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Abstract: Nonlinear buckling behavior of stiffened composite B−Al plates was analyzed by means of finite element analysis (FEA) 
method. In the method, the composite material was taken as B matrix into which Al fibers were embedded in different configurations. 
The laminated B−Al material in the form of rectangular plates was subjected to lateral compressive loading. It is observed that 
stiffeners have significant effect on the buckling behavior of plates under compressive loading and for various geometrical 
configurations. The stiffeners used in the modeling are one-sided and have rectangular cross-sections. It is found that there are 
physically important loading intervals and the critical buckling modes make transitions back and forth between stable and unstable 
states. Bifurcation buckling regions resulting from various configurations of fiber orientations and different plate aspect ratios are 
determined. The whole analysis is performed by using ANSYS finite element computations. Only the buckling patterns of stiffened 
plate configurations under simply supported boundary conditions are studied. Distributions of compressive stresses (σx) vs in-plane 
contractions (u) and compressive stresses (σx) vs out-of plane deflections (δ) are obtained. Nonlinear analysis of the C2 fiber 
configuration yields the safest critical buckling stress amongst C1, C2, C3 and C4 configurations. It is concluded that FEA method 
for the nonlinear buckling analysis generates accurate results. 
Key words: nonlinear buckling; stiffener; composite plate; bifurcation; FEM modeling 
                                                                                                             
 
 
1 Introduction 
 

Stiffened composite plates and shells that are 
strengthened with various supporting elements are used 
for the structural parts of ships, boats, aircraft, and 
satellite panels. Additionally, their increasing use is 
foreseen for many diverse applications such as sporting 
goods, new aerospace components, and new generation 
of automobiles. Because of their high strength, 
lightweight, and ease of use for production, stiffened 
composite plates are particularly suitable for critical 
structures, which require high specific strength. Studies 
show that stiffeners have significant effect on the 
buckling behavior of plates under various loading 
conditions and for different geometrical configurations. 
The determination of critical buckling loads in 
conjunction with the corresponding buckling modes for 
thin composite plates is one of the major problems in 
structural engineering. 

Development of an effective method to calculate the 

strength of a plate, the stiffness of which was increased 
by adding stiffeners, was first conceived during the early 
ages (1920s) of the analyses of aircraft structures. 
TIMOSHENKO [1] suggested that the stiffness of a 
one-sided stiffener might be taken into account by 
replacing the moment of inertia of the stiffener about its 
center of gravity by an effective moment of inertia, and 
this value was used in the solutions valid for stiffeners 
with their centers of gravity located in the midplane of 
the plate. In this sense, usage of analytical methods to 
validate is cited by TIMOSHENKO [2] for dealing with 
problems of linear buckling analyses. 

HU et al [3] used the analytical methods to analyze 
the nonlinear buckling. For this purpose, a theoretical 
study was undertaken on the behavior of simply 
supported square plates under compression, and the 
effect of the small deviations from flatness on effective 
width and buckling of plane was evaluated. SEIDE [4] 
calculated the effect of longitudinal stiffeners located on 
one side of a plate under the compressive buckling stress 
of the plate-stiffener combination. KUMAR and  
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MUKHOPADHYAY [5] used finite element method for 
buckling analysis of laminated stiffened plates. PAIK and 
KIM [6] formulated the ultimate strength applicable to 
stiffened panels and their buckling modes under 
combined axial load, in-plane bending and lateral 
pressure. GUO et al [7] worked on the buckling behavior 
of stiffened laminated plates. BYKLUM and AMDAHL 
[8] developed the computational models using 
semi-analytical procedures. To this effect, a simplified 
method was used to calculate elastic large deflection of 
plates and stiffened panels. In this simplified method, 
local buckling formulations were analytically derived 
from energy equations. In a separate study, 
semi-analytical models were used for global buckling 
and post-buckling analysis of stiffened panels [9]. 
MALLELA and UPADHYAY [10] used the finite 
element method in a parametric study to calculate the 
buckling of laminated composite stiffened panels 
subjected to in-plane shear. GHANNADPOUR and 
ALINIA [11] used FEA method to work on the large 
deflection behavior of functionally graded square plates. 
The results were in accordance with the solutions 
presented by TIMOSHENKO and WOINOWSKY- 
KRIEGER [12]. ALINIA and DASTFAN [13] worked on 
the post-buckling capacity, deformability, energy 
dissipation and the cyclic behavior of stiffened and 
unstiffened panels under shear. It was concluded that an 
optimum amount of stiffeners was needed to achieve 
both sufficient rigidity and deformability. ALINIA and 
MOOSAVI [14] studied the buckling of web panels and 
their longitudinal stiffeners. YILDIZ [15] analyzed the 
linear and nonlinear buckling of stiffened steel and 
composite plates under axial loading by using ANSYS. 
Critical buckling loads and corresponding modes were 
solved and compared. SANAL and GUNAY [16] 
analyzed buckling of transversely stiffened rectangular 
composite thin plates under shear by using FEA method. 
ALINIA et al [17] worked on the nonlinear postbuckling 
behavior of thin shear panels, emphasizing on an 
intermediate limit state when panels experience first 
yield points and the growth pattern of yield zone. 
STAMATELOS et al [18] presented a methodology for 
making an analytical assessment of local buckling and 
post-buckling behavior of orthotropic stiffened plates. 
The approach considered the stiffened panel segment 
located between two stiffeners, while the remaining 
panel was replaced by equivalent transverse and 
rotational springs of varying stiffness, which acted as 
elastic edge supports. More recently, YAN et al [19,20] 
solved the critical buckling load of the stiffeners in press 
bend forming process. They modeled a special 
simulation procedure and a new calculation method of 

