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Abstract: An explicit integration scheme for rate-dependent crystal plasticity (CP) was developed. Additive decomposition of the 
velocity gradient tensor into lattice and plastic parts is adopted for describing the kinematics; the Cauchy stress is calculated by using 
a hypo-elastic formulation, applying the Jaumann stress rate. This CP scheme has been implemented into a commercial finite element 
code (CPFEM). Uniaxial compression and rolling processes were simulated. The results show good accuracy and reliability of the 
integration scheme. The results were compared with simulations using one hyper-elastic CPFEM implementation which involves 
multiplicative decomposition of the deformation gradient tensor. It is found that the hypo-elastic implementation is only slightly 
faster and has a similar accuracy as the hyper-elastic formulation. 
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1 Introduction 
 

Crystal plasticity (CP) models originate from the 
physical aspect of plastic deformation, i.e. slip 
dominated plastic deformation [1]. Constitutive laws of 
single crystals together with homogenization methods 
across polycrystalline aggregates define the polycrystal 
plasticity model [2,3]. Mechanical properties, texture 
evolution and other material phenomena can be 
simulated using CP models [2−5]. The main inputs into 
CP models are initial texture and material parameters. 

One key component of a crystal plasticity model at 
single-grain level is the determination of shear strains or 
shear strain rates on slip systems, which can generally be 
solved using two different approaches, either rate- 
independent or rate-dependent. For the rate-independent 
method, the shear strain is determined to accommodate 
the prescribed plastic deformation using a minimum 
dissipation energy assumption [1]. Only the slip systems 
for which the resolved shear stress equals the critical 

resolved shear stress are considered to be active. It can 
be implemented numerically by solving linear equations 
or using the simplex method with high computational 
efficiency [6]. However, due to the Taylor ambiguity, an 
additional criterion is needed [7]. The rate-dependent 
crystal plasticity (RDCP) model assumes that all slip 
systems are active and uses a viscoplastic flow rule. 
Without Taylor ambiguity, RDCP could lead to 
numerical instabilities of integration because most metals 
exhibit a weak rate dependence at room temperature [8]. 
Since first introduced by PEIRCE et al [9], the crystal 
plasticity theory implemented in the finite element 
method (CPFEM) has matured into a whole family of 
constitutive and numerical formulations that have been 
applied to a broad variety of crystal mechanical problems 
[3]. CPFEM has both theoretical and practical 
advantages. First, grains are represented by single or 
multiple elements while both stress equilibrium and 
strain compatibility can be fulfilled at boundaries. 
Second, complex boundary conditions are easily 
specified in the FEM code. Hence, CPFEM is applicable  
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to simulations of engineering processes. The main 
drawback of CPFEM is the huge computational cost and 
the numerical instabilities [2]. Thus, robust and efficient 
integration schemes are required to reduce computational 
cost and improve the stability [2,8,10−14]. 

DUMOULIN et al [2] implemented and evaluated 
three different integration schemes for RDCP, including 
two forward Euler methods and one implicit integration 
method. Multiplicative decomposition of the deformation 
gradient tensor F was used to describe the kinematics 
and a hyper-elastic formulation was used for the 
calculation of the Cauchy stress. Rotation of the crystal 
lattice was obtained by polar decomposition of the elastic 
deformation gradient tensor Fe. Among these three 
integration methods, the forward Euler integration 
scheme proposed by GRUJICIC and BATCHU (GB)  
[14] was proved to be stable, accurate and the fastest. 
The RDCP model together with the GB forward Euler 
integration scheme has also been implemented into a 
commercial finite element code, LS-DYNA via a user 
defined subroutine UMAT [15]. This model 
implementation is referred to as hyper-CPFEM in the 
following since hyper-elasticity is assumed. 

