlFeSi

由电导率≥58.5%(IACS)、抗拉强度≥230 MPa 导线是国家电网公司推广的节能导线^[1-3]。该 Al-Mg-Si

基金项目: 国家电网公司科技项目(2013-209)

收稿日期: 2013-10-20; 修订日期: 2014-04-20

通信作者: 刘东雨, 教授, 博士; 电话: 13910536377; E-mail: liudy@ncepu.edu.cn

相组成。根据 w(Mg)/w(Si)比值,可将 Al-Mg-Si 系合 金分为 Si 过剩合金、平衡合金和 Mg 过剩合金,其中 Si 过剩合金强度较高,Mg 过剩合金强度较低。在架 空输电导线用的 Al-Mg-Si 系铝合金中,高强度铝合金 导线用的 6101A 和 6201 铝合金是 Si 过剩型的,中强 度铝合金导线所用铝合金既有 Si 过剩型的,又有 Mg 过剩型的^[3-5]。另外,研究者多关注均匀化处理对富铁 相转变的影响,较少关注成分对富铁相的影响^[6]。为 进一步提高中强度铝合金导线的电导率,本文作者研 究了 w(Mg)/w(Si)比对 A1-Mg-Si 合金中的 AlFeSi 相和 性能的影响,以指导高电导率中强度铝合金导体材料 的合金设计。

1 实验

采用 Cr+Mn+V+Ti 含量分别为 0.011 和 0.009 的 Al99.70 和 Al99.90 重熔铝锭、Al-3.6Mg、Al-24.3Si 和 Al-3.0B中间合金,配置不同 Mg、Si 含量的 Al-Mg-Si 实验合金。实验合金的名义成分见表 1 和表 2。表 1 列出的实验合金中,合金 a 和 b 为 Si 过剩合金,合金 c 为平衡合金,合金 d 和 e 为 Mg 过剩合金。表 2 所列 的 7 种实验合金中,合金 1 的 Mg₂Si 含量为 0.5 %、 合金 2~4 的 Mg₂Si 含量为 0.6 %、合金 5~7 的 Mg₂Si 含量为 0.8 %,其中合金 1,3 和 6 为 Si 过剩合金。 合金 2 和 5 为平衡合金,合金 4 和 7 为 Mg 过剩合金。 所有实验合金均在功率为 12 kW 的电阻炉中用刚玉坩 埚熔炼。熔炼过程如下:先将工业纯铝熔化并加热至 750 ℃,然后采用中间合金调配化学成分。待中间合 金熔化后扒渣、加入覆盖剂,每 5 min 搅拌一次,搅 拌 3 次后保温静置 20 min,扒渣后在铁模中浇铸成

表1 采用 Al99.70 工业纯铝制备的 Al-Mg-Si 实验合金的名 义成分

Table 1Nominal compositions of Al-Mg-Si experimentalalloy prepared with Al99.70

Allow No	Mass fra	action/%
Alloy No. —	Mg	Si
a	0.32	0.40
b	0.32	0.30
с	0.32	0.25
d	0.32	0.20
e	0.32	0.15

0.01B, 0.16Fe and 0.011(Cr+Mn+V+Ti) in all experimental alloys.

表 2	采用 Al99.90 工业纯铝制备的 Al-Mg-Si 实验合金的名
义成会	+

Table 2 Nominal composition of Al-Mg-Si experimentalalloy prepared with Al99.90

Allow No -	Mass fraction/%			
Alloy No. –	Mg	Si		
1	0.32	0.25		
2	0.40	0.26		
3	0.40	0.30		
4	0.45	0.26		
5	0.50	0.32		
6	0.50	0.35		
7	0.55	0.32		

0.01B, 0.06Fe and 0.009(Cr+Mn+V+Ti) in all experimental alloys.

d 9.5 mm 的圆棒。将圆棒加热到 540 ℃、保温 1 h 后 热轧,热轧变形量为 32.5%。再在室温下进行多道次 拉拔,拉拔成 d 2.3 mm 的单丝,拉拔变形量为 91.3%。 将单丝分别在 150、155、160、165、175、185 和 195 ℃时效 4 h 后,采用 SB2230 型直流数字电阻测试仪测 定其电阻值并换算成 20 ℃的电导率,采用 SANS CMT5105 微机控制电子万能材料试验机测定其抗拉 强度,拉伸速率为 20 mm/min。用 JEOL-LV 6490 型扫 描电镜观察实验材料的铸态组织和拉拔态组织中 AlFeSi 相的形貌,并用牛津 INCA 能谱仪测定该相的 微区成分。