the punch and die boundary conditions based on the 
bending line positions was proposed. Stress and strain 
distributions were analyzed, and the deformation 
mechanics of the process was revealed. 

In the current study, the rectangular cross-sectioned 
composite stiffeners were used on one surface of the 
composite plates. The loading type was compressive and 
applied through the lateral sides of the plate in order to 
simulate locally and globally buckled plates. Under these 
conditions, finite element method (FEM) was introduced 
for different aspect ratios, φ. The aspect ratio is defined 
as the ratio of the length of the plate to the width. By 
using the FEM and the corresponding nonlinear solutions, 
the critical buckling stresses σcr, critical buckling strains 
εcr, and out-of plane maximum deflections δmax for 
different buckling modes, and compressive stresses 
under stepwise incremental σx were demonstrated. 
Critical buckling stresses σcr and bifurcation critical 
points were determined and explained according to the 
number of rectangular cross sectional stiffeners and the 
orientation of the fibers in both the laminated plates and 
stiffeners. 
 
2 Modeling 
 
2.1 Finite element modeling of fiber composite 

stiffened plates 
Buckling analyses of simply supported thin plates 

under compressive load are performed by employing 
shell mesh element SHELL91 (ANSYS). The element is 
defined by eight nodes, layer thicknesses, layer material 
direction angles, and orthotropic material properties. It 
has six degrees of freedom at each node [15]. A segment 
of plate is defined by the length a, width b, and thickness 
t, as shown in Fig. 1. Two, three and four sub-segments 
are designed from one segment by dividing it by one, 
two or three stiffeners, respectively. The width and the 
height of the solid rectangular stiffener are denoted by ts 
and h, respectively. 

The aspect ratio (a/b) and slenderness ratio (b/a) of 
the plate are denoted by φ and 1/φ. The geometric 
properties of composite plates for 0.4≤1/φ≤1 are listed in 
Table 1. The elasticity modulii parallel and perpendicular 
to the fiber direction are E1=227 GPa and E2=139 GPa, 
respectively, and the shear modulii of materials in the 
1−2 and 2−3 planes are G12=57.6 GPa and G23=49.1 GPa, 
respectively. Additionally, the Poisson ratios of the 
materials in the 1−2 and 2−3 planes are v12=0.24 and 
v23=0.36, respectively. K and Pcr denote the buckling 
coefficients and critical buckling load, respectively. 

Rectangular cross-section stiffeners are used on the 
one surface of the plates, which are called single sided  
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Fig. 1 Geometrical arrangements of rectangular cross-section stiffeners on plates: (a) Dimensions; (b) Plate with one stiffener;     
(c) plate with two stiffeners; (d) Plate with three stiffeners 

 
Table 1 Geometric properties of laminated composite plates and their stiffeners 

Plate geometry Stiffener geometry 

Length, a/cm Width, b/cm Thickness, t/cm Slenderness 
ratio, 1/φ 

Geometric 
ratio, a/t Number Height, h/cm Thickness, ts/cm

− − − 

1 10 6 

2 10 6 
200 200 2 1 100 

3 10 6 

− − − 

1 10 6 

2 10 6 
250 200 2 0.8 125 

3 10 6 

− − − 

1 10 6 

2 10 6 
332 200 2 0.6 166 

3 10 6 

− − − 

1 10 6 

2 10 6 
500 200 2 0.4 250 

3 10 6 

 
stiffeners throughout the remaining text. The composite 
material is made up of Boron matrix, and Al fibers are 
embedded into the matrix material. Such structures are 
named as metal matrix composites (MMCs). 

