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Abstract: The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular 
dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si−O tetrahedra Qi 
from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was 
achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also 
proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for 
the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were  
obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi−Ca−Qj and Qi−[Ob]−Qj, 
from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are 
equivalent connections. 
Key words: distribution of microstructural units; molecular dynamic simulation; structural thermodynamic model; calcium silicate 
melts 
                                                                                                             
 
 
1 Introduction 
 

Properties of calcium silicate melts, such as 
viscosity, configurational entropy, are directly related to 
their microstructure, especially the distribution of Si−O 
tetrahedra and their connections. Investigations on the 
microstructure of calcium silicate melts, therefore, are 
fundamental towards understanding the physical 
properties of metallurgical slag [1], geological magmas 
[2], and ceramic materials [3], which control the 
mechanism of practical phenomena. The vital of all to 
master the physicochemical behavior of calcium silicate 
melts is the measurement of the relative abundances of 
microstructural units and their mixing properties from 
computational [4−8] and spectral experiments [9−12], as 
well as some theoretical models [13,14]. 

Up to now, most studies were concentrated on the 
silicate glasses instead of melts because of the harsh 
experimental condition of high liquidus temperature up 
to 1700−2000 K for silicate melts. In 1970, SHUKER 

and GAMMON [15] presented the outline of a 
calculation leading to an equation for the spectral 
scattering intensity (especially the Raman intensity) in 
terms of the density of states of the vibrations in 
amorphous materials. Since then, hundreds of works 
were reported on the study of the scattering coefficients, 
but all of them were concentrated on the low-frequency 
region, where the boson peak is located in. Therefore, the 
quantification of microstructural units from 
deconvolution of envelope is still far from resolution. So 
far, the investigations of silicate glasses under 
atmospheric pressure identified the basic structural units 
as five kinds of Si−O tetrahedrons, denoted as Qi, where 
i represents the number of bridging oxygen, with the 
utilization of Raman spectroscopy [15−18] and 29Si 
NMR [19,20]. Besides, in order to move away the stone 
of high temperature, the new technique of high- 
temperature Raman spectroscopy [21] has also been 
developed in the past decade. Recently, our newly 
theoretical research [22] has also partly resolved     
the evaluation of Raman coupling coefficient and its 
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Integration-Raman scattering coefficient. Thus, the 
quantification of Raman spectra can be achieved. On the 
other hand, the obstacle of high temperature means 
nothing for “computer experiments”, such as molecular 
dynamic simulation and Monte Carlo method. Even so, 
all knowledge about the microstructure from Raman 
spectral measurement and “computer experiments” is 
still discrete. To obtain the panorama of distribution of 
microstructural units, a structural thermodynamic model 
is indispensable. 

In this work, two kinds of results about the unique 
distribution of tetrahedral units for calcium silicate melts 
from classic molecular dynamics simulation, and a 
structural thermodynamic model, as well as the in-situ 
high-temperature Raman spectral (HTRS) measurement 
are presented and compared with each other. One of 
ultimate functions of this work is to serve as the basis 
and complete knowledge about microstructural 
distributions for some structural or formulated models 
applied for the calculations of spectral, thermodynamic 
and transporting properties. 
 
2 Description of theoretical calculation and 

experimental measurement 
 
2.1 Molecular dynamics simulation 

The MD simulation code applied in this study is 
MOLDY version 2.26 from Department of Earth 
Sciences, UK, with the insertion of our own designed 
analysis module of equilibrium configurations. All ions 
in the simulation are treated as rigid with their formal 
charges: Ca2+, Si4+, and O2−. The potential applied in 
these simulations is of two-body Born−Mayer−Huggins 
(BMH) form that has been tested in the previous work 
[22]: 
 

2
0( ) / exp[( ) / ]ij i j ij ij i j ij iju r q q e r f B rσ σ ρ= + + −     (1) 

 
where u(rij) is the interatomic potential and rij denotes the 
interatomic distance. The first term in the right side 
represents Coulomb interaction and the second term is 
inter-core short-range repulsion. For three pairs of Si−Si, 
Si−O and O−O, the values sourced from OKADA et al 
[23], in which the two parameters of Bij, and ρij expressed 
as Bij=ρij=bi+bj, are used; for the rest three pairs applied 
are the values from KIEFFER and ANGELL [24], in 
which the parameter of Bij is expressed as 
Bij=1+qi/ni+qj/nj where ni represents the number of 
out-shell electrons in atom i, and ρij is maintained 
constant, 0.029 nm. Because of the different expressions 
between OKADA et al [23] and KIEFFER and ANGELL 
[24] for Bij, the parameter of f0 has different physical 
meanings and units just as listed in Table 1. 

