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Abstract: An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass 
forming alloys. A group of Zr−Al−Ni−Cu and Cu−Zr−Ti−Ni bulk metallic glasses were designed based on the dc and their dc values 
were predicted by the ANN model. Zr−Al−Ni−Cu and Cu−Zr−Ti−Ni bulk metallic glasses were prepared by injecting into copper 
mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results 
show that the predicted dc values of glass forming alloys are in agreement with the corresponding experimental values. Thus the 
developed ANN model is reliable and adequate for designing the composition and predicting the dc of glass forming alloy. 
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1 Introduction 
 

Metallic glasses have drawn a lot of interests 
because of their superior physical, mechanical and 
chemical properties compared with the corresponding 
crystalline counterparts [1,2]. In particular, the 
development of bulk metallic glasses (BMGs) widens 
their applications and extensively triggers the 
investigation of glass forming ability (GFA) of alloys. 

There are many methods for estimating the GFA of 
glass forming alloys. One includes empirical rule 
proposed by INOUE and ZHANG [3] and the electron 
concentration rule proposed by CHEN et al [4]. These 
rules can not quantitatively estimate the GFA of the 
alloys and even there are opposite cases [5]. The second 
method is the characterization parameters, such as Kgl [6], 
∆Tx [7], Trg [8,9], γ [7, 9], γ* [10] and ν [11]. These 
parameters can be obtained after the amorphous alloy has 
been prepared and/or even there are opposite cases [12]. 
The third method is the mathematical and/or physical 
equation [9,13−16]. For example, INOUE et al [15] 
provided an equation for the estimation of critical 
cooling rate Rc. LU and LIU [9,16] proposed some 

empirical relationships for the prediction of the Rc. 
However, the equation includes some parameters which 
are difficult to obtain and/or their reliability depends on 
the number of the data. CAI et al [17,18] tried to relate 
the Rc with the physical and/or chemical parameters. 
Although better results were obtained and these 
parameters were also easily calculated, these 
relationships can not characterize in the commonality. 
Finally, researchers proposed some models from the 
thermal, topological and physical points of view. For 
example, the composition located at deep eutectic point 
was designed by thermodynamics [19]. It is clear that its 
result would deviate from the practical case because the 
formation of the metallic glass is a non-equilibrium 
solidification procedure. From the topological structure, 
it was found that the atomic size ratio [20], the average 
electronegativity difference [21], and the local packing 
efficiency [22] were strongly related with the GFA of 
alloys. However, these parameters are difficult to be 
calculated for the multi-component alloy. PANG et al 
[23] have recently designed the composition of Ni−Hf 
amorphous alloys based on the cluster whose type and 
magnitude are difficult to be defined. GUO and LIU [24], 
and CAI et al [25] have recently estimated the Rc for the 
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formation of amorphous alloys from the dc from the 
thermodynamic point of view. However, the 
thermodynamic model contains many parameters which 
are difficult to be measured and depend on the 
temperature. Among above mentioned parameters, the dc 
can be directly used to evaluate the GFA of glass 
forming alloys. However, the dc of the glass forming 
alloy can be obtained through a large number of the 
experiments and depends on the experimental condition. 
Can it be quickly and reliably estimated ahead of the 
experiments? 

It is well known that the dc is influenced by physical 
and chemical factors. The relationships between the dc 
and these factors are very complex, resulting in the 
difficult description of the relationships by a 
mathematical and/or physical model. Artificial neural 
network (ANN) technique is thought to be a reliable 
method for the resolution of the complex system and has 
been effectively used for the composition design, 
technology optimization, and performance prediction 
[26−33] due to its perfect performance, such as 
self-organization, self-adaption, strong learning and 
anti-interference capacity. Moreover, the ANN technique 
has been used to predict parameters for the metallic 
glasses and reliable results are obtained. For example, 
KEONG et al [34] established an ANN model for 
reliably predicting the crystallization temperatures of the 
Ni−P based metallic glasses. CAI et al [35−37] 
established ANN models for predicting Trg, ∆Tx and Rc of 
glass forming alloy, respectively. But there are no reports 
for the prediction of the dc of glass forming alloy by 
ANN technique. 