Geometrical ratio of the composite plate is defined 
as the ratio of the length of the plate to its thickness (a/t). 
Geometrical ratios are respectively selected as 25, 100, 
125, 166 and 250, as listed in Table 1. Fiber 

configurations of the stiffened composite plates are 
denoted as C1 configuration [0º/90º/0º]plate+[(0º/ 
90º)2]s

stiffener, C2 configuration [0º/45º]plate+[(0º/ 
45º)2]s

stiffener, C3 configuration [(0º/45º)2]plate+[(0º/ 
45º)4]stiffener, and C4 configuration [(0º/30º/45º/60º)2]plate+ 
[(0º/30º/45º/60º)2]stiffener, as shown in Fig. 2. The 
alphanumerics 0R, 1R, 2R and 3R denote the unstiffened 
plate and the stiffened plates with one, two and three 



Ezgi GUNAY, et al/Trans. Nonferrous Met. Soc. China 24(2014) s20−s28 

 

s23
 

 

 

Fig. 2 Fiber orientations of C1 (a), C2 (b), C3 (c) and C4 (d) configurations 
 
stiffeners, respectively. 
 
2.2 Numerical solutions 

The basic task of this work is about to search for 
numerical solutions of the following Eq. (1), which is the 
mathematical formulation of buckling eigenvalue 
problem. Numerically calculated i-th eigenvalue (λi) 
from solution procedure yields critical buckling stresses 
related to the plate.  
 

iii }{][}{][ G ψMψK λ=                      (1) 
 
where [KG], [M] and {ψ}i denote general geometric 
stiffness matrix, stress matrix and i-th eigenvector 
respectively. 

The relationship between buckling coefficient (K) 
and aspect ratio (φ) for simply supported boundary 
condition is given as 
 

21 2
2 ++= ϕ

ϕ
K                      ( 2 ) 

 
Simply supported boundary conditions are 

illustrated in Fig. 3(a), and the compressive loading used 
on the singly stiffened composite plate is illustrated in 
Fig. 3(b) [15]. Unit loads are applied at the intermediate 
nodes as a total of two half loads whereas half loads are 
applied at the corner nodes. 

The buckling analyses of the composite plates   
are made as follows. In the first stage of the solution, 
linear buckling analysis is started by applying unit  

 
Fig. 3 Characteristic specifications of analysis: (a) Simply 
supported boundary conditions; (b) Dimensions of singly 
stiffened composite plate 
 
displacements at the nodes located on the boundaries of 
the plate. At the end of this stage, the complete series of 
buckling modes are obtained. In order to analyze the 
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buckled shape of the plate in terms of out-of plane 
deflections (δ) in z-direction and in-plane contractions (u) 
in x-direction, nonlinear solution procedures are needed 
as a second stage solution. In the second stage of solution, 
the first buckling mode loading values are used to start 
the nonlinear buckling analyses. In this stage, the nodal 
displacements vector {U} is updated with the new 
displacement components. These new components are 
calculated by adding the first buckling mode shape 
values multiplied by 0.1% of the lateral nodal 
displacements {U} of the plate to the deflection values 
obtained from previous iteration. Nonlinear solution 
procedure is performed until twice the critical buckling 
load is attained. This critical buckling load is referred to 
as failure load in this work and in recent literature [9]. 
 
3 Results and discussion 
 

Solution of compressive stresses (σx) vs in-plane 
contractions (u) is illustrated in Fig. 4. The (x, y) 
coordinates of locations of out-of plane maximum 
deflections on the plates for C1, C2, C3 and C4 
configurations are calculated and indicated on the figures 
of compressive stresses (σx) vs out-of plane maximum 
deflection in z direction (δmax). In Fig. 4, the critical 
stress markers available on the σx axis denote calculated 
critical buckling stresses. 
 

 
Fig. 4 Variations of σx vs u for C1 type plates with dimensions 
of 200 cm×200 cm×2 cm 
 

Figure 5 illustrates the variations of compressive 
stresses vs out-of plane maximum deflections for C1 
configuration. As observed in Figs. 5(b)−(c), critical 
buckling stresses (σcr) are obtained as 79 MPa and 54 
MPa for the plates with geometric ratios of 116 and 250, 
respectively. The unstiffened composite plates exhibit 
sharp bends of in-plane contractions between 
compressive stress (σx) values of 60 MPa and 80 MPa. In 
these figures, bifurcation regions clearly indicate the 
existence of unstable phenomena, which form sharp 

 

 

Fig. 5 Variations of σx vs δmax for C1 type plates with different 
dimensions: (a) 200 cm×200 cm×2 cm; (b) 332 cm×200 cm×  
2 cm; (c) 500 cm×200 cm×2 cm 
 
bends in out-of plane maximum deflection (δmax). 