The canonical ensemble employing Nosé−Hoover 
thermostat [25] for the temperature control is used for the 

Table 1 Parameters for Born−Mayer−Huggins (BMH) potential 
Source Pair i σi/nm ni or bi/nm f0 

Si 0.064 0.00125 
a 

Si−Si
Si−O
O−O O 0.184 0.013 

6.9472×10−11 N

Si 0.131 7 

O 0.142 10 b 
Ca−Si
Ca−O
Ca−Ca Ca 0.158 8 

1.916043×10−20 J

a from OKADA et al [23]; b from KIEFFER and ANGELL [24]. 
 
structural relaxation runs. In this work, the initial 
configuration is generated with “skew start” method  
[26], which is proven to be very fitting for the simulation 
of liquid state. The initial velocities of ions are chosen 
from the Maxwell−Boltzmann distribution [27] at the 
specified initial temperature of 6000 K. After the 
structural relaxation of about 3000 steps, the objective 
temperature of 2000 K is reset. Another 5000 steps are 
used to achieve the systematic equilibrium. Then, the 
relative abundance of tetrahedral units is averaged for 
5000 equilibrium configurations obtained every other 
120 steps with a defined cutoff Si−O distance of 0.2 nm, 
which corresponds to the position of the first minimum 
of Si−O partial radial distribution function (RDF). So, 
the total number of simulation steps is 608000. Because 
the time step is set as 0.001 ps, the total simulating time 
is 608 ps. Finally, the compositions and ionic number of 
all samples in MD simulation are listed in Table 2. 
 
Table 2 Molar fraction and ionic number of samples in MD 
simulation 

Ionic number 
Sample

Molar fraction

of CaO Ca Si O Total

C30S70 0.30 111 259 629 999 

C35S65 0.35 132 245 622 999 

C40S60 0.40 154 231 616 1001

C45S55 0.45 176 216 608 1000

C50S50 0.50 200 200 600 1000

C55S45 0.55 224 184 592 1000

 
2.2 Structural thermodynamics of self-consistent 

model 
This structural thermodynamic model treats the 

calcium silicate melts with seven structural units: 
dissociative Ca2+, free oxygen O2− and five kinds of 
Si−O tetrahedral units denoted as Qi. Therefore, for one 
system, two sets of components will be used in the 
deduction of this model: one is the macro components of 
{XCaO, XSiO2}, the other is the micro structural units of 
{XCa, XO, XQ0, XQ1, XQ2, XQ3, XQ4}, where Xi represents the 
molar fraction of component or unit i. It is obvious that 
these two sets of components have some correlations 
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with each other, in which only two correlations are 
independent and we can write them as 
 

2

4 4

Q Q Ca SiO
0 0

i i
i i

X X X X
= =

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑ ∑                (2) 

 

2

4 4

Q O Q CaO SiO
0 0

4 2
2 i i

i i

i X X X X X
= =

⎛ ⎞⎛ ⎞− + = +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑  (3) 

 
As we know, Gibbs free energy of a system is 

contributed by enthalpy and entropy, where the entropy 
can be further divided into two parts of the configuration 
and non-configuration. 
 

( )cf ncfG H TS H T S S= − = − + =  
 

4 4
cf ncf

Q Q
0 0

i i
i i

H T S S
= =

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
∑ ∑                 (4) 

 
where the enthalpy and non-configurational entropy are 
treated as the sum of characteristic enthalpies and 
entropies of five tetrahedral units because Ca2+ and O2− 
are both single atomic units. Then the Gibbs free energy 
can be rewritten as 
 

,0 ,0

4 4
cf ncf

Q Q Q Q
0 0

i i i i
i i

G X H T S X S
= =

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠
∑ ∑  

 

,0 ,0

4 4
ncf cf cf

Q Q Q Q
0 0

i i i i
i i

X H T X S TS G TS°

= =
− − = −∑ ∑  (5 ) 

 
where the subscript 0 represents the molar quantities, 
namely 

2,0QH  and 
2,0

ncf
QS  represent the characteristic 

enthalpy and entropy per mole of unit Q2. The term of Go 
represents the free energy of independent system of Qi, 
in which each Qi has no interactions with others. 
 

,0 ,0

4 4
ncf

Q Q Q Q
0 0

i i i i
i i

G X H T X S°

= =
= −∑ ∑                 (6) 

 
Thus, the 10 parameters of characteristic enthalpies 

,0Qi
H  and non-configurational entropies 

,0

ncf
Qi

S  are the 
inner properties of Qi and can be directly calculated from 
the spectral or calorimetric enthalpies and entropies of 
corresponding single crystals. For instance, the single 
crystal CaSiO3 has only one kind of tetrahedral unit Q2, 
so its enthalpy and entropy can be defined as the 
characteristic enthalpy and entropy of Q2, respectively. In 
addition to the contribution of configurational entropy, 
which represents the connections between Qis, we can 
make the independent system into the real melt, 
interacting system. 

