文章编号: 1004-0609(2014)05-1285-08

镁合金表面氟化镁钠膜形成机制及其生物腐蚀性能

方信贤1,章晓波1,王强2,巴志新1,王章忠1

(1. 南京工程学院 材料工程学院,南京 211167;
 2. 江苏康尚医疗器械有限公司,丹阳,212300)

摘要:采用浸泡法在 Mg-Nd-Zn-Zr 镁合金表面制备氟化镁钠膜,采用点滴法、电化学法和浸泡法评定镁合金基体 和氟化镁钠膜的耐蚀性,采用扫描电镜(SEM)和能谱仪(EDS)分析氟化镁钠膜试样腐蚀前后的形貌及成分。结果表 明,提高转化处理温度可显著减小氟化镁钠颗粒尺寸,而转化处理时间对颗粒尺寸影响较小;氟化镁钠颗粒通过 二维形核后的台阶生长机制和螺旋生长机制长大;氟化镁钠膜可显著降低 Mg-Nd-Zn-Zr 镁合金在模拟体液中的平 均析氢速率,在模拟体液中,氟化镁钠膜逐渐转变为氟化物和磷酸盐混合膜层,新膜层继续起到保护镁合金基体 的作用。

关键词: 镁合金; NaMgF₃膜; 模拟体液; 析氢速率; 腐蚀机制 中图分类号: TG146; R318.08 文献标志码: A

Formation mechanism and bio-corrosion properties of NaMgF₃ film on surface of magnesium alloy

FANG Xin-xian¹, ZHANG Xiao-bo¹, WANG Qiang², BA Zhi-xin¹, WANG Zhang-zhong

School of Material Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
 Jiangsu Konsung Equipment Co., Ltd., Danyang 212300, China)

Abstract: The NaMgF₃ films on the surface of Mg-Nd-Zn-Zr magnesium alloy were fabricated by immersion method. Their corrosion properties were valuated by dripping test, electrochemical test and immersion method, respectively. The microstructures of the original and corrosive samples were observed by SEM and their chemical compositions were analyzed by EDS. The results show that the size of NaMgF₃ particle is obviously reduced with the increase of conversion treatment temperature; however, it is little affected by the conversion treatment time. The NaMgF₃ particles grow by two-dimensional nucleation, step growth mechanism and screw growth mechanism. The average hydrogen evolution rate of Mg-Nd-Zn-Zr magnesium alloy in simulated body fluid (SBF) solution can be significantly decreased by NaMgF₃ film. The NaMgF₃ films gradually transform into a new film consisting of fluoride and phosphate in the SBF solution, which will continue to protect the magnesium alloy from the corrosion.

Key words: NaMgF3 film; SBF; magnesium alloy; hydrogen evolution rate; corrosion mechanism

生物镁合金具有可降解、密度与人体骨的接近、 弹性模量和屈服强度接近人体骨、可有效降低"应力遮 挡效应"等特点^[1],而且降解形成的镁离子是人体必需 常量元素之一^[2],在人工关节、骨修复材料、人工牙 齿、心脏起搏器、人工内耳电极、心血管支架等^[1-4] 医用器件领域存在巨大的应用前景。 镁合金在体内降解速度快,常导致实际服役寿命 与期望寿命不匹配,制约了其在医用领域的应用。整 体合金化^[5]和表面改性^[6-15]是提高镁合金耐蚀性的两 个重要途径。研究表明,在镁合金表面制备阳极氧化 镁膜^[6]、磷酸盐膜^[7]、钙磷涂层^[8-9]、PLGA 高分子 膜^[10]、氟化镁及其复合膜^[11-15]等进行表面改性,均可

基金项目:南京工程学院创新基金重大项目(CKJA201202);江苏省高校自然科学研究课题(12KJB430007)