Figure 6 demonstrates the buckling behaviour of 
different composite plates for C2 configuration by 
increasing the dimensions of the plate length, whereas 
the plate width remains the same. Figure 6(a) illustrates 
that the plate with 3R stiffeners warps toward the 
negative side of the midplane. In Fig. 6(b), because of 
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Fig. 6 Variations of σx vs δmax for C2 type plates with different 
dimensions: (a) 250 cm×200 cm×2 cm; (b) 500 cm×200 cm×  
2 cm 
 
longer plate length, the instability conditions emerge at 
smaller stress values of 58 MPa and 78 MPa for the 0R 
and 1R plates, respectively. In addition, the 3R-plate with 
geometric ratio of 166 with 3 stiffeners results in a 
convex (up) buckling shape but the other plates (0R, 1R 
and 2R) result in slightly convex (down) buckled plates 
in Fig. 6(b). Figure 7 demonstrates the buckling 
behaviour of various composite plates for C3 
configuration by increasing the dimensions of the plate 
length whereas the plate width remains the same. Figure 
7(b) illustrates that the plate with 3R stiffeners warps 
toward the negative side of the midplane. While the 
3R-plate results in a convex (up) and unstiffened plate 
(0R) results in a convex (down) buckled shape in the 
negative deflection direction, remaining plates (1R and 
2R) result in slightly convex buckled shapes. Because of 
the longer lengths of the plates, the instability condition 
emerges at smaller stress values of 72 MPa for the 
unstiffened plate. The same phenomenon appears in  
Fig. 7(c) at 40.63 MPa for the unstiffened plate with 
geometric ratio of 250. The transition or bifurcation 

 

 

Fig. 7 Variations of σx vs δmax for C3 type plates with different 
dimensions: (a) 200 cm×200 cm×2 cm; (b) 332 cm×200 cm×  
2 cm; (c) 500 cm×200 cm×2 cm 
 
region is that the applied stress is equal to the critical 
value. At this point, the plate is on the verge of unstable 
buckling stage. By adding a small increment to the 
compression loading, the plate makes a transition from 
stability to unstability. It assumes a buckled shape and at 
the same time loses its natural equilibrium. In this way, 
the plates collapse in negative z-direction. On the other 
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hand, the 1R-plate remains stable in the positive 
z-direction. 

Figure 8 reflects the buckling behaviour of B−Al 
composite plates for C4 configuration. The rectangular 
plate with the geometric ratio of 166 is illustrated in  
Fig. 8(a). As the loading increases, the onset of 
bifurcation in 0R-plate at stress value of 60 MPa 
becomes noticeable. It is observed that the similar 
bifurcation behaviour is clearly visible in terms of out-of 
plane maximum deflection. The last rectangular plate 
with the geometric ratio of 250 is presented in Fig. 8(b). 
It displays the buckling modes for 0R-plate and 1R-plate 
for the case of geometric ratio of 250. As observed, the 
bifurcation behaviours for 0R-plate and 1R-plate occur at 
41 MPa and 64 MPa, respectively. 
 

 
Fig. 8 Variations of σx vs δmax for C4 type plates with different 
dimensions: (a) 332 cm×200 cm×2 cm; (b) 500 cm×200 cm×  
2 cm 
 

Figure 9 illustrates four different states of global 
buckling mode shapes, which are obtained during the 
initiation and progression course of the solution 
procedure as the compressive loading increases. Top and 
side views of each global buckling state are displayed 
separately in the same figure. 

 

 
Fig. 9 Global buckled mode shapes of 500 cm×200 cm×2 cm 
unstiffened plate of C4 configuration 
 

Figure 10 illustrates distributions of critical 
normalized buckling stress values vs slenderness ratios 
for multilayered fiber composite plates. Normalization is 
conducted by dividing critical normalized buckling stress 
values of 1R, 2R and 3R plates by critical normalized 
buckling stress values of 0R plates. Four different 
configurations C1, C1, C3 and C4 are used as varying 
parameters in the same figure to demonstrate the effects 
of fiber orientations. The critical buckling stress values 
increase as the number of stiffeners increases from one to 
three. Higher global buckling critical buckling stresses 
are observed in the composite plates with slenderness 
ratio of 1.4. The critical buckling stresses are normalized 
by dividing stresses of the stiffened plates by stresses of 
the unstiffened plates. It is observed that as the number 
of stiffeners increases, the plate is getting more stable. 
For the case of three stiffeners, C1 configuration displays 
more stable behavior than the C2 configuration and the 
C2 configuration exhibits more stable behavior than the 
other two configurations. This phenomenon can be 
explained by means of the effects of the bending- 
extension submatrix B in the stiffness matrix which is  
 