For the configurational entropy is directly related 
with the spatial topology of the seven microstructural 
units, two contributions should be considered, one is the 
connection between tetrahedral units via Qi−Ca−Qj and 
the other is that via Qi−[Ob]−Qj, where Ob is the bridging 

oxygen and the brackets indicate that Ob is co-possessed 
by two tetrahedra. The molar fraction of Xi is 
corresponding to the number of structural units of ni. By 
extending the thought of quasi-lattice model of 
YOKOKAWA and NIWA [14], all the structural units 
should be arranged into the lattice points. Firstly, the 
connection centers of Ca and Ob should be distributed 
and the number of ways of distribution of these two 
kinds of centers is given by  
 

4 4

Q Ca Ca Q
1 1

2  !  ! 2  !
i i

i i
in n n in

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
.
 

 
The distributions of two kinds of connections are 

listed in Table 3. 
 
Table 3 Distribution of two kinds of connections 

Qi−Ca−Qj Qi−[Ob]−Qj 

Connection
Total number
of connection

Connection 
Total number
of connection

Q0−Ca−Q0 r00 Q1−[Ob]−Q1 b11 

Q0−Ca−Q1 r01 Q1−[Ob]−Q2 b12 

Q0−Ca−Q2 r02 Q1−[Ob]−Q3 b13 

Q0−Ca−Q3 r03 Q1−[Ob]−Q4 b14 

Q1−Ca−Q1 r11 Q2−[Ob]−Q2 b22 

Q1−Ca−Q2 r12 Q2−[Ob]−Q3 b23 

Q1−Ca−Q3 r13 Q2−[Ob]−Q4 b24 

Q2−Ca−Q2 r22 Q3−[Ob]−Q3 b33 

Q2−Ca−Q3 r23 Q3−[Ob]−Q4 b34 

Q3−Ca−Q3 r33 Q4−[Ob]−Q4 b44 

Total nCa−nO Total 
4

Q
1

2
i

i
in

=
∑  

 
Obviously, Q4 does not appear in the first 

connection because it has no non-bridging oxygen, Onb. 
Similarly, the second connection has no Q0 because Q0 
has no bridging oxygen, Ob. Then, the numbers of ways 
of these two kinds of distributions are given by 
 

( )
3 2 3

Ca O
0 0 1

!  !  !  !
2 2
ij ij

ii
i i j i

r r
n n r

= = = +

⎛ ⎞⎛ ⎞ ⎛ ⎞
− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∏ ∏ ∏  

 
where rij represents the number of Qi−Ca−Qj and  

4 3 44

Q
1 1 1 1

2  !  !  !  !
2 2
ij ij

i ii
i i i j i

b b
in b

= = = = +

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∏ ∏ ∏  

 
where bij is the number of Qi−[Ob]−Qj. It should be noted 
that the free oxygen is also distributed. Because free 
oxygen always coordinates with calcium, the number of 
ways of this distribution is given by 

( )( )Ca O Ca O!  !  !n n n n− . Summarizing the above analyses, 
the normalized total number of ways of distribution is 
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( )

4

Q Ca
1 Ca

4
O Ca O

Ca Q
1

2 !
!

! !
 ! 2 !

i

i

i

i

in n
n

n n n
n in

Ω =

=

⎛ ⎞
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⎝ ⎠= × ×
−⎛ ⎞

⎜ ⎟
⎝ ⎠

∑

∑
 

( )Ca O
3 2 3

0 0 1

!

! ! !
2 2
ij ij

ii
i i j i

n n
r r

r
= = = +

−
×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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4

Q
1

4 3 4

1 1 1

2 !

! ! !
2 2

i
i

ij ij
ii

i i j i

in

b b
b

=

= = = +

⎛ ⎞
⎜ ⎟
⎝ ⎠ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∏ ∏ ∏
 

4

Q Ca
1

O

2 !

!

i
i

in n

n
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠ ×
∑

 

1
3 2 3

0 0 1
!  ! !

2 2
ij ij

ii
i i j i

r r
r

−

= = = +

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ×⎜ ⎟ ⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
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1
4 3 4

1 1 1
! ! !

2 2
ij ij

ii
i i j i

b b
b

−

= = = +
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⎜ ⎟ ⎜ ⎟⎨ ⎬
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∏ ∏ ∏              (7) 

 
With the application of the thermodynamic 

regulation that the configurational entropy should be the 
maximum when the system approaches equilibrium and 
the expression of the configurational entropy Scr=kln Ω 
where k is the Boltzmann constant, Eq. (7) can be 
rewritten as  

( )
4 3

Q Q O
1 0

O

2 4 2 !

!

i i
i i

in i n n

n
Ω = =

⎛ ⎞
+ − +⎜ ⎟

⎝ ⎠= ×
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3 Q

3
0

Q
0

4
!

2 4

i

i

i

i

i n

i n=

=

⎧⎛ ⎞
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Q
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4 4
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i n j n

i n= = +

=

⎛
⎜ − −⎜ ×⎜

−⎜⎜
⎝

∏ ∏
∑

 

( ) ( )

( )

1

Q Q
3

Q
0

4 4
!  