收稿日期: 2013-09-05; 修订日期: 2014-01-14

通信作者: 方信贤, 副教授, 博士; 电话: 025-86118276; E-mail: fangxinxian@njit.edu.cn

1286

明显降低镁合金的生物降解速度。

王宪涛等^[14]的研究表明,氟化镁膜不仅具有降低 镁合金生物降解速度的作用,而且氟化镁膜中的氟还 有促进植入材料周围骨生成的作用。传统方法制备氟 化镁膜均采用高浓度的氢氟酸溶液进行转化处理,为 获得较厚的氟化镁转化膜,其工艺时间非常长,如李 绮等^[11]和王宪涛等^[14]制备氟化镁膜的转化处理工艺 时间分别达到 48 和 72 h。由于钠、镁是人体必需常量 元素^[2],氟具有促进骨生成作用^[14],为此,本课题组 研究者提出用转化处理时间较短的一种新型氟化镁钠 转化膜来改善镁合金生物降解性能的构想,与传统氟 化镁转化膜制备工艺相比,该转化膜的处理时间仅为 0.5 h 左右。由于这种新型氟化镁钠转化膜的制备方 法、耐蚀性及生物降解行为等未见文献报道,因此, 本文作者对氟化镁钠膜制备工艺、形成机制、耐蚀性 表征方法及在模拟体液中的降解行为等进行研究。

1 实验

1.1 转化膜的制备

采用线切割将直径为20mm的Mg-Nd-Zn-Zr挤压 棒切割成厚度为4mm的圆片,为便于实验时试样吊 挂,用台钻在试样边缘钻直径为2mm的圆孔,然后 用砂纸打磨、抛光,得到原始镁合金基体试样。

将镁合金基体试样碱性除油和水洗后,分别放入 温度为 80 和 90 ℃的转化处理液 1(40 g/L NaF+50 mL/L HF)中分别转化处理 10、20、30 和 60 min,以 及 90 ℃的转化处理液 2(40 g/L NaF+300 mL/L HF)中 转化处理 30 min,转化处理结束后将试样取出,先后 用水和酒精清洗,吊挂凉干,得到表面覆盖氟化镁钠 转化膜的镁合金试样。

1.2 转化膜的耐蚀性实验

分别采用点滴法测定变色时间、电化学法测量腐 蚀电位和腐蚀电流密度,浸泡法(析氢腐蚀)测量平均 析氢速率来评定镁合金基体和氟化镁钠转化膜的耐蚀 性。

点滴法参照 QJ/Z134-85 标准进行,点滴液由 30 mL 的 65%HNO₃、0.5 g KMnO₄和 950 mL 的去离子水 配制而成,变色时间越长,试样的耐蚀性越好。

用 PARSTAT2273 电化学工作站测量镁合金基体 和氟化镁钠膜试样的动电位极化曲线。采用标准三电 极系统,参比电极为饱和甘汞电极,辅助电极为铂电 极,工作电极为样品。用试样做工作电极时,留出的 工作面尺寸为 10 mm×10 mm,试样的其他表面用环 氧树脂固封。

电化学测量所用介质为模拟体液(SBF),其成分如 表1所列,温度为(37±1)℃,用HH-S水浴锅加热保 温。

表1 模拟体液(SBF)的成分

 Table 1
 Composition of SBF solution (g/L)

NaCl	KCl	Na ₂ HPO ₄ ·12H ₂ O		KH ₂ PO ₄	NaHCO ₃
8	0.4	0.12		0.06	0.35
MgSO ₄ ·7H ₂ O		CaCl ₂	MgCl ₂ ·6H ₂ O		Glucose
0.2		0.14	0.1		1

浸泡法测量析氢量的实验装置原理如图 1 所示。 模拟体液体积与试样表面积之比为 30 mL/cm²,每浸 泡 24 h 更换一次模拟体液,并记录析出氢气体积,浸 泡 5 d 后取出试样,分别用去离子水和酒精清洗后晾 干。浸泡腐蚀实验中平均析氢速率v的计算公式为

v = V/(St)