In the current work, a new explicit integration 
scheme for rate-dependent viscoplastic crystal plasticity 
has been developed. Different from the constitutive 
models employed by DUMOULIN et al [2], additive 
decomposition of the velocity gradient tensor L is 
employed for the kinematics; hypo-elasticity is assumed 
for the material and Jaumann stress rate is applied. In the 
crystal plasticity theory, the hyper- and hypo-elastic 
formulations should give the same results in terms of the 
plastic deformation. There is small difference in the 
elastic part while details about the hypo-elastic and 
hyper-elastic theories can be found in Ref. [16]. The 
hypo-elastic theory is commonly applied in the 
continuum plasticity for metals and alloys due to their 
small elastic strains. Compared with the hyper-elastic 
crystal plastic framework, the hypo-elastic counterpart 
has a simpler mathematical formulation and is easier to 
implement. Hence, the hypo-elastic crystal plasticity 
model has a potential to speed up the calculations. 
However, the accuracy and reliability of stress 
calculation and texture prediction should be evaluated 
due to the different formulations employed. 

The kinematics, kinetics and crystal plasticity 
models are described in section 2. A new explicit 
integration scheme is proposed in section 3. The RDCP 
model has been implemented into LS-DYNA and is 
termed hypo-CPFEM in the following. The accuracy and 
efficiency of this new integration scheme are evaluated 
through numerical simulations and a comparison with the 
hyper-CPFEM which are shown in section 4, while 
general conclusions are made in section 5. 

 
2 Kinematics and crystal plasticity models 
 

The model employed in this work is briefly given 
here while more details can be found in Refs. [17,18]. It 
includes anisotropic elastic deformation and assumes that 
all plastic deformation occurs via dislocation slip on 
{111}〈110〉 crystallographic systems for face centred 
cubic (FCC) crystal metals. 
 
2.1 Kinematics 

All the equations described in the following are 
formulated in the initial crystal frame unless specified 
otherwise. The imposed velocity gradient L can be 
additively decomposed into symmetric and skew- 
symmetric parts: 
 
L=D+W                                     (1) 
 
where D is the symmetric deformation rate tensor and W 
is the skew-symmetric spin tensor. Deformation of single 
crystals has been attributed to a combination of plastic 
flow due to crystallographic slips and lattice distortion. 
Lattice distortion includes elastic distortion and rigid 
body rotation of the crystal lattice. Thus, for single 
crystals, the deformation rate D and spin W can be 
further decomposed into lattice and plastic parts as 
follows: 
 
D=De+Dp                                                      (2) 
 
W=W*+Wp                                  (3) 
 
where De represents the elastic deformation rate of the 
lattice, while Dp is the plastic deformation rate caused by 
crystallographic slip; W* represents the lattice rigid spin, 
while Wp is the spin due to slip activities. Dp and Wp can 
be expressed by the shear rates sγ& on all slip systems: 
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s s s s s= ⊗ − ⊗Ω m n n m                    (7) 
 
where ms is the unit vector defining slip direction, while 
ns is the unit slip plane normal vector, for the slip system 
s (where s=1−12 for FCC metals); ms and ns are not 
affected by crystallographic slip but will be rotated by 
the lattice spin W* as 
 

s s∗= ⋅m W m&                               (8) 
s s∗= ⋅n W n&                                (9) 
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2.2 Kinetics 
The resolved shear stress τs on the slip system s can 

be expressed as 
 
τs =σ: Ps                                                       (10) 
 
where σ is the Cauchy stress tensor. For rate-dependent 
crystal plasticity, the shear rate on slip systems is often 
calculated using a power-law type equation: 
 

1

0 sgn( )
s ms s
sg

τγ γ τ= ⋅ ⋅& &                       (11) 

 
where 0γ&  is a reference shearing rate, m is the 
instantaneous strain rate sensitivity and gs represents the 
slip resistance which evolves during the plastic 
deformation of single grains. The evolution laws of gs or 
hardening models will be discussed in section 2.3. 