2 4

i j

i
i

i n j n

i n

−

=
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1
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Q Q Q
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i j i ji
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i i j i
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−
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(8) 

Expressing the configurational entropy with Eq. (8) 
and applying the Stirling formula ln ! lnm m m≅ −  

 when m m →∝ , we obtained 
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  (9)  

Dividing the terms in above equation with 
4

Q
0

i
i

n
=

+∑  

Ca On n+ and representing the Boltzmann constant k with 
the molar gas constant R according to R=Nº×k where N0 
is Avogadro constant, the final expression of 
configurational entropy can be achieved: 
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                (10) 

 
With the combination of Eq. (5) and Eq. (10), we 

can calculate the thermodynamic properties from the 
microstructural information. 

As mentioned somewhere above, the characteristic 
enthalpies and non-configurational entropies can be 
evaluated from two kinds of sources: the spectral and the 
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calorimetric. As the first application step of this model, 
the 10 parameters are still obtained from the calorimetric 
data of “corresponding single crystals” (Ca2SiO4 
corresponding to Q0, Ca1.5SiO3.5 to Q1, CaSiO3 to Q2, 
Ca0.5SiO2.5 to Q3 and finally SiO2 to Q4). Here, the 
concept of “corresponding single crystal” (CSC) should 
be elucidated firstly. In 1975, BRAWER [28] suggested 
the concept of “corresponding crystal” to interpret the 
Raman spectra and structural units of silicate glasses. 
According to his definition, the structure of its unit cell is 
an average over all the structural units of glass. Mostly, 
those “corresponding crystals” are fictitious creation 
which may not exist in nature and whose existence may 
in fact be impossible. The idea of BRAWER was 
reformed by the present authors to define the concept of 
CSC, which corresponds to the minimum types of 
structural units in crystal with the same macro 
composition as the given melt. Practically, only the 
thermodynamic data for the real existing Ca3SiO5, 
Ca2SiO4, CaSiO3 and SiO2 can be found [13,29], but 
those for the unstable Ca1.5SiO3.5 and Ca0.5SiO2.5 lack. 
Fortunately, the relation of calorimetric properties of 
CSCs with the mole ratio of Ca to Si, just as shown in 
Fig. 1, is perfectly linear. Thus, the characteristic 
enthalpies and entropies of Ca1.5SiO3.5 and Ca0.5SiO2.5 
can be reasonably and easily extrapolated from the 
experimental values of those stable CSCs. 
 

 
Fig. 1 Gibbs free energy, enthalpy and entropy of four real 
existed CSCs (It must be noted that molar thermodynamic 
quantities of G, H and S correspond to a mole of unit SiO4 
instead of a mole of CaO+SiO2 although the quantities of 
Ca1.5SiO3.5 and Ca0.5SiO2.5 lack, they can be reasonably 
extrapolated from the data of the real existed CSCs) 
 

It must be noted that the molar quantities of the G, 
H, and S in Fig. 1 correspond to a mole of unit SiO4 
instead of a mole of CaO+SiO2. Here, S is not the 
non-configurational but the total entropy. In order to 
achieve the non-configurational entropy, the 
configurational part must be subtracted from the total. 

Because only one or two kinds of Qis exist in any CSC 
under the constraint of minimum types of structural units, 
the molar fraction of Qi can be directly calculated from 
the molar fraction of macro components. Thus, the 
configurational entropy can be directly calculated from 
Eq. (10) for all CSCs, just as shown in Fig. 2(a) and the 
result is displayed in Fig. 2(b). The vertical lines in Fig. 
2(a) indicate the molar fractions of structural units of five 
CSCs with only one kind of Qi and correspond to the 
minimum entropies highlighted by the five circles in Fig. 
2(b). Subtracting the calculated configrational entropies 
of CSCs from the calorimetric entropies of five CSCs, 
the non-configrational entropies, or says, the 
characteristic entropies of Qis can be achieved. Then, the 
final values are collected in Table 4. 
 

 
Fig. 2 Distribution of microstructural units (a) and 
corresponded configurational entropy (b) of CSCs for full 
composition range 
 

Above deduction of this model implies its future 
utilization as the subsequent application of some 
structural analyzing experiments, such as Raman and 
NMR spectra. But the first step is to make this model 
self-consistent using the optimization mechanism to find 
the minimum of Gibbs free energy under a certain 
thermodynamic condition. At the same time, the relative 
abundance of structural units corresponding to the 
minimum of systematic Gibbs free energy is also  
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Table 4 Characteristic enthalpies and entropies at 2000 K for 
calcium silicate melts 