In the present work, a computer model based on 
radial basis function artificial neural network (RBFANN) 
is designed for prediction and simulation of the dc of 
metallic glass. In addition, a group of Zr−Al−Ni−Cu bulk 
metallic glasses are designed and their dc values are 
predicted by the RBFANN model. It is found that the 
predicted dc values are in good agreement with the 
corresponding experimental values. 
 
2 Experimental 

Zr−Al−Cu−Ni and Cu−Zr−Ti−Ni shown in Tables 1 
and 2 alloys with nominal compositions (mole fraction, 
%) were pre-alloyed more than five times by arc melting 
pure metal elements in a Ti-gettered argon atmosphere. 
These master ingots then were surface-polished, 
followed by induction-melting inside quartz tubes in 
argon atmosphere, then injected into copper mold to 
obtain d1−10 mm conical samples. The amorphous 
structures and the determination of the dc of as-cast 
alloys were ascertained using X-ray diffraction (XRD) 
with a XD-3A diffractometer with Cu Kα. 

Table 1 Predicted and tested dc values for Zr−Al−Ni−Cu bulk 
metallic glasses developed in this work 

dc/mm 
Bulk metallic glass 

Tested Predicted
Error/%

Zr54Al13Cu18Ni15 6.5 6.6 1.5 

Zr60.5Al12.1Cu10.95Ni16.45 7.5 8.0 6.7 

Zr61.5Al10.7Cu13.65Ni14.15 5.5 5.8 5.5 

Zr62Al10Cu15Ni13 5.0 5.2 4.0 

Zr62.5Al12.1Cu7.95Ni17.45 7.5 8.1 8.0 

Zr63.5Al10.7Cu10.7Ni15.1 6.0 6.5 8.3 

Zr64Al10.1Cu11.7Ni14.2 5.0 5.2 4.0 

Zr65Al8.7Cu14.4Ni11.9 4.0 4.5 12.5 
 
Table 2 Predicted and tested dc values for Cu−Zr−Ti−Ni bulk 
metallic glasses developed in this work 

dc/mm 
Bulk metallic glass 

Tested Predicted 
Error/%

Cu50Zr40Ti10 2.0 2.3 15.0 

Cu50Zr40Ti9.5Ni0.5 3.0 3.2 6.7 

Cu50Zr40Ti9Ni1 4.0 3.8 5.0 

Cu50Zr40Ti8Ni2 5.0 5.2 4.0 

Cu50Zr40Ti7Ni3 3.0 2.8 6.7 

Cu50Zr40Ti6Ni4 2.0 1.8 10 
 
3 ANN model 
 

Back-propagation artificial neural network 
(BPANN) and radial basis function artificial neural 
network RBFANN are thought to be general methods for 
simulation and prediction modeling. The BPANN has 
stronger generalization capacity, but it has some 
shortcomings. It is difficult to determine learning rate, 
initial weight, objective error, and the numbers of hidden 
layers and of neurons in hidden layer. Moreover, it 
would result in the decrease of convergent rate and even 
be trapped in a local minimum if these parameters can 
not be suitably and coordinately selected. Nevertheless, 
the RBFANN has some merits, such as only one adjusted 
parameter, rapid training procedure and zero error 
[26−29,35−37]. In addition, the RBFANN is 
advantageous of the BPANN for better approximating 
and sorting capacity, and quick learning rate. The base 
functions among the nodes of the hidden layers for the 
RBFANN characterize in locality, indicating that the 
RBFANN is suitable for solving the complex, nonlinear, 
and local problems. Thus, MATLAB 7.0 package 
(Neural Network Toolbox from The Math Works Inc.) 
was used to create the RBFANN model in the present 
work. The modeling procedures are as follows. Firstly, 
the data is collected, analyzed and pre-processed. Then 
the pre-processed data are divided into two kinds of data, 



An-hui CAI, et al/Trans. Nonferrous Met. Soc. China 24(2014) 1458−1466 

 

1460 

i.e., one for training and the other for testing. The third 
step is to train the neural network. Lastly, the trained 
neural network is tested. 