式中: *V*为总析氢体积, mL; *S*为试样表面积, cm²; *t*为浸泡时间, d。

图1 析氢量测试原理图

Fig. 1 Principle diagram of hydrogen evaluation test

1.3 转化膜的组织及成分分析

用 JSM-6360LV 型扫描电子显微镜(SEM)对浸泡 腐蚀前后试样表面组织形貌进行观察,用 GENESLS2000XMS60 能谱仪(EDS)分析试样表面成 分,由于 NaMgF₃转化膜的导电性较差,部分转化处 理试样在高倍观察前进行表面喷金处理。用 UltmaIV 型 X 射线衍射仪(XRD)和薄膜 XRD 测试技术对转化 膜进行物相分析。

2 结果与分析

2.1 转化处理工艺对 NaMgF₃转化膜组织的影响 当转化处理液 1 的温度为 80 ℃时,分别转化处理 当转化处理液 1 的温度为 90 ℃时,转化处理 30 min 得到的转化膜虽也由等轴状立方体颗粒组成,但 立方体颗粒尺寸显著细化,其边长约为 0.5 µm(见图 2(d)),且颗粒间的界面也变得比较模糊,与 80 ℃转化 处理 30 min 的转化膜相比,转化膜的致密度明显提 高。XRD 分析表明,80 ℃转化处理试样的转化膜为 氟化镁钠(NaMgF₃)转化膜(见图 2(e))。能谱分析表明, 80 和 90 ℃转化处理 30 min 制备的转化膜均由 F、Mg 和 Na 元素组成,但 80 ℃转化处理试样中 F、Na 和 Mg元素的摩尔分数分别为 32.66%、11.68%和 56.66%, 而 90 ℃转化处理试样中 F、Na 和 Mg 元素的摩尔分 数则分别为 5.75%、1.51%和 92.74%。由于能谱分析 时电子束穿透转化膜,90 ℃转化处理膜较薄,因此, 包含更多基体信息,即含更多 Mg。

能谱分析结果中 Mg 的含量可见,90 ℃转化处理 试样的能谱分析结果中包含更多来自基体的信息。

2.2 NaMgF₃转化膜的形成机制

镁合金表面 NaMgF,转化膜形成过程大致可分成 以下几个阶段:1) 当镁合金试样放入转化液时,试样 表面的氧化膜首先与转化液中的 H⁺发生下述反应溶 解: MgO+2H⁺→Mg²⁺+H₂O, 氧化镁膜溶解后, 裸露 出的镁合金基体将与转化液直接接触,此时,电位较 负的镁将与转化液中的 H⁺在界面上发生下述反应: Mg+2H⁺→Mg²⁺+H₂↑,这与转化处理时观察到氢气沿 试样表面缓慢逸出的实验结果一致; 2) 在界面区内, 上述反应产生的 Mg²⁺与界面区内的 F⁻和 Na⁺发生下述 反应: Na⁺+Mg²⁺+3F⁻→NaMgF₃↓,反应形成的 NaMgF₃ 沉积在试样表面,形成 NaMgF₃核心,界面区内 Mg²⁺ 浓度越高, NaMgF₃ 形核率越大; 3) 在镁合金表面形 成 NaMgF₃核心后,随着转化处理时间延长,NaMgF₃ 核心将不断长大。对 NaMgF3转化膜组织高倍观察表 明,在 NaMgF₃颗粒表面存在二维形核机制(见图 3(a) 箭头 C)、二维形核后的台阶生长机制(见图 3(b) 中箭 头 D)和螺旋生长机制(见图 3(a)中箭头 E)。由于 NaMgF,核心形核时间及生长环境差异,NaMgF,颗粒 尺寸也有所不同,如尺寸较大的 NaMgF3 颗粒孔隙中

图 3 NaMgF3转化膜的高倍 SEM 像

Fig. 3 High magnification SEM images of NaMgF₃ films: (a) Two-dimensional nucleation (C) and screw growth (E); (b) Step growth (D)