  
Fig. 10 Distributions of critical normalized buckling stress 
values vs slenderness ratios for plates with 1, 2 and 3 stiffeners 
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zero for both C1 and C2 configurations [21]. On the 
other hand, third column extensional stiffness submatrix 
[A] terms are all zero in C1 configuration, while these 
terms are non-zero in C2 configuration. These non-zero 
terms introduce the mid-plane strains o

xyγ to the 
constitutive equation. Thus, in-plane stress distributions 
become larger accordingly. Results obtained from 
Fourier series solutions [2, 4] and FEA buckling critical 
stress solutions of singly stiffened and simply supported 
square 300 cm×300 cm×1 cm steel plate (Est=210 GPa 
and vst=0.3) are presented in Table 2. The linear static 
analysis for the 3R square plates gives the critical 
buckling stresses in an order as 169.5 MPa (C1), 156.8 
MPa (C2), 152.8 MPa (C3) and 151.2 MPa (C4). 
Nonlinear FE solutions of the same plates give the 
corresponding critical stresses as 193.5 MPa (C1), 203.8 
MPa (C2), 200 MPa (C3) and 189.5 MPa (C4). 
 
Table 2 Comparison of Fourier series and FEA buckling 
critical stress solutions of singly stiffened and simply supported 
square 300 cm×300 cm×1 cm steel plate (Est=210 GPa and 
vst=0.3) 

h/mm ts/mm σcr (Fourier series)/
MPa 

σcr (FEA)/ 
MPa 

Relative 
error/% 

0 5 8.4356 8.4233 0.146 

10 5 8.4979 8.4527 0.532 

20 5 8.7122 8.6347 0.890 

30 5 9.2339 9.1173 1.262 

40 5 10.2162 10.0360 1.764 

50 5 11.8127 11.4967 2.675 

60 5 14.1769 13.5307 4.558 

70 5 17.4622 15.9747 8.519 

80 5 21.8222 18.2747 16.257 

90 5 27.4105 19.7880 27.809 

100 5 34.3804 20.5780 40.146 
 
4 Conclusions 
 

1) The nonlinear analysis of the C2 configuration 
yields the safest buckling fiber orientations for stiffened 
plates. 

2) The linear static analysis for the 3R square plates 
gives the critical buckling stresses in an order as 169.5 
MPa (C1), 156.8 MPa (C2), 152.8 MPa (C3) and 151.2 
MPa (C4). Nonlinear FE solutions of the same plates 
give the corresponding critical stresses as 193.5 MPa 
(C1), 203.8 MPa (C2), 200 MPa (C3) and 189.5 MPa 
(C4). 

3) The rectangular cross-sectional stiffeners located 
parallel to the width of the plate cause stress 
concentrations in the adjacent sub-segments. The global 

buckling response of plates turns into a local buckling 
response as the plates are increasingly strengthened with 
stiffeners one by one. The global buckling phenomenon 
develops solely in square plates. 

4) For 0R and 1R plates, transitions from stable to 
unstable state and back to stable state are caused by 
bifurcation regions.  
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Stiffener: C1 configuration−fiber orientations 
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Plate: C2 configuration−fiber orientations [0o/45o]s  
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Stiffener: C2 configuration−fiber orientations 
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硼−铝强化板的非线性屈曲有限元分析 
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摘  要：通过有限元方法（FEA）分析强化复合板的非线性屈曲行为。该模型中硼−铝复合材料由硼基体和嵌入

其中的不同形态的 Al 纤维组成。对片层结构的 B−Al 矩形板施加横向压缩应力，发现强化纤维对具有不同几何形

状板材的屈曲行为有明显影响。建模中采用单向、具有矩形截面的强化纤维。结果表明：加载过程中存在一重要

的载荷范围，临界屈曲模式在稳态和非稳态之间反复转变。确定由不同的纤维形态和板材高宽比组成的分叉失稳

区域。通过 ANSYS 有限元计算，研究简支边界条件下强化板材的失稳模式，分别得到压应力(σx)与平面收缩(u)

以及压应力(σx)与面外挠度(δ)的关系曲线。通过非线性分析，在 C1、 C2、 C3 和 C4 四种形态的纤维中，嵌入

C2 纤维的板材获得最安全的临界屈服应力。结果表明，FEA 非线性屈曲分析可以得到精确的结果。 

关键词：非线性屈曲；增强物；复合板；分叉失稳；有限元建模 
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