Sixteen parameters strongly influencing the dc are 
selected for the inputs of RBFANN model. These 
parameters are mixing entropy (Smix), difference in 
atomic radius ratio (Δd), average atomic radius (de), 
difference in atomic electronegativity ratio (Δe), average 
atomic electronegativity (ee), Δd /Δe, de/ee, ionicity index 
(v), fusion heat (ΔHm), fusion temperature (Tm), ΔHm/Tm, 
specific heat capacity (cp), thermal conductivity (λ), 
density (ρ), thermal diffusivity (α=λ/ρcp), and thermal 
storage coefficient (b=(λρcp)1/2). The reasons for the 
selection and the calculation of these parameters are 
shown in Refs. [17,18,24,35−37]. In addition, it should 
be noted that the dc is used to be the output of RBFANN 
model. 
 
4 Results and discussion 
 

The RBFANN model for predicting and simulating 
the dc consists of 16 inputs and 1 output. These 
parameters are calculated by weighted average method 
with the weight of atomic percentage of each element in 
metallic glasses [17,18]. Then, these input and output 
parameters are normalized in the region of (0, 1) to 
improve the training efficiency according to X=0.1+ 
0.8(x−xmin)/(xmax−xmin) (X is the normalization parameter, 
x is a parameter value, xmin and xmax are the minimum and 
maximum values for a parameter). The detailed training 
procedure of the RBFANN is shown in Refs. [35−37]. 
However, it should be noted that the ratio of the data for 
training and the datum for testing is confined to be 
99:100 during the training and testing procedures. A 
distribution parameter t was chosen to be 46 because 
there is the largest linear correlation coefficient (r) 
between the predicted dc values and the corresponding 
experimental values. Furthermore, the developed 
RBFANN model was verified by the data [38−49] in 
Table 3 in order to examine its efficiency. The 
relationship between the predicted dc and the 
experimental value is shown in Fig. 1. As shown in 
Table 3, the predicted dc values deviate from the 
corresponding experimental values. However, Fig. 1 
presents a better linear relationship and the linear 
correlation coefficient reaches up to 0.9951, indicating 
better global performance of the RBFANN model. 

In addition, a reliable model should be characterized 
in not only better global performance but also better local 
performance including the sorting capacity and the 
sensitivity to alloying elements. Figure 2 presents the 
relationships between the predicted dc values and the 
corresponding experimental values for Zr-based, 
Fe-based, Mg-based, Ni-based and Cu-based metallic 
glasses in Table 3. 

Table 3 Predicted and tested dc values of metallic glasses 
[38−49] 

dc/mm 
Metallic glass 

Predicted Tested 
Mg79.4Ni10.4Nd10.2 

Mg75.8Ni14.6Nd9.6 

Mg74.9Ni10.1Nd15 

Mg69.3Ni15.5Nd15.2 

Mg76.5Ni18.2Nd5.3 

Mg65.3Ni19.9Nd14.8 

Mg89.4Ni5.4Nd5.2 
Mg65Cu25Gd10 

Mg65Cu20Gd10Ni5 
Ni57Ti18Zr20Si5 

Ni57Pd25P18 

Ni47Ti23Zr15Pd10Si5 

Ni42Ti23Zr15Pd15Si5 

Ni59Ti13Zr14Sn3Nb9Si2 

Ni40Ti16.5Zr28.5Al10Cu5 

Ni59Ti16Zr15Sn3Nb5Si2 

Ni59Ti16Zr11Sn3Nb9Si2 

Ni59Ti11Zr18Sn3Nb7Si2 

Ni59Ti11Zr17Sn3Nb8Si2 
Ni59Ti9Zr20Sn3Nb7Si2 

Zr38Ti17Cu12.5Be22.5Co10 
Zr38Ti17Cu10.5Be22.5Co12 
Zr38Ti17Cu7.5Be22.5Co15 

Zr38Ti17Be22.5Co22.5 
(Zr60Al10Cu20Ni10)97.64Ti2.36 

(Zr60Al10Cu20Ni10)95.32Ti4.68 
(Zr60Al10Cu20Ni10)93.04Ti6.96 
(Zr60Al10Cu20Ni10)90.8Ti9.2 
(Zr60Al10Cu20Ni10)88.6Ti11.4 