常可见到尺寸明显较小的 NaMgF₃颗粒(见图 2(a)箭头 B); 4)随着转化处理时间延长,一方面,已形成的 NaMgF₃颗粒将不断长大;另一方面,在 NaMgF₃颗粒 孔隙中还伴随着新的 NaMgF₃核心的形成及长大,当 NaMgF₃颗粒生长到相碰时,即在镁合金试样表面形 成一层多孔的 NaMgF₃转化膜; 5) NaMgF₃转化膜的 致密度随着转化处理时间的延长不断增大(见图 2(a)~(c)),而随着 NaMgF₃转化膜致密度增大,转化液 与镁合金基体表面间的接触面积越来越小,NaMgF₃ 晶体形核和生长所需的 Mg²⁺供给速率变得越来越小, 因此,当转化处理时间达到某一值后,进一步延长转 化处理时间,转化膜致密度和转化膜厚度的增大速率 将逐步下降。

NaMgF₃转化膜能谱分析结果中的 Na 和 F 全部来 自转化膜,一部分 Mg 来自转化膜,一部分则来自基 体,根据 Na 与 F 摩尔比为 1:1 和剩余 F 与 Mg 的摩尔 比为 2:1,扣除基体镁信息后的计算表明,镁合金在 80 ℃的转化处理液 1 中转化处理 30 min 后,得到的 NaMgF₃转化膜中 Mg 和 Na 的摩尔比为 0.89:1,而在 90 ℃的转化处理液 1 中转化处理 30 min 后,得到的 NaMgF₃转化膜中 Mg 和 Na 的摩尔比为 0.89:1,表 明转化处理形成的膜层中 Na、Mg 的摩尔比与其形核 和生长过程中界面区内 Mg²⁺供给速率有关。根据化学 反应动力学理论,化学反应 Mg+2H⁺→Mg²⁺+H₂↑的反 应速率随着反应温度的升高按指数规律增大,即在 90 ℃转化处理液 1 的界面区内 Mg²⁺供给速率显著大于 80 ℃转化处理液 1 的界面区内的 Mg²⁺供给速率,导 致 90 ℃转化处理得到的 NaMgF₃ 晶体中 Mg 和 Na 的 摩尔比增大。当界面区内 Mg²⁺供给速率进一步增大 时,NaMgF₃转化膜将向氟化镁转化膜转变。为求证 上述分析,将镁合金试样放入 90 ℃的转化处理液 2 中转化处理 30 min 后,对转化膜的组织观察表明,转 化膜由灰色膜层上较均匀分布的白色立方体颗粒组成 (见图 4(a)~(b)),能谱分析表明,白色颗粒由 Na、Mg、 F 元素组成,即白色颗粒为 NaMgF₃ 晶体中 Mg 和 Na 的摩尔比为 1.04:1,灰色膜层中不含 Na,因此,灰色膜为 MgF₂连续膜(见图 4(c)~(d)),该 实验结果与上述分析结果一致。

根据 NaMgF₃转化膜形成机制,转化处理液固定 时,转化膜中 NaMgF₃颗粒的平均尺寸主要取决于转 化处理温度,提高转化处理温度使 NaMgF₃颗粒平均 尺寸减小,因为提高转化处理温度不仅使界面区内 Mg²⁺浓度增大,而且还加速化学反应 Na⁺+Mg²⁺+3F⁻→ NaMgF₃↓的进行,NaMgF₃ 形核率增大使晶核横向生 长空间减小,导致 NaMgF₃ 颗粒平均尺寸减小。转化 处理时间对 NaMgF₃颗粒尺寸影响较小,因为转化液 和转化处理温度一定时,NaMgF₃ 形核率和晶核横向 生长空间一定。延长转化处理时间可明显提高转化膜 致密度,因为己形成的 NaMgF₃ 颗粒会不断长大,另 外在孔隙中还会形成新的 NaMgF₃ 颗粒并长大。上述 分析与图 2 的实验结果一致。