Melt ,0Qi
H / 

(kJ·mol−1)
,0Qi

S / 

(kJ·mol−1·K−1)
,0

cf
Qi

S / 

(kJ·mol−1·K−1)
,0

ncf
Qi

S / 

(kJ·mol−1·K−1)
Ca2SiO4 

(Q0) 
−2000.71 0.4405 0 0.4405 

Ca1.5SiO3.5 

(Q1) 
−1704.79 0.3713 0.0094 0.3620 

CaSiO3 

(Q2) 
−1408.86 0.3022 0.0115 0.2907 

Ca0.5SiO2.5 

(Q3) 
−1112.94 0.2331 0.0118 0.2213 

SiO2 (Q4) −817.01 0.1639 0 0.1639 

 
automatically obtained, which is why we call the model 
self-consistent. From optimization theory, this optimizing 
process can be treated as the optimization problem under 
linear restrictions and resolved with the method of 
penalty function [30]. The express of the optimization of 
Gibbs free energy is 
 

( )min
s.t.  
      

G
≥
=

X
AX b
CX d

                                (11) 

 
where s.t. means satisfactory restrictions. The terms in 
above equation are all extended and interpreted in 
appendix. 
 
3 Results and discussion 
 
3.1 Static and statistic structural properties from MD 

simulation 
Partial radial distribution functions (RDFs) and 

corresponding coordinate number functions (CNNs) of 
Si−O and Si−Si, which are most important for the 
understanding of the distribution of structural units, are 
presented in Fig. 3. 

In these simulations, the average pair distances of 
Si−O, Ca−O, O−O and Si−Si are within the ranges of 
1.613−1.617 Å, 2.350−2.356 Å, 2.624−2.626 Å and 
3.170−3.194 Å for all six samples. WASEDA and 
TOGURI [31] determined the four quantities of CaSiO3 
melt by X-ray diffraction, orderly 1.61 Å, 2.35 Å, 2.67 Å 
and 3.21 Å, and the following three quantities of SiO2, 
1.62 Å, 2.65 Å and 3.12 Å. BELASHCHENKO et al [5] 
simulated the structures of alkaline earth silicate melts 
and obtained the quantities of 1.63 Å, 2.31 Å, 2.65 Å and 
3.26 Å for molten calcium silicate. KEEN and DOVE 
[32] quantified the relationship between the atomic 
structures of the amorphous, the ordered and disordered 
crystalline phases of silica using neutron total scattering 
measurements, and gave the quantities of Si−O, O−O 
and Si−Si for α-quartz, 1.609 Å, 2.616−2.645 Å and  

 

 
Fig. 3 RDFs and CNNs of Si−O and Si−Si from MD simulation 
 
3.059 Å. All of these quantities, from not only 
calculations but also XRD and neutron scattering, are in 
agreement with each other very well. Additionally, both 
CNNs in Fig. 3 of Si−O and Si−Si have platforms. The 
CNN platform of Si−O indicates the stable structural 
units via the corresponding y-axis value, whereas that of 
Si−Si reveals the connection between the units. From  
Fig. 3, a traditional conclusion can be achieved that the 
Si−O tetrahedron, which corresponds to the y-axis value 
of platform, i.e. 4, mainly constructs the network 
structure. Meanwhile, the platform of Si−Si, which can 
also offer the average coordinate number and 
consequently the degree of the systematic  
polymerization, becomes broader and lower with the 
decrease of SiO2. Pickup of the y-axis values of Si−Si 
platforms demonstrates a linear correlation with the 
molar fraction of CaO, as shown in Fig. 4. The rate of the 
line slope is −0.05667. If Ca is complete network 
modifier and Si is network former, the ideal rate should 
be −0.06, which is slightly lower than the simulated 
value. Thus, we can say that Ca plays a very strong 
network modifier role in the structure of silicate melt. 

According to the sorting of bridging and 
non-bridging oxygen, Si−O can also be divided into 
Si−Ob and Si−Onb, where Ob and Onb denote the bridging 
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and non-bridging oxygen. The average bond lengths of 
Si−Ob and Si−Onb, which is very important for the 
vibrational properties, are displayed in Fig. 5. It is 
obvious that the effect of composition on Si−Onb length 
is much stronger than that on Si−Ob. This character can 
explain the frequency-shifting phenomenon in the 
experimental Raman spectra. 
 

 
Fig. 4 Average coordinate number of Si−Si extracted from 
CNNs of Si−Si 
 

 
Fig. 5 Bond lengths of Si−Ob and Si−Onb from MD simulation 
 

For the main purpose, the simulated equilibrium 
configurations are decomposed into five kinds of Si−O 
tetrahedral units and the concentrations are listed in 
Table 5. In the decomposition process, two steps were 
performed: the first is to search for the coordinated 
oxygen in the whole configuration including the images 
in the neighboring periodic boxes, and the next is to 
determine the number of bridging oxygen in each 
tetrahedron, which includes the judgment of bridging or 
non-bridging oxygen. That’s to say, a cutoff distance 
must be provided in order to determine whether the 
selected Si−O pair is bonded with each other. From   
Fig. 3(a), a reasonable cutoff distance, 0.2 nm, can be 
achieved. In fact, any value falling into the range of 
about 0.19−0.26 nm, which corresponds to the first 

minimum of pair RDF of Si−O, can be selected as the 
cutoff distance. By comparing with the NMR results of 
the alkaline silicate glasses [33], the simulated 
distribution of calcium silicate melts is broader but has a 
very similar trend. These simulated concentrations will 
be discussed by comparing with the results of 
experimental Raman spectra and our thermodynamic 
model later. 
 