Zr58Ti4Al10Cu20Ni8 

Zr59Ti3Al10Cu20Ni8 
Zr52Ti5Al10Cu18Ni15 

Zr51.92Ti5.28Al12Cu19.36Ni11.44 

Zr50.56Ti5.14Al14.3Cu18.85Ni11.14 

Zr46.75Ti8.25Cu7.5Ni10Be27.5 

Zr38Ti17Cu12.5Ni10Be22.5 
Zr41Ti14Cu12.5Be22.5Co10 

Zr38Ti17Cu12.5Ni5Be22.5Co5 
Fe65.65P11.94Mo3.98C4.97B5.5Ga3.98Cr3.98 

Fe50Co10Mo14C16B6Cr4 

Fe76.7Nb6B17Y0.3 

Fe76.4Nb6B17Y0.6 
Fe76.1Nb6B17Y0.9 

Fe75.5Nb6B17Y1.5 

Fe75Nb6B17Y2 

Fe74.5Nb6B17Y2.5 

Fe74Nb6B17Y3 

0.7 
3.1 
0.3 
1.7 
0.2 
3.0 
0.1 
7.4 
4.3 
1.8 

10.6 
3.2 
3.6 
2.6 
4.3 
2.3 
2.3 
2.3 
2.5 
2.5 
11.2 
11.3 
11.6 
8.5 
4.6 
4.6 
5.4 
7.7 
5.9 
4.5 
4.4 
5.6 
5.2 
5.6 

10.7 
11.6 
11.0 
11.0 
4.0 
4.4 
0.2 
0.4 
0.3 
0.6 
1.0 
1.5 
2.0 

0.6 
2.8 
0.7 
1.0 
0.1 
3.5 
0.1 
8.0 
5.0 
2.0 
10.0 
3.0 
3.0 
2.0 
5.0 
2.0 
2.0 
2.0 
2.0 
2.0 
12.0 
12.0 
12.0 
8.0 
4.0 
4.0 
5.0 
7.0 
6.0 
3.0 
3.0 
3.0 
5.0 
5.0 
10.0 
12.0 
12.0 
12.0 
4.0 
4.0 
0.3 
0.4 
0.3 
0. 5 
0.6 
0.7 
0.8 

to be continued 
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Continued 
dc/mm 

Metallic glass 
Predicted Tested 

Cu65Ti5Zr35 
Cu65Ti7.5Zr32.5 

Cu65Ti10Zr30 
Cu65Ti12.5Zr27.5 
Cu65Ti15Zr25 

Cu65Ti17.5Zr22.5 
Cu65Ti20Zr20 

Cu65Ti22.5Zr17.5 
Cu65Ti25Zr15 

Cu65Ti27.5Zr12.5 

3.8 
5.3 
5.2 
4.9 
3.5 
2.8 
2.8 
2.6 
2.7 
2.8 

3.0 
5.0 
5.0 
5.0 
4.0 
3.0 
3.0 
3.0 
3.0 
3.0 

 

 
Fig. 1 Relationship between predicted and corresponding tested 
dc values of metallic glasses in Table 3 
 

It is observed from Fig. 2 that the linear correlation 
coefficients are 0.9837 for Zr-based metallic glasses, 
0.9610 for Fe-based metallic glasses, 0.9887 for 
Mg-based metallic glasses, 0.9868 for Ni-based metallic 
glasses, and 0.9344 for Cu-based metallic glasses, 
respectively. It indicates that the established RBFANN 
model characterizes in better sorting performance. Of 
course, there is a difference among the linear correlation 
coefficients for different alloy systems. It would be due 
to the different magnitude of samples in the RBFANN 
model and/or the accuracy of the experimental dc values 
for different alloy systems. 

The sensitivity to large and minor change of the 
alloying elements is also investigated and presented    
in Fig. 3. It is clearly seen from Fig. 3 that although the 
predicted dc values deviate from the corresponding tested 
values, the change tendency of the predicted dc values to 
the alloying elements is in good agreement with that of 
the tested values except for Cu60Ti40−xZrx metallic glasses 
of 12.5%≤x≤22.5% and 27.5%≤x≤32.5% (Fig. 3(a)) and 
Zr38Ti17Cu22.5−xBe22.5Cox metallic glasses of 10%≤x≤15%  

 

 

Fig. 2 Relationships between predicted dc and corresponding dc 
value for Ni-based (a), Mg-based (b), Fe-based (c), Zr-based 
(d), and Cu-based (e) metallic glasses, respectively 
 
(Fig. 3(b)). Thus, the established RBFANN model is 
sensitive to the compositional change of the metallic 
glass. 