根据 NaMgF3 转化膜形成机制, 镁合金表面 NaMgF,转化膜厚度与转化处理温度和转化处理液中 的 HF 浓度有关。一方面,转化处理温度和 HF 浓度 越高,界面区内 Mg²⁺浓度越大, NaMgF₃形核率越大, 核心间距越小, NaMgF, 核心生长到相碰所需时间越 短;另一方面,转化处理温度和界面区内 Mg²⁺浓度越 高,Na⁺+Mg²⁺+3F⁻→NaMgF₃↓反应速度越快,NaMgF₃ 核心生长速率越快,而一旦 NaMgF,颗粒生长到相碰 时,其对镁合金基体和转化处理液间的隔离作用导致 NaMgF,膜纵向生长所需 Mg²⁺供给受到限制,因而过 高的转化处理温度和 HF 浓度不利于获得较厚的 NaMgF₃转化膜,转化处理液和转化处理时间相同时, 90 ℃转化处理试样表面转化膜的厚度低于 80 ℃转化 处理试样的。上述分析与镁合金试样在90℃的转化处 理液1和2中转化处理30min后的能谱分析结果,即 镁含量高于在 80 ℃的转化处理液 1 中转化处理 30 min 的结果一致,因为转化膜能被电子束穿透时,膜

图 4 NaMgF3转化膜形貌及 EDS 能谱图

Fig. 4 SEM images of NaMgF₃ conversion films ((a), (b)) and EDS patterns of white particle A (c) and dark zone B (d) shown in Fig. 4(b)

越薄基体信息越多,镁含量越高。

2.3 转化处理工艺对耐蚀性的影响

图 5 所示为不同转化处理温度时转化处理时间对 变色时间的影响。由图 5 可见,转化处理温度一定时, 变色时间随着转化处理时间延长而增大;转化处理温 度对变色时间也有影响,当转化处理时间较短时,

图 5 不同转化处理温度时转化处理时间对变色时间的影响

Fig. 5 Effect of conversion time on color change time at different conversion temperatures

90 ℃转化处理的转化膜变色时间大于 80 ℃转化处理时的,但当转化处理时间大于某一值后,80 ℃转化处理转化膜的变色时间反而大于 90 ℃转化处理时的。

当滴定液滴在试样表面时,一方面,滴定液可直 接从转化膜中孔隙渗入而与基体接触,高锰酸钾与基 体镁发生氧化还原反应使滴定液变色,因此,转化膜 致密度越低,变色时间越短;另一方面,转化膜在稀 硝酸溶液中是不稳定的,转化膜越薄,转化膜溶解所 需时间越短,变色时间也越短,因此,变色时间是转 化膜致密度和厚度的综合反映。当转化处理时间较短 时,由于 90 ℃转化处理形核率高及生长速率快,其致 密度较 80 ℃转化处理时的高,因而其变色时间较 80 ℃转化处理的长;而当转化处理时间较长时,转化膜 的致密度均较高,此时转化膜厚度是决定变色时间的 控制因素,由于 80 ℃转化处理的转化膜较 90 ℃转化 处理时的厚,因而其变色时间要比 90 ℃转化处理时的 长。

图 6 所示为镁合金基体和在 80 ℃的转化处理液 1 中转化处理 30 min 镁合金试样的动态极化曲线,转化 处理试样的自腐蚀电位约为-1.42 V,比镁合金基体的 自腐蚀电位-1.53 V 正移了 110 mV 左右;转化处理试 样的自腐蚀电流密度为 3.504×10⁻⁵ A/cm²,仅为镁合 金基体自腐蚀电流密度 7.518×10⁻⁵ A/cm² 的 46.6%, 可见,转化处理可明显改善镁合金的耐蚀性。

2.4 SBF 液中析氢速率及腐蚀机制

图 7 所示为镁合金基体和转化处理试样在 SBF 中 的平均析氢速率与浸泡时间的关系曲线。由图 7 可见, 镁合金基体和转化处理试样的平均析氢速率随着浸泡 时间延长表现出不同的变化趋势,对于未转化处理的 镁合金基体试样,随着浸泡时间的延长,平均析氢速 率呈现单调下降并逐渐趋于稳定;与此相比,转化处 理试样在浸泡初期随着浸泡时间延长,平均析氢速率 逐渐下降,但在浸泡大约 3 d 后,进一步延长浸泡时 间,平均析氢速率开始逐渐增大。由图还可见,转化 处理试样的平均析氢速率与转化处理工艺有关,转化 处理时间一定时,80 ℃转化处理试样的平均析氢速率 明显低于 90 ℃转化处理试样的;转化处理温度一定