2 实验结果

2.1 合金的显微组织

实验发现,随着 Si 含量(见表 1)的减少铸态组织中的 AlFeSi 相由针状向骨骼状变化(见图 1)。图 2 所示为拉拔态组织的背散射电子像,可见在 Si 过剩合金中,AlFeSi 相沿拉拔变形方向形成链状,且链状 AlFeSi 相附近的基体上出现微孔洞,而在 Si 含量较低的平衡合金和 Mg 过剩合金中未发现 AlFeSi 相附近的基体上 有微孔洞。对图 2(b)和图 2(c)中的疑似微孔洞进行能谱分析,发现其为 Al₂O₃ 夹杂物。

2.2 合金的性能

用 Al99.70 工业纯铝制备的 Al-Mg-Si 合金的抗拉 强度和电导率如表 3 所列。用 Al99.90 工业纯铝制备 的 Al-Mg-Si 合金的抗拉强度和电导率分别见表 4 和表 5。对 AlFeSi 相进行能谱分析发现,铸态组织和拉拔态组织中富铁相的 Fe/Si 比(摩尔比)均随合金中 Si 含量的降低而增大(见图 3)。由合金 1、3 和 6 的实验数据可见,在相同抗拉强度条件下,含 0.5%Mg₂Si 的合

金具有较高的电导率,但随着抗拉强度的提高,Mg₂Si 含量造成的电导率差异变小(见图 4)。Mg 过剩和 Si 过剩对合金强度和电导率的影响如图 5 所示。对于 Mg₂Si 含量为 0.6%的合金,在相同强度水平下,合金

图 1 Al-xSi-0.32Mg 合金铸态试样中 Al-Fe-Si 相形貌

Fig. 1 Micrograph of AlFeSi phase in as-cast Al-*x*Si-0.32Mg alloy: (a) Al-0.40Si-0.32Mg; (b) Al-0.25Si-0.32Mg; (c) Al-0.15Si-0.32Mg

图 2 拉拔 Al-xSi-0.32Mg 合金线中的 Al-Fe-Si 相形貌

Fig. 2 Micrographs of AlFeSi phase in Al-*x*Si-0.32Mg drawn wire: (a) Al-0.40Si-0.32Mg; (b) Al-0.25Si-0.32Mg; (c) Al-0.15Si-0.32Mg

表3 时效温度对合金 b~d 抗拉强度和电导率的影响

Table 3 Effect of ageing temperature on tensile strength and electrical conductivity of experimental alloys b-d

A going tomporatura/°C		R _m /MPa			$\sigma(IACS)/\%$		
Ageing temperature/ C	Sample b	Sample c	Sample d	Sample b	Sample c	Sample d	
150	255	250	240	55.9	56.9	58.1	
155	255	250	230	56.2	57.4	58.2	
160	245	240	230	56.2	58.0	58.3	
165	235	235	225	56.9	58.0	58.3	

表4 时效温度对合金1~7抗拉强度的影响

 Table 4
 Effect of ageing temperature on tensile strength of experimental alloys 1–7

A going tomporatura/°C				<i>R</i> _m /MPa			
Ageing temperature/ C -	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7
165	235	230	235	245	250	255	255
175	230	220	230	235	235	245	245
185	215	205	210	220	220	225	230
195	205	195	200	205	210	210	215

2085

表 5	时效处理对合金 1~7	电导率的影响
-----	-------------	--------

Againg temperature/°C				$\sigma(IACS)/\%$			
	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7
165	58.3	57.8	57.0	57.8	57.0	57.0	56.0
175	59.3	58.7	57.9	58.9	57.8	57.8	57.5
185	60.0	59.2	58.3	59.3	58.3	58.1	58.0
195	60.2	59.0	58.7	59.5	59.4	58.4	58.2

图 3 Al-xSi-0.32Mg 合金中 Si 含量与 AlFeSi 相中 Fe/Si 摩尔比的关系

 Table 5
 Effect of ageing temperature on electrical conductivity of experimental alloys 1–7

Fig. 3 Relationship of Fe/Si mole ratio in AlFeSi phase with Si content in Al-xSi-0.32Mg alloy: (a) As-cast; (b) As-rolled and drawn

图 4 不同 Mg₂Si 含量时 Al-Mg-Si 合金抗拉强度与电导率 的关系

Fig. 4 Relationship between tensile strength and electrical conductivity of Al-Mg-Si alloy with different Mg₂Si contents