Table 5 Simulated concentrations of Si−O tetrahedral units 
(molar fraction) 

Sample Q0 Q1 Q2 Q3 Q4 

C30S70 0 0.0191 0.1509 0.4385 0.3915

C35S65 0 0.0408 0.2219 0.4471 0.2902

C40S60 0 0.0583 0.2891 0.4374 0.2010

C45S55 0 0.1181 0.3593 0.4230 0.0996

C50S50 0.0430 0.1763 0.3955 0.3346 0.0506

C55S45 0.0618 0.2663 0.4146 0.2387 0.0186

 
3.2 Results of structural thermodynamic model and 

comparison of three kinds of results 
One can tell that the results from both MD 

simulations and experiments are discrete but not 
continuous. Therefore, the structural thermodynamic 
model was constructed to give the panorama of the 
distribution of Qi. Figure 6(a) displays the complete 
distribution at 2000 K when the normalization  
condition is acted on the whole microstructural units,  

4

Q Ca O
0

1
i

i
X X X

=
+ + =∑ . We can find that the free 

oxygen appears only in the region of XSiO2<0.33, which 
has been proven by various experimental and theoretical 
studies. Because most researchers in this and related 
fields are more concerned about the distribution of five 
Qis in the composition range of 0.33<XSiO2<1 when 
XQ0+XQ1+XQ2+XQ3+XQ4=1, Fig. 6(b) also shows this kind 
of distribution. In 1991, MAEKAWA et al [33] have 
studied the distribution of Qis in alkaline silicate glasses 
instead of melts by means of 29Si NMR and the changing 
trend with the composition is very similar with the 
results of our model. Meanwhile, the distributions of Qis 
from MD simulation and thermodynamic model have 
been compared with each other in Fig. 6(c) in addition to 
experimental data from Raman spectra [11,22,34], and 
give a very good agreement, especially the results of MD 
simulation and thermodynamic model. 

The original spectra [11, 22, 34] show a very clear 
effect of temperature and frequency on the intensity and 
the background radiation makes it very difficult to 
compare with each other. Thus, the corrected lines for 
temperature- and frequency-dependent scattering 
intensity [35] are used. All spectral lines have two  
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envelopes located at 500−700 cm−1 and 600−1200 cm−1, 
respectively. Meanwhile, the series of envelopes change 
systematically with the calcium oxide concentration. 
With the increase of calcium oxide, the frequency of 

high-frequency envelope shifts from about 1030 to 860 
cm–1 and that of medium-frequency envelope shifts from 
550 to 620 cm−1. The similar phenomenon occurs for the 
intensities of these two envelopes. According to our 

Fig. 6 Distribution of structural 
(tetrahedral) units from thermodynamic 
model, MD simulation and in-situ 
high-temperature Raman spectra 
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previous theoretical study of Raman spectra [22,36], the 
medium-frequency envelope is mainly contributed by the 
symmetrical bending of bridging oxygen (SBB mode) 
Si−Ob−Si, and for the high-frequency envelope, the 
symmetrical stretching (SS mode) of the Si−O bonds in 
tetrahedron and further analysis indicate that the 
contribution of stretching motion of non-bridging oxygen 
to SS mode is much greater than that of bridging oxygen. 
From the MD simulated results in Fig. 5, the bond length 
of Si−Onb becomes longer with the increase of CaO, but 
very slight change for Si−Ob. That’s to say, with the 
increase of CaO, the action of Si on Onb becomes weaker 
and consequently the red shift of high-frequency 
envelope occurs with the change of composition. Plenty 
of works have proved that the high-frequency envelope 
in Raman spectra is contributed by various Qi except Q4. 
Thus, in order to achieve the concentration of Qi, the 
high-frequency envelopes should be deconvolved into 
several single bands just overlapped with each other as 
follows: 810−850 cm−1 for Q0, 900−950 cm−1 for Q1, 
1000−1050 cm−1 for Q2 and ~1100 cm−1 for Q3, from the 
reviews of McMILLAN [12] and the studies of 
BRAWER and WHITE [37] about the Raman shifts of 
silicate glasses and crystals. As for the SS mode of Q4 in 
the high-frequency region, its intensity is so weak that no 
signal for it can be detected even in the spectra of 
amorphous SiO2. The theoretical explanation for the 
frequency and intensity regulations can be found in  
Refs. [22,36]. From the Raman scattering theory, the area 
fractions under the characteristic bands do not directly 
represent their relative abundance. There is a factor 
named Raman scattering coefficient defined as follows:  