Fig. 6 Potentiodynamic polarization curves of magnesium alloy and conversion film

Fig. 7 Hydrogen evolution curves of magnesium alloy and conversion film soaked in SBF

时,延长转化处理时间可降低平均析氢速率。

对 SBF 中浸泡试样表面形貌观察表明, 未转化处 理镁合金试样低倍下表面形貌由凹陷的平坦区和凸起 的粗糙区两部分组成(见图 8(a)中箭头 F 和 G 所指), 高倍进一步观察可见, 平坦区和粗糙区均呈现干枯河 床的"干泥巴"块状组织特征,"干泥巴"块的尺寸和 "干泥巴"块之间的缝隙较宽(见图 8(b)和(c)),在 3 个"干泥巴"块交界处常可见到尺寸较大的孔洞存在 (见图 8 中箭头 H 和 I 所示), 粗糙区腐蚀产物层厚度 较平坦区大。与此相比,转化处理试样低倍下表面比 较平坦(见图 8(d)),高倍下其表面形貌虽也具有"干泥 巴"块状组织特征,但"干泥巴"块的尺寸仅为未转化处 理镁合金试样的四分之一左右,且"干泥巴"块之间的 缝隙宽度也明显小于未转化处理试样的(见图 8(e)和 (f)),在3个"干泥巴"块交界处也未看到像未转化处理 镁合金试样表面的那种孔洞。不同温度转化处理的镁 合金试样,当转化处理时间均为30 min 时,80 ℃转 化处理试样的"干泥巴"块尺寸及"干泥巴"块之间 的缝隙宽度略小于 90 ℃转化处理镁合金试样的。对浸 泡试样表面(见图 8(e)和(f))进行能谱分析,转化处理镁 合金试样"干泥巴"块状组织中含有 F 元素(见图 8(g) 和(h)),表明浸泡腐蚀5d后,在"干泥巴"块状组织 中依然存在较多的难溶氟化物。

浸泡试样表面形貌观察和能谱分析表明,浸泡腐 蚀过程大致可分成以下4个阶段:1) 浸泡初期,对于 未转化处理试样,当试样表面不稳定的薄氧化镁膜在 SBF 中溶解后, SBF 液将与镁合金基体直接接触, 裸 露出的新鲜 Mg 具有较高的化学活性,在界面上将直 接发生 Mg+2H₂O→H₂↑+Mg(OH)₂反应,由于 SBF 与 镁合金的直接接触面积大,因而平均析氢速率较大; 与此相比,对于转化处理试样,由于 SBF 与镁合金基 体被难溶的 NaMgF3转化膜隔离, SBF 与镁合金基体 间的上述反应只能在转化膜中的孔隙界面上进行,由 于直接接触面积较小,因而平均析氢速率较小,这与 图 7 所示的平均析氡速率的测量结果一致; 2) 随着试 样在 SBF 中浸泡时间的延长, 未转化处理试样表面逐 渐变黑,根据图8所示的能谱分析结果,在试样表面 形成了由钙镁磷酸盐组成的腐蚀产物膜,钙镁磷酸盐 膜的存在降低了 SBF 与镁合金试样表面间的离子扩散 速率,导致平均析氢速率逐渐下降。对于转化处理试 样,一方面,由于在转化膜孔隙界面上腐蚀形成的钙 镁磷酸盐对孔隙的堵塞,导致 SBF 与镁合金基体间直 接接触面接进一步减小;另一方面,NaMgF3转化膜 部分溶解产生的 F 与腐蚀产生的 Mg²⁺ 或 SBF 中的 Ca²⁺反应形成的氟化物对转化膜的修复作用,导致其