During distortion of single crystals, a coordinate 
system attached to the lattice will co-rotate with the 
lattice. The co-rotational lattice frame is related to the 
fixed lattice frame by a rotation tensor R which is 
orthogonal and updated by the lattice spin tensor W*: 
 

∗=R W R&                                  (12) 
 

In the co-rotational frame, Hooke’s law can be 
expressed in the rate form as 
 

eˆ ˆˆ :=σ C D&                                 (13) 
 
where Ĉ  is a fourth-order elastic modulus tensor and 

eD̂  is the elastic deformation rate tensor, both in the 
co-rotational frame. The fourth-order tensor Ĉ  
accounts for the elastic anisotropy of the cubic lattice. It 
is assumed to be invariant to plastic deformation and is 
kept constant in the co-rational lattice frame. Expressed 
in the orthonormal basis associated with the crystal 
lattice, it reads (in Voigt notation): 
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⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C             (14) 

 
where c11, c12 and c44 are three independent elastic 
constants. eD̂  can be computed by transforming De 
from the fixed lattice frame to the co-rotational frame as 
 

e T eˆ =D R D R                               (15)  
where the upper script T means transpose of a tensor or 
matrix. Then Jaumann stress rate, J∇σ , is now defined 
by transforming σ̂&  into the fixed coordinate system: 
 

TˆJ∇ =σ RσR&                               (16) 
 

Finally, the material time derivative of the stress 

tensor is obtained: 
 

J∇ ∗ ∗= + −σ σ W σ σW&                        (17) 
 
2.3 Hardening model 

Material hardening is captured at slip system level 
through gs in Eq. (11). The hardening law used in this 
work assumes that the critical resolved shear stress, gs, 
initially equal to g0, evolves through 
 

12

1

s sn n

n
g h γ

=
= ∑ &&                              (18) 

 
where hsn is the instantaneous strain hardening matrix; s 
and n are indices referring to slip systems. In this work, 
hsn is described phenomenologically by a saturation-type 
law [8,19]: 
 

0 sat sat[ (1 ) ](1 ) sgn(1 )sn sn n a nh h q q g g g gδ= + − − −  
(19)  

where δsn=1 for s=n and otherwise zero; h0, gsat and a are 
material parameters, representing the reference 
self-hardening coefficient, the saturation values of slip 
resistance and the hardening exponent, respectively. The 
parameter q represents latent hardening. 
 
2.4 Update of grain orientations and texture 

If the velocity gradient L′ is prescribed in the 
sample frame, L in the initial lattice frame is obtained by 
the transformation 
 

T
0 0′=L Q L Q                                (20) 

 
where the transformation matrix Q0 depends on the Euler 
angles (φ1, Φ, φ2). The transformation matrix Q from the 
global frame to the current co-rotational lattice frame is 
updated by 
 

T
0=Q R Q                                  (21) 

 
Euler angles of single grains during deformation can 

be calculated from Q and are used to represent the 
texture. 
 
3 Integration algorithm 
 

The crystal plasticity model described above has 
been implemented into LS-DYNA through a user defined 
material subroutine. The key input includes material 
parameters and initial grain orientations. Mechanical 
response and deformation texture can then be predicted. 

For the time integration, a fully explicit scheme 
based on the forward Euler method is adopted. This 
method is simple, robust but only conditionally stable 
and requires small time steps. The main steps of the 
explicit scheme are summarized below, where all 
variables at time tn are known and the variables at 
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tn+1=tn+Δt are to be determined. 
1) Compute the resolved shear stress n

sτ  on each 
slip system using Eq. (10); 

2) Compute the slip rate s
nγ&  using Eq. (11); 

3) Compute p
nD  and p

nW  using Eq. (4) and   
Eq. (5); 

4) Compute e
nD  and n

∗W  using Eq. (2) and    
Eq. (3), where D and W are constant during the current 
time step; 

5) Compute the Jaumann stress rate J
n
∇σ  using  

Eq. (13), Eq. (15) and Eq. (16); 
6) Compute nσ&  using Eq. (17) and update σn+1:  

1n n n t+ = + Δσ σ σ&                             (22) 
 