Furthermore, the dc values of other 218 metallic 
glasses were predicted whose tested dc values are 
uncertain, as shown in Fig. 4. Although the values 
between the predicted dc values and the corresponding 
tested values are different from each other (not shown 
here), the linear correlation coefficient is up to 0.9220 
(Fig. 4). It indicates better change tendency between the 
predicted dc values and the tested dc values. 

The dc values of Al-based metallic glasses [50−54] 
with worse GFA were predicted by the established 
RBFANN model, as shown in Table 4. It is obviously 
from Table 4 that the predicted and tested dc values of the 
Al-based metallic glasses are in better agreement with 
each other. The linear correlation coefficient is up to 
0.9347 (Fig. 5(a)), indicating that the predicted and 
tested dc values of the Al-based metallic glasses are in 
better agreement with each other in the change tendency. 
Interestingly, it is found from Fig. 5(b) that the change 
tendency for the predicted dc of Al85Ni5Y8−xCo2Fex 
(1≤x≤5) to Fe content is in better agreement with that for 
the corresponding tested ones. Thus, the established 
RBFANN model is reliable and adequate. 
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Fig. 3 Change of predicted and tested dc values of Cu60Ti40−xZrx metallic glasses on Zr (a), Zr38Ti17Cu22.5−xBe22.5Cox metallic glasses 
on Co (b), (Zr60Al10Cu20Ni10)100−xTix metallic glasses on Ti (c), and Fe77−xNb6B17Yx metallic glasses on Y (d) 
 

 

Fig. 4 Relationship between predicted dc and tested values of 
some metallic glasses  
 

On the other hand, the compositions of a group of 
Zr−Al−Ni−Cu metallic glasses [12,55−57] were 
optimized by the established RBFANN model and their 
dc values were carefully defined by XRD results (not 
shown herein). The tested and predicted dc values are 
listed in Table 1. As shown in Table 1, although the  
error between the tested and the predicted dc values of  

Table 4 Predicted and tested dc values for Al-based metallic 
glasses [50−54] 

dc/mm 
Metallic glass 

Tested Pred. 

Al85Ni5Y3Co2Fe5 

Al85Ni5Y4Co2Fe4 

Al85Ni5Y5Co2Fe3 

Al85Ni5Y7Co2Fe1 

Al83Ni7.9Y9.1 

Al82Ni8.4Y9.6 

Al81Ni8.9Y10.1 

Al85Ni5Y4Co2Nd4 

Al84Ni7.5Y8.5 

Al85Ni3Y8Co2Cu2 

Al85Ni4Y8Co2Cu1 

Al85Ni8Y5Co2 

Al79Ni9.8Y11.2 

Al78Ni10.3Y11.7 

Al77Ni10.7Y12.3 

Al75Ni11.7Y13.3 

0.58 

0.48 

0.38 

0.15 

0.23 

0.25 

0.28 

0.95 

0.20 

0.23 

0.16 

0.47 

0.34 

0.37 

0.40 

0.47 

0.79 

0.68 

0.46 

0.23 

0.35 

0.21 

0.38 

1.43 

0.28 

0.16 

0.10 

0.38 

0.27 

0.31 

0.35 

0.41 
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Fig. 5 Relationship between predicted and tested dc values of 
Al85Ni5Co2Y8−xFex (x=1,3,4,5) metallic glasses listed in Table 4 
(a), and change of predicted and tested dc values for 
Al85Ni5Y8−xCo2Fex metallic glasses on Fe (b) 
 
Zr63.5Al10.7Cu10.7Ni15.1 metallic glass is up to 12.5%, the 
errors for other Zr−Al−Ni−Cu metallic glasses do not 
exceed 10%. It indicates that the predicted dc of 
Zr−Al−Ni−Cu metallic glasses accord with the 
corresponding tested values. In addition, the relationship 
between the predicted dc values and the tested values is 
presented in Fig. 6. It is clearly seen from Fig. 6 that the 
predicted dc values of Zr−Al−Ni−Cu metallic glasses are 
in better agreement with the tested ones because the 
linear correlation coefficient is up to 0.9911. 