图 8 浸泡(5 d)腐蚀试样表面 SEM 像及其 EDS 谱

Fig. 8 SEM images ((a)–(f)) and EDS patterns ((g), (h)) of samples after dipping corrosion for 5 d: (a)–(c) Original; (d), (e), (g): Treated at 80 $^{\circ}$ C for 30 min; (f), (h): Treated at 90 $^{\circ}$ C for 30 min

平均析氢速率进一步降低; 3) 试样浸泡 3 d 左右后, 对于未转化处理试样,其表面基本形成了一定厚度的 稳定腐蚀产物层,因而进一步延长浸泡时间,其平均 析氢速率基本趋于稳定(见图 7)。对于转化处理试样, 随着 NaMgF3转化膜的不断溶解,NaMgF3转化膜逐渐 被腐蚀形成的钙镁磷酸盐、未溶 NaMgF3及新形成的 氟化物混合物膜层所取代,混合膜层的保护效果不如 NaMgF3转化膜,导致其平均析氢速率逐渐增大;4) 浸 泡 5 d 后,未转化处理试样由于表面腐蚀形成的半固 态腐蚀产物层含水率高,因而晾干后形成的"干泥巴" 块尺寸较大; 根据图 8(g)和(h)所示的能谱分析结果, 转化处理试样腐蚀膜层由钙镁磷酸盐和氟化物组成, 该膜层由于含水率低,因而晾干后形成的"干泥巴"块 尺寸较小。

3 结论

1) 延长转化处理时间可提高 NaMgF₃转化膜的致 密度,但对 NaMgF₃颗粒尺寸影响较小;提高转化处 理温度可使 NaMgF₃颗粒尺寸减小。NaMgF₃颗粒生长 机制主要有二维形核、台阶生长机制和螺旋生长机制 两种。

2) 转化处理使 Mg-Nd-Zn-Zr 镁合金的变色时间 延长、平均析氢速率下降、自腐蚀电流密度降低、腐 蚀电位正移。

3) 随着浸泡时间的延长,未转化处理 Mg-Nd-Zn-Zr 镁合金平均析氢速率单调减小后趋于稳定,而转化处理试样平均析氢速率则表现为由大变小、 而后逐渐增大的趋势。

4) 转化处理 Mg-Nd-Zn-Zr 镁合金浸泡腐蚀形成 的"干泥巴"块状组织尺寸和"干泥巴"块间缝隙宽度均 小于未转化处理试样的。

REFERENCES

- 张 佳,宗 阳,袁广银,常建卫,付鹏怀,丁文江.新型医用 Mg-Nd-Zn-Zr 镁合金在模拟体液中的降解行为[J].中国有色金属学报,2010,20(10):1989-1997.
 ZHANG Jia, ZONG Yang, YUAN Guang-yin, CHANG Jian-wei, FU Peng-huai, DING Wen-jiang. Degradable behavior of new-type medical Mg-Nd-Zn-Zr magnesium alloy in simulated body fluid[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10): 1989-1997.
- [2] 黄晶晶,任伊宾,张炳春,杨 柯. 镁及镁合金的生物相容性研究[J].稀有金属材料与工程,2007,36(6):1102-1105.
 HUANG Jing-jing, REN Yi-bin, ZHANG Bing-chun, YANG Ke.
 Study on biocompatility of magnesium and its alloys[J]. Rare Metal Materials and Engineering, 2007, 36(6): 1102-1105.
- [3] YANG J X, CUI F Z, LEE I S. Surface modification of magnesium alloys for biomedical applications[J]. Annals of Biomedical Engineering, 2011, 39(7): 1857–1871.
- [4] 许鑫华,程 静,张春怀,闫学良,朱天兵,姚康德,曹 路, 刘 寅. 医用镁合金的生物腐蚀及高分子涂层处理[J].稀有 金属材料与工程,2008,37(7):1225-1228.
 XU Xin-hua, CHENG Jing, ZHANG Chun-huai, YAN Xue-liang, ZHU Tian-bing, YAO Kang-de, CAO Lu, LIU Yin. Bio-corrosion and polymer coating modification of magnesium alloys for medicine[J]. Rare Metal Materials and Engineering, 2008,37(7): 1225-1228.
- [5] 章晓波, 袁广银, 王章忠. 铸造镁合金 Mg-Nd-Zn-Zr 的生物 腐蚀性能[J]. 中国有色金属学报, 2013, 23(4): 905-911. ZHANG Xiao-bo, YUAN Guang-yin, WANG Zhang-zhong. Biocorrosion properties of as-cast Mg-Nd-Zn-Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 905-911.
- [6] 郭 磊,刘 魁,张世亮,黄晶晶,谭丽丽,杨 柯. 氧化镁 膜AZ31B镁合金材料的细胞毒性研究[J].稀有金属材料与工 程,2008,37(6):1027-1031.