7) Update 1n+R  using a second-order scheme [20] 
as 
 

( ) ( )1* *1 1
1 2 2n n n nt t

−
+ = − Δ + ΔR I W I W R           (23) 

 
8) Update internal variables and update the critical 

resolved stress 1
s
ng +  using equations described in 

section 2.3; 
9) Update slip direction vectors, 1

s
n+m , and slip 

plane normal vectors, 1
s
n+n , using the second-order 

method: 
 

( ) ( )1* *1 1
1 2 2

s s
n n n nt t

−
+ = − Δ + Δm I W I W m          ( 24) 

 

( ) ( )1* *1 1
1 2 2

s s
n n n nt t

−
+ = − Δ + Δn I W I W n            (25) 

 
10) Compute 1

s
n+P  and 1

s
n+Ω  from 1

s
n+m  and 

1
s
n+n  using Eq. (6) and Eq. (7); 

11) Update the grain orientation matrix 1n+Q  using 
Eq. (21). 
 
4 Numerical study and discussion 
 

To evaluate the hypo-elastic formulation used here 
and the integration algorithm proposed in this work, two 
numerical studies have been conducted. The first one is 
the simulation of uniaxial compression of OFHC copper 
with initially random texture while the second one is the 
texture prediction after rolling of the same material. The 
hyper-CPFEM model implemented by DUMOULIN et al 
[2] with the GB integration scheme has also been used 
for the above simulation cases. Predicted results from the 
two CPFEM formulations will be compared in order to 
evaluate their performance in terms of accuracy and 
efficiency. 

The material parameters are given similar values as 
reported in the work of KALIDINDI et al [19], as shown 
in Table 1. 1000 random orientations are used to 
represent the initial texture of the material and the {111} 
pole figure is shown in Fig. 1. The representative volume 
(RVE) has dimensions of 2 mm × 2 mm × 2 mm. The 

RVE is meshed with 1000 equal-sized 8-integration point 
solid elements and each element is assigned one 
orientation and hence represents one grain, as shown in 
Fig. 2. Mass scaling is used to speed up the simulations 
with a scaling factor of 108. All simulations were 
performed on a work-station with Intel Xeon E5620 CPU 
(2.4 GHz) and 12G memory, and 8 threads were used 
simultaneously for each simulation. 

 
Table 1 Model parameters used in simulations 

0γ& m 
g0/

MPa
gsat/
MPa

h0/ 
MPa 

a q 
c11/ 
GPa 

c12/
GPa

c44/
GPa

10−3 0.012 16 148 180 2.25 1.4 186 93 46.5

 

 

Fig. 1 Initial {111} equal area pole figure of 1000 orientations 
 

 
 
Fig. 2 RVE with 1000 grains 
 
4.1 Uniaxial compression 

The RVE is compressed along the x-direction with a 
speed of 0.01 mm/s to 70% thickness reduction, namely, 
the deformation time is 140 s. The surfaces along y- and 
z- direction are free to move. 
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The stress−strain curves from simulations using the 
hypo-CPFEM and the hyper-CPFEM respectively are 
shown in Fig. 3, where the experimental data from   
Ref. [19] are also shown. It can be seen that the 
hypo-CPFEM and the hyper-CPFEM give the same 
stress versus strain response. The agreement between the 
predicted curves and the experimental ones is reasonable. 
The CPU time is shown in Table 2. Both CPFEM models 
have similar time efficiency, but the hypo-CPFEM is 
slightly faster. 
 

 

Fig. 3 Stress−strain curves from CPFEM simulations and 
experiment 
 
Table 2 CPU time for simulations using two CPFEM models 

Simulation time/s 
Problem time/s 

Hypo-CPFEM Hyper-CPFEM 

140 12580 13971 

 
The good agreement between the predictions by the 

two CPFEM models validates accuracy and reliability of 
the crystal plasticity formulations as well as the 
integration method used for the hypo-CPFEM.  
Moreover, the fact that the hypo-CPFEM and the 
hyper-CPFEM give identical stress predictions illustrates 
that both hypo-elasticity and hyper-elasticity are valid 
assumptions for crystal plasticity models of metals. 
 