In order to further examine the reliability of the 
RBFANN model, Cu−Zr−Ti−Ni glass forming alloys 
were also designed by the RBFANN. Their compositions 
are shown in Table 2. Their amorphous structures were 
ascertained by XRD and their XRD patterns are 
presented in Fig. 7. The dc values of Cu−Zr−Ti−Ni bulk 
metallic glasses developed in this work can be 
determined according to Fig. 7 and are listed in Table 2. 

As shown in Table 2, although the dc error of 
Cu50Zr40Ti10 bulk metallic glass is up to 15.0%, the errors 
of other Cu−Zr−Ti−Ni bulk metallic glasses do not  

 

 
Fig. 6 Relationship between predicted dc values and tested dc 
values of Zr−Al−Ni−Cu bulk metallic glasses developed in this 
work as shown in Table 1 
 
exceed 10.0%. It indicates that the predicted dc values of 
Cu−Zr−Ti−Ni bulk metallic glasses are in good 
agreement with the corresponding tested values. In 
addition, the relationship between the predicted dc values 
and the tested values is shown in Fig. 8(a). One can 
clearly observe from Fig. 8(a) that the linear correlation 
coefficient is up to 0.9801, indicating that the predicted 
and tested dc values of Cu−Zr−Ti−Ni bulk metallic 
glasses agree with each other. Figure 8(b) presents the 
change of the predicted and tested dc values of 
Cu−Zr−Ti−Ni bulk metallic glasses to Ni content. It is 
clearly observed from Fig. 8(b) that the change tendency 
of the predicted dc values is in good agreement with that 
of the corresponding tested values. It also indicates that 
the developed RBFANN model is sensitive to the Ni 
content in Cu−Zr−Ti−Ni glass forming alloys. In a word, 
the established RBFANN model can be reliably used to 
design the composition and predict the dc of glass 
forming alloy. 
 
5 Conclusions 
 

1) The RBFANN model can identify the type of 
alloys and elements and is sensitive to large and minor 
change of alloying elements, indicating its global, local, 
and sorting performance. The predicted results are in 
good agreement with the corresponding experimental 
values, indicating that the RBFANN model developed in 
this work is reliable and adequate for the prediction and 
the simulation of the critical dimension of glass forming 
alloys. 

2) The predicted dc values of Zr−Al−Ni−Cu and 
Cu−Zr−Ti−Ni bulk metallic glasses developed in this 
work are in good agreement with the corresponding   
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Fig. 7 XRD patterns of Cu50Zr40Ti10−xNix (0≤x≤4%): (a) x=0; (b) x=0.5%; (c) x=1%; (d) x=2%; (e) x=3%; (f) x=4% 
 

 
Fig. 8 Relationship between predicted dc values and tested dc values (a) and change tendency of predicted and tested dc values to Ni 
content (b) for Cu−Zr−Ti−Ni bulk metallic glasses developed by us in Table 2 
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experimental values. The change tendency of the 
predicted dc values is also in good agreement with that of 
the corresponding tested values. These results indicate 
that RBFANN model could be reliably used to optimize 
the compositions and predict the critical dimensions of 
glass forming alloys. 
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摘  要：建立一个用于预测和模拟玻璃形成合金的临界尺寸的人工神经网络模型；基于该人工神经网络模型优化

设计一系列 Zr−Al−Ni−Cu 和 Cu−Zr−Ti−Ni 块体非晶合金的成分并对其临界尺寸进行预测。采用真空喷注法制备

Zr−Al−Ni−Cu 和 Cu−Zr−Ti−Ni 块体非晶合金试样。这些块体合金的非晶态结构采用 X 射线衍射法进行表征并确

定这些合金的非晶形成的临界尺寸。结果表明，预测的临界尺寸与实验结果吻合较好，所建立的神经网络模型能

可靠地设计非晶合金的成分和预测非晶合金的临界尺寸。 

关键词：临界尺寸；玻璃形成合金；人工神经网络；非晶 
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