GUO Lei, LIU Kui, ZHANG Shi-liang, HUANG Jing-jing, TAN Li-li, YANG Ke. Cytotoxicity of AZ31B magnesium alloy covering with magnesium oxide[J]. Rare Metal Materials and Engineering, 2008, 37(6): 1027–1031.

- [7] YE Cheng-hong, XI Ting-fei, ZHENG Yu-feng, WANG Shu-qin, LI Yang-de. In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 996–1001.
- [8] XU Li-ping, ZHANG Er-lin, YANG Ke. Biocorrosion property and cytocompatibility of calcium phosphate coated Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 23(8): 2014–2020.
- [9] MAREIKE LALK, JANIN REIFENRATH, NINA ANGRISANI, ALEXANDR BONDARENKO, JAN-MARTEN SEITZ, PETER P MUELLER, ANDREA MEYER-LINDENBERG. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: A comparative study in rabbits[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(2): 417–436.
- [10] LI J N, CAO P, ZHANG X N, ZHANG S X, HE Y H. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy[J]. Journal of Materials Science, 2010, 45(22): 6038–6045.
- [11] 李 绮,刘新杰,颜廷亭,谭丽丽,张炳春,杨 柯. 氟处理 对 AZ31B 镁合金生物耐蚀降解行为的影响[J]. 稀有金属材料 与工程, 2011, 40(10): 1859–1863.
 LI Qi, LIU Xin-jie, YAN Ting-ting, TAN Li-li, ZHANG Bing-chun, YANG Ke. Effect of fluoride conversion treatment on bio-corrosion behavior of AZ31B magnesium alloy[J]. Rare Metal Materials And Engineering, 2011, 40(10): 1859–1863.
- [12] YAN Ting-ting, TAN Li-li, XIONG Dang-sheng, LIU Xin-jie, ZHANG Bing-chun, YANG Ke. Fluoride treatment and in vitro corrosion behavior of an AZ31B Mg alloy[J]. Materials Science and Engineering A, 2010, 30(5): 740–748.
- [13] WITTE F, FISCHER J, NELLESEN J, VOGT C, VOGT J, DONATH T, BECKMANN F. In vivo corrosion and corrosion protection of Mg alloy LAE442[J]. Acta Biomaterialia, 2010, 6(5): 1792–1799.
- [14] 王宪涛,郭 磊,柴宏伟,付玉平,管俊林.氟化镁涂层 AZ31B 镁合金体内成骨作用的研究[J].中国医科大学学报, 2011,40(10):870-873.
 WANG Xian-tao, GUO Lei, CHAI Hong-wei, FU Yu-ping, GUAN Jun-lin. In vivo evaluation of osteogenesis of fluoride treated AZ31B[J]. Journal of China Medical University, 2011, 40(10):870-873.
- [15] BAKHSHESHI-RAD H R, IDRIS M H, ABDUL-KADIR M R. Synthesis and in vitro degradation evaluation of the nano-HA/MgF₂ and DCPD/MgF₂ composite coating on biodegradable Mg-Ca-Zn alloy[J]. Surface and Coatings Technology, 2013, 222(15): 79–89.

(编辑 龙怀中)