4(Mg 过剩合金)的电导率较高,合金 2(平衡合金)的次 之,合金 3(Si 过剩合金)的导电率最低(见图 5(a));对 于 Mg₂Si 含量为 0.8%的合金,强度高于 230 MPa 时, 合金 6(Si 过剩合金)的导电率较高,合金 7(Mg 过剩合 金)的次之,合金 5(平衡合金)的导电率最低(见图 5(b))。对于采用 Al99.70 熔炼的含 0.5%Mg₂Si 的合金 b、c和d,其抗拉强度和电导率的关系见图 6。可以 看出随着 Si 过剩度的降低,在相同强度水平下合金的 电导率提高,表现出与图 5(a)相似的规律。Al99.70 工

图 5 不同 Mg₂Si 含量时 Al-Mg-Si 合金的强度和电导率的 关系

Fig. 5 Relationship between tensile strength and electrical conductivity of Al-Mg-Si alloy with different Mg_2Si contents

图 6 实验合金 b、c 和 d 的电导率和抗拉强度的关系 Fig. 6 Relationship between conductivity of samples b, c and d and tensile strength

业纯铝中含有 0.16%Fe, 而 Al 99.90 工业纯铝中含有 0.06%Fe, 可见 Mg 过剩合金中的 Fe 含量不影响其具 有较高电导率的规律。

3 分析与讨论

3.1 合金的显微组织

Al-Mg-Si 合金在凝固过程中,通常 AlFeSi 相结晶 于 α(A1)枝晶间。铸态时 AlFeSi 相呈现两种形貌:汉 字状(或骨骼状)的 α (AlFeSi)相和针状(或盘片 状)β(AlFeSi)相。α(AlFeSi)相中 Si 含量较低, Fe/Si 质 量比在 5.5~2.75(摩尔比为 2.75~1.38)之间, B(AlFeSi) 相中 Si 含量较高, Fe/Si 质量比在 2.25~1.60(摩尔比为 1.13~0.80)之间^[7-8]。Si 过剩的 Al-Mg-Si 合金凝固时通 常形成针状β(AlFeSi)相^[9-10],这种初生相硬而脆,几 乎不在铝中固溶,但会降低合金的伸长率,恶化合金 的加工性能。显微组织观察表明,在铸态组织中随着 Si 量降低, 合金类型从 Si 过剩型向平衡合金到 Mg 过 剩型合金转变,铸态组织中的 AlFeSi 相由针状向骨骼 状变化;对第二相进行能谱分析的结果显示,在平衡 合金和 Mg 过剩合金中, AlFeSi 相中 Fe/Si 摩尔 比≥1.4; 对拉拔样进行微观分析亦发现平衡合金和 Mg 过剩型合金中 AlFeSi 相附近基体上出现微孔洞几 率减小。综上所述可以判断出,在Si 过剩的 Al-Mg-Si 合金中,富铁相为 β (AlFeSi)相,在Mg过剩的Al-Mg-Si 合金中, 富铁相为 α(AlFeSi)相。

3.2 合金的性能

由表3和表4可知,实验合金在150℃以上温度

时效后, 合金处于过时效状态。对于实验合金 2~7, 在相同时效制度下,无论是Si过剩还是Mg过剩合金, 其抗拉强度均高于相同 Mg₂Si 含量的平衡合金的抗拉 强度,Si、Mg 过剩引起的抗拉强度增量见表6。可见 Si 过剩合金在165~175 ℃时效后,抗拉强度增量较大, Mg 过剩合金在 175~185 ℃时效后, 抗拉强度增量较 大,且在 Mg₂Si 含量为 0.6%的合金中, Mg 过剩使合 金的抗拉强度提高幅度更大。文献[4, 11-13]报道, 无论是平衡合金、Si 过剩合金还是 Mg 过剩合金,当 共格的β"相为主要强化相时,出现强度峰值。进一步 提高时效温度,则使共格的β"相数量减少,与基体呈 半共格的 β'相数量增多, 在稍微过时效时, 平衡合金 的强化相为纳米尺度的 β'和 β"相。尽管 Si、Mg 过剩 合金的显微组织中还存在 Si、Mg 固溶原子,由表 7^[14] 给出的部分合金元素的固溶强化效应计算表明, Si 或 Mg 原子过剩量<0.05%时合金的固溶强化对抗拉强 度的贡献不足1 MPa。由此可见, Si、Mg 过剩型合金 抗拉强度的提高,主要还是过剩 Si、Mg 的细化亚稳 相并增加亚稳相体积分数所致。Si提高 B"相的形核率、 使 β'' 相的体积分数增大, Si 又促进 β'' 相向 β' 相转变, 这使 Si 过剩合金较早出现最大强化效应, 经 165~175 ℃时效后, 过剩 Si 对合金的强化效应达到峰值。由于 过剩 Mg 抑制 β"相向 β'相转变,形成尺寸较小的 β'相, 因此, Mg 延迟出现强化效应峰, Mg 过剩合金在 175~185 ℃时效后才达到强化峰值(见表 6)。从而使 Mg 过剩合金可以在更高温度下进行时效, 使合金的 电导率较高。