i i iA M C= ×                                 (12) 
 
where Mi, Ai and Ci denote the molar fraction, area 
fraction of characteristic band of Qi and its 
corresponding Raman scattering coefficient, respectively. 
A major difficulty in computing the relative abundances 
of Qis from Raman spectra lies in the determination of 
these relative Raman scattering coefficients. In studies of 
alkali silicate melts, MYSEN and FRANTZ [17] used 
NMR data[38] in conjunction with their Raman data for 
sodium silicate to calculate the ratio of Raman scattering 
coefficients for Q3 and Q2. YOU et al [34] have also 
given the same ratio with the inner standard of 
polycrystal NaNO2 powder. In this work, we used our 
theoretical results of the five relative Ci [36,39]: 1.0 for 
Q0, 0.518 for Q1, 0.249 for Q2, 0.099 for Q3 and 0.016 
for Q4, which agree very well with the experimental 
values of MYSEN and FRANTZ [17] and YOU et al 
[34]. By dividing the coefficients from Ai as shown in  
Eq. (12), we can obtain the relative abundance of Q0−Q3. 
To further achieve the abundance of Q4, the mass 
conservation formulated by Eq. (3) must be used. Then, 
after the normalization process we obtained the final 

molar fractions of Qi from Raman spectra as shown in 
Fig. 6. 

The theories applied in these three kinds of methods 
are completely different from each other, but they 
achieved agreeable results. The key is the equilibrium of 
system. Although the Raman spectra root in the 
vibrations of structural units, but the system when being 
measured are in a macro-thermodynamic equilibrium 
condition, which indicates that the Gibbs free energy of 
system is the minimum and this condition is just the only 
convergence condition of the thermodynamic model. As 
for the MD simulation, when analyzing the distribution 
of units, the simulated system has been relaxed around 
the equilibrium state for a period of time. So, all the three 
methods gave a unique distribution of units under 
thermodynamic equilibrium and that’s to say, reached the 
same goal by different routes. The initial purpose to 
construct this thermodynamic model is to calculate the 
equilibrium thermodynamic properties of silicate melts 
with the utilization of the microstructural information 
obtained from spectral measurements, e.g. 
high-temperature Raman spectra and NMR. So, the 
agreement has partly proven the probability of this kind 
of application. Attention should be paid to a fact that this 
model can only be applied to the melts instead of glasses 
because the glasses are in the unstable state, which is not 
met for the basic demand of this model. 

From the viewpoint of structural thermodynamics, 
the master of the distribution of Qi in equilibrium is 
so-called disproportionating reactions between different 
Qis: 
 

1 12Q Q Qi i i− += +                             (13) 
 

Farther analysis of Fig. 6(b) can achieve the 
following five divisions in the composition range of 
0.33<XSiO2<1, which indicates the different mastering 
reactions in different divisions just as listed in Table 6. 
With the instruction of Table 6, the further studies of 
determination of the equilibrium constants of these three 
kinds of disproportionating reactions become possible. 
 
Table 6 Mastering disproportionating reactions in different 
divisions corresponding to five divisions 

Division (molar 
fraction of SiO2) 

Mastering 
disproportionating reaction 

0.33−0.36 2Q1=Q0+Q2 

0.36−0.41 2Q1=Q0+Q2, 
2Q2=Q1+Q3 

0.41−0.66 
2Q1=Q0+Q2, 
2Q2=Q1+Q3 
2Q3=Q2+Q4 

0.66−0.76 2Q2=Q1+Q3 
2Q3=Q2+Q4 

0.76−1.00 2Q3=Q2+Q4  
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3.3 Distribution of connections of Qi−Ca−Qj and 

Qi−[Ob]−Qj 
Between the tetrahedral units, two kinds of 

connections are introduced denoted as Qi−Ca−Qj and 
Qi−[Ob]−Qj, which represent, the connection via the 
electrovalent bond between non-bridging oxygen Onb and 
cation Ca2+ and the connection via sharing bridging 
oxygen Ob, respectively. In fact, these connections 
indicate the properties of super structural units in 
calcium silicate melt, such as the rings, sheets, chains 
and disordered three-dimension network. They are also 
the important structural properties to influence the macro 
thermodynamic and dynamic properties. 

In our thermodynamic model, after the achievement 
of distribution of Qi, we can estimate the distributions of 
these two kinds of connections. Because the 
configurational entropy is the direct quantification of 
these distributions, and so, we can obtain the following 
relations according to the equilibrium condition: 
 

( ) ( )Q Q4 4
i jijR i X j X∝ − −                    (14) 

 
Q Qi jijB iX jX∝                              (15) 

 
where Rij represents the fraction of connection of 
Qi−Ca−Qj and Bij is the fraction of Qi−[Ob]−Qj. Above 
relations are just proportional and consequently, the 
calculated quantities of Rij and Bij must be normalized 
obeying the normalization restrictions of  
 

3

0
1ij

i
j i

R
=
≥

=∑  and 
4

1
1ij

i
j i

B
=
≥

=∑ .  