4.2 Rolling texture prediction 

For the rolling simulation, periodic boundary 
conditions were applied on all faces of the RVE. The 
RVE was compressed along the z-axis with a speed of 
0.02 mm/s to a thickness reduction of 70%. It was 
allowed to move along the x-axis freely while the 
deformation along the y-direction was constrained. The 
Euler angles after deformation at all integration points 
were output into files, and the orientation distribution 
function (ODF) was computed using the series expansion 
method with lmax=22 and Ψ0=7.5°. 

Figure 4 shows the ODFs predicted by both 
hypo-CPFEM and hyper-CPFEM after rolling to 70% 
thickness reduction, while the corresponding CPU time 
is shown in Table 3. The ODF shows a typical rolling 
texture of FCC metals made of Brass, Goss, S, and 
copper texture components [18], which qualitatively 
validates the correctness of the texture updating 
algorithms employed. Furthermore, the ODFs from the 
two simulations show excellent agreement with each 
other. It is reminded that the texture is updated by the 
tensor Re which is obtained from the polar 
decomposition of the elastic deformation gradient tensor 
in the hyper-CPFEM. However, R which is updated 
using W* is employed for updating the texture in the 
hypo-CPFEM. The excellent agreement between the 
texture predictions demonstrates that both texture 
updating methods are equally accurate. Similar to the 
uniaxial compression case, the hypo-CPFEM is slightly 
faster (~10%) than the hyper-CPFEM, as shown in  
Table 3. 
 

  
Fig. 4 Orientation distribution function (ODF) after 70% 
thickness reduction in rolling predicted by hypo-CPFEM (a) 
and hyper-CPFEM (b) 
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Table 3 CPU time for rolling using two CPFEM models 

Simulation time/s 
Problem time/s 

Hypo-CPFEM Hyper-CPFEM 

70 12958 14669 

 
5 Conclusions 
 

1) A new forward Euler integration scheme is 
proposed for rate-dependent crystal plasticity, which 
employs the additive decomposition of the velocity 
gradient and uses a hypo-elasticity formulation for the 
stress calculation. The RDCP model with the new 
integration scheme has been implemented into the 
commercial finite element code LS-DYNA. 

2) This implementation is validated by comparison 
with a hyper-elastic formulation through two numerical 
tests. It is shown that the hypo-CPFEM is accurate for 
stress predictions, and the numerical algorithm for 
updating texture is validated by comparison with 
hyper-CPFEM predictions. 

3) Comparison of predictions by the hypo-CPFEM 
and by the hyper-CPFEM shows that the two models 
have equal accuracy when predicting stress and texture 
while the hypo-CPFEM is slightly more efficient. 

4) Finally, the current forward Euler integration 
method, and thereby the hypo-CPFEM, can be further 
improved without loss of accuracy, through sub-stepping; 
this is part of an on-going work. 
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一种亚弹黏塑性晶体塑性模型的显示积分算法 
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摘  要：建立了一种速率相关的晶体塑性模型的显示积分算法。该晶体塑性模型将速度梯度张量分解为晶格和塑

性部分来描述运动学，并利用亚弹性方程和 Jaumann 应力率计算柯西应力。该晶体塑性模型及新提出的显示积分

算法已被用于一种商业有限元程序，并模拟了多晶的单轴压缩和轧制实验过程。实验结果表明，该晶体塑性模型

的显示积分算法具有很高的精确性和可靠性。相对利用乘法分解变形梯度张量方法建立的超弹黏塑性模型及其对

应的显示积分算法，该亚弹性模型的显示积分算法除了速度稍快外，其精确性与超弹性模型是一样的。 

关键词：晶体塑性；亚弹性；超弹性；向前欧拉积分法 
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