实验合金的电导率随着时效温度的提高而增大。 这是因为合金元素处于固溶状态时,其对电导率危害 最大,析出的共格 β"相次之、半共格 β'相再次之、非 共格 β 相影响最小^[4, 15],部分元素对电阻率的影响见 表 8^[16]。不同类型的 Al-Mg-Si 合金的电阻率与析出相 的性质、数量、大小、分布及固溶原子有关。在稍过 时效状态下,Si 过剩合金中析出的 β"相和 β'相细小、

表6 Si、Mg 过剩对抗拉强度的影响

Table 6 Effect of excess Si and Mg on	tensile strength
---	------------------

	Tensile strength increment/MPa						
Ageing	0.6%	Mg ₂ Si	0.8%Mg ₂ Si				
temperature/°C	0.04Si 0.05Mg		0.03Si	0.05Mg			
	excess	excess	excess	excess			
165	5	15	10	5			
175	10	15	10	10			
185	5	15	5	10			
195	5	10	5	5			

表7 部分元素对铝的固溶强化效应^[14]

Table	7	Contribution	of	each	element	to	solid	solution
harden	ing o	of aluminum ^{[14}]					

Element	$\sigma_{ m f}/{ m MPa}$
Fe	125
Ce	90.2
Cu	56.8
V	45.1
Hf	37.2
Mg	24.5
Si	19.6
Mn	18.6
Zn	9.8

表8 杂质元素存在状态对铝导体电阻率的影响[16]

 Table 8 Effect of impurity element state on resistivity of aluminum

Flomont	Resistivity increment/ $(10^{-8} \Omega \cdot m)$				
Element	As-solution	As-precipitate			
Cr	4.000	0.180			
Mn	2.940	0.340			
V	3.580	0.280			
Ti	2.880	0.120			
Si	1.020	0.088			
Fe	2.560	0.058			
Cu	0.344	0.030			
Mg	0.540	0.220			
Zn	0.094	0.023			

数量多, Mg 过剩合金中的 β"相则转变成尺寸更小的 β'相。少量 Si、Mg 固溶导致电阻率降低,且在相同抗 拉强度水平下, Si、Mg 过剩合金具有较高的电阻率。 由于 Mg 过剩合金的时效温度高,更多的 β"相向 β'相 转变,从而表现出在相同抗拉强度水平下, Mg 过剩 合金具有较高的电阻率。

4 结论

1) 在 Al-Mg-Si 系合金中,随着 w(Mg)/w(Si)比的 增大,富铁相形貌由针状变成骨骼状,且富铁相中 w(Fe)/w(Si)比值增大。Si 过剩型合金的富铁相为 β(AlFeSi)相, Mg 过剩型合金的富铁相为 α(AlFeSi)相。

2) Mg₂Si 含量为 0.6%的 Mg 过剩型 Al-Mg-Si 合金

在抗拉强度为 230 MPa 时,其电导率为 59.0%(IACS)。 Mg₂Si 含量≤0.6%的 Mg 过剩型 Al-Mg-Si 合金在 225~250 MPa 的强度水平下具有较高的电导率,可作 为高电导率中强度导体材料开发的基础。

REFERENCES

 [1] 叶鸿声. 中强度全铝合金导线在输电线路中的应用[J]. 电力 建设, 2010, 31(12): 14-19.

YE Hong-sheng. Application of moderate-strength all aluminum alloy conductor in transmission lines[J]. Electric Power Construction, 2010, 31(12): 14–19.

- [2] 刘东雨,侯世香,刘静静,李宝让,韩 钰.中强度全铝合金 导线的发展[J]. 热处理技术与装备,2013,34(2):25-28.
 LIU Dong-yu, HOU Shi-xiang, LIU Jing-jing, LI Bao-rang, HAN Yu. Development of medium strength all aluminum alloy conductor[J]. Heat Treatment Technology and Equipment, 2013, 34(2):25-28.
- [3] 刘 斌,郑 秋,党 朋,曾 伟. 铝合金在架空导线领域的应用及发展[J]. 电线电缆, 2012(4): 10-15.
 LIU Bin, ZHENG Qiu, DANG Peng, ZENG Wei. Development and applications of aluminum alloy in overhead lines[J]. Electric Wire & Cable, 2012(4): 10-15.
- [4] 刘东雨,高 倩,李宝让,刘静静,侯世香,韩 钰,陈 新, 马 光. 6xxx 系铝合金导体材料的时效行为[J]. 材料热处理
 学报, 2013, 34(增刊): 7-11.