 
The results are displayed in Fig. 7. In the past century, 
most attentions were paid to the so-called equivalent 
connections, especially the equivalent connection 
between the same Qi via bridging oxygen, e.g. 
Q4−[Ob]−Q4, Q3−[Ob]−Q3 etc. For example, most studies, 
e.g. Ref. [40], of the vibrational spectra of complex 
structural units of amorphous silicates were always 
concentrated to the ring, chain or sheet constructed with 
same kind of Qis, which indicate that all the connections 
in the structural cells are equivalent. These are based on 
an assumption that in silicate melt, equivalent connection 
always precedes non-equivalent connection. This 
assumption has never been verified but is supported for 
the first time by our calculation of the distribution of 
connections to some extent. As shown in Fig. 7, the bold 
lines, which figure the distribution of dominant 
connections, are all constructed with the equivalent 
connections. That’s to say, for any composition, the most 
dominant connection is equivalent connections. 
Additionally, with the reference of the distribution of Qi 
(Fig. 6(b)), it can be found that the compositions 
corresponding to the maximum of equivalent connection 

 

 

Fig. 7 Distributions of connection of Qi−Ca−Qj (a) and 
Qi−[Ob]−Qj (b) (The bold lines figure the distribution of 
dominant connections) 
 
are different from the compositions corresponding to the 
maximum of the tetrahedral units: the location of 
maximum of Qi−Ca−Qi shifts to the right side relative to 
the position of the maximum of Qi and that for 
Qi−[Ob]−Qi shifts to the left, e.g. XSiO2(R22

max)> 
XSiO2(XQ2

max) > XSiO2 (B22
max). 

 
4 Conclusions 
 

In this work, two methods were applied to studing 
the distribution of microstructural units in CaO−SiO2 
melts. Firstly, MD simulation gave the result that the 
average coordinate number of oxygen around silicon is 
very stable, 4, which indicates that the stable structural 
units in calcium silicate melts are different Si−O 
tetrahedra. Secondly, we present the deduction of a 
newly constructed thermodynamic model from the basic 
definition of microstructural units. Finally, by comparing 
the discrete results from MD simulation and referenced 
Raman spectra with the continuous result of the newly 
constructed thermodynamic model, we reached the same 
goal by different routes and obtained the panorama 
distribution of Qi and their connections. 
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Appendix 
The extension and interpretation of terms in Eq. (11) 

are 
 

T
Q0 Q1 Q2 Q3 Q4 O CaX X X X X X X⎡ ⎤= ⎣ ⎦X (16) 

 
b=[0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1]T               (17) 
 

[ ]T0 1 0=d                               (18) 
 

=C  

2CaO CaO CaO CaO CaO SiO0

1 1 1 1 1 1 1
2 1.5 1.0 0.5 1 0

X X X X X X

a a a a a

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦  

         (19) 
 

2CaO SiOa X X=                             (20) 

1
1 0

1
1

1
0 1

1
1

1 0
1

1
1

0 1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

A            (21) 

 
where a is the mole ratio of CaO to SiO2, which is 
practically defined as the basicity of metallurgical slag. 
The first fourteen inequality restrictions indicate the 
general limits to the molar fraction, 0≤Xi≤1. The first two 
equality restrictions are the independent correlations with 
the macro components of {XCaO, XSiO2} and the final 
equality restriction is the normalizing condition. 
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硅酸钙熔体局域结构的经典分子动力学模拟与 
结构热力学模型的比较 

 
吴永全，戴 辰，蒋国昌 

 
上海大学 材料科学与工程学院，现代冶金与材料制备重点实验室，上海 200072 

 
摘  要：通过经典分子动力学模拟及一个新建的结构热力学模型计算获得了硅酸钙熔体的局域结构单元的全程分

布。将这两种方法获得的 5 种 SiO 四面体的 Qi 分布进行比较，并与 Raman 光谱实验结果进行比较，结果吻合得

非常好。这不仅给出了微结构单元在全成分范围内的全景分布，而且证明了我们的模型适合于针对光谱实验数据

的后续热力学计算。与此同时，由不同歧化反应控制的 5 个成分区间也被精确划分。还从该结构热力学模型中首

次获得了 Qi 之间的两种连接方式 Qi−Ca−Qj和 Qi−[Ob]−Qj 的分布情况，并由此证明所有成分中都是以等价连接为

主要的连接方式。 

关键词：微观结构单元分布；分子动力学模拟；结构热力学模型；硅酸钙熔体 
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