LIU Dong-yu, GAO Qian, LI Bao-rang, LIU Jing-jing, HOU Shi-xiang, HAN Yu, CHEN Xin, MA Guang. Ageing behaviors of 6xxx series aluminum alloy for conductor materials[J]. Transactions of Materials and Heat Treatment, 2013, 34(Suppliment): 7–11.

 [5] 成祥,陆正荣,周锋.锡盟一南京1000kV交流特高压工程用中强度全铝合金导线的研制[J].电线电缆,2012(5): 22-24.

CHENG Xiang, LU Zheng-rong, ZHOU Feng. Development of medium strength all aluminum alloy conductor for Ximeng to Nanjing 1000 kV AC EHV project[J]. Electric Wire & Cable, 2012(5): 22–24.

[6] 杜 鹏, 闫晓东, 李彦利, 沈 建. 6061 铝合金中富铁相在均 匀化过程中的相变机理[J]. 中国有色金属学报, 2011, 21(5): 981-987.

DU Peng, YAN Xiao-dong, LI Yan-li, SHEN Jian. Transformation mechanism of iron-rich phase in 6061 aluminium alloy during homogenization[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 981–987.

 [7] 张 静,彭 建,潘复生.工业纯铝中的化合物相[J]. 轻合金 加工技术,2000,28(5):1-6.
 ZHANG Jing, PENG Jian, PAN Fu-sheng. Intermetallic compound in commercial purity aluminum[J]. Light Alloy 第24卷第8期

Fabrication Technology, 2000, 28(5): 1-6.

- [8] VERMA A, KUMAR S, GRANT P S, O'REILLY K A Q. Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy[J]. Journal of Alloys and Compounds, 2013, 555: 274–282.
- [9] TANIHATA H, SUGAWARA T, MATSUDA K, IKENO S. Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloys[J]. Materials Science, 1999, 34: 1205–1210.
- [10] 曹零勇,郭明星,崔 华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J].金 属学报,2013,49(4):428-434.

CAO Ling-yong, GUO Ming-xing, CUI Hua, CAI Yuan-hua, ZHANG Qiao-xia, HU Xiao-qian, ZHANG Ji-shan. Study on the kinetics of phase transformation $\beta \rightarrow \alpha$ in the homogeneous heat treatment of Al-Mg-Si series alloys[J]. Acta Metallurgica Sinica, 2013, 49(4): 428–434.

- [11] GUPTA A K, LIOYD D J, COURT S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si[J]. Materials Science and Engineering A, 2001, 316: 11–17.
- [12] EDWARDS G A, STILLER K, DUNLOP G L, COUPER M J. The precipitation sequence in Al-Mg-Si alloys[J]. Acta Mater, 1998, 46(11): 3893–3904.

- [13] 袁生平,蒲 雄,张国君,刘 刚,王瑞红,孙 军,陈康华. 多重时效析出第二相对 Al-Mg-Si 合金电导率的影响[J]. 中国 有色金属学报, 2010, 20(11): 2070-2074.
 YUAN Sheng-ping, PU Xiong, ZHANG Guo-jun, LIU Gang, WANG Rui-hong, SUN Jun, CHEN Kang-hua. Effects of multiple precipitates on electrical conductivity of aged Al-Mg-Si alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11): 2070-2074.
- [14] HORIKOSHI T, KURODA H, SHIMIZU M, AOYAMA S. Development of aluminum alloy conductor with high electrical conductivity and controlled tensile strength and elongation[J]. Hitachi Cable Review, 2006, 25: 18–21.
- [15] 蔡军辉,金 曼,邵光杰. 固溶态 Al-Mg-Si 合金的电阻变化 研究[J]. 材料热处理学报, 2008, 29(5): 97-100.
 CAI Jun-hui, JIN Man, SHAO Guang-jie. Research on resistivity of solution-treated Al-Mg-Si alloys[J]. Transactions of Materials and Heat Treatment, 2008, 29(5): 97-100.
- [16] 王祝堂,田荣璋. 铝合金及其加工手册[M]. 3 版. 长沙: 中南 大学出版社, 2005: 937.

WANG Zu-tang, TIAN Rong-zhang. Handbook of aluminum alloy and processing[M]. 3rd ed. Changsha: Central South University of Technology Press, 2005: 937.

(编辑 龙怀中)