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Abstract: Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface
subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface
subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal
deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal
deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study
the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that
the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by
numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary
structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules
of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method
has good applicability and can provide reference for similar situation.
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1 Introduction

In Australia, most underground coal mines that
operate at a depth greater than 300 m mostly employ the
longwall mining technique [1]. However, compared with
room and pillar mining and other mining ways, longwall
mining brings the serious surface deformation and threats
the environment, the structures and buildings, railways
and ancillary facilities. It affects the normal production
of people life. Surface movement and deformation is a
dynamic process. Therefore, it is very important to
understand the rules of dynamic surface deformation due
to longwall mining.

DInSAR is a new deformation monitoring
technology in recent years. It is able to provide a large
scope of deformation information of continuous surface
in a short period. The accuracy can reach centimeter,

even millimeter [2—5]. There have been many studies
showing that the subsidence curves measured by
DInSAR are consistent with the actual condition and the
subsidence basin can be obtained. But in fact, the other
deformation values (such as tilt, curvature and horizontal
deformation) are the key to the most important protected
objects. Usually, DInNSAR data are influenced by noise
and other factors and their deformation and actual curve
have great deflection. So it is hard to actual application.
Under this circumstance of no other actual measurement
data, to reveal the surface dynamic deformation rules to
protect the surface objects, other ways must be found to
supply the shortcomings of DInSAR. The scholars both
at home and abroad use Knothe function [6—9] and
numerical simulation method [10—13] to study dynamic
rules. But the parameter choice of these methods is
mostly relying on the experience. No measured
data could be referenced. So, based on DInSAR actual
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monitoring, dynamic mining of LW32 of West Cliff
colliery in Australia is taken to study numerical
simulation analysis of dynamic surface deformation.

2 Geology and coal seam condition of West
Cliff colliery

The test area extracted by West CIliff colliery
belongs to the southern coalfield in Australia, one part of
the Sydney—Gunnadah Basin. There are several Permian
period coal seams in this area and the top coal seam is
Bulli seam. From the typical stratigraphic section of
Southern Coalfield [14], the overlying rocks are major
sandstone interbedded with other rocks and though
shales and claystones are quite extensive in places, the
sandstone predominates whose properties usually belong
to the medium hard rock.

The longwall plan of West Cliff colliery is extracted
from Bulli seam [1] shown in Fig. 1 [15]. LW31 was
completed in February 2007. LW32 was mined from 12
February 2007 to 08 June 2008. The mining speed was
slower before the middle May 2007 (around 23-30 m
per week). The speed was accelerated from middle May
2007 (around 32—45 m per week). LW33 was started
from the end of July 2008. The length of LW32 was 3222
m and the width was 305 m. The depth was 470—540 m;
the thickness was 2.2—2.8 m; the dip angle is 2°. The
mining method was the longwall mining.
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Fig.1 Longwall plan of West Cliff colliery (unit: mm)
3 DINSAR results about studying area

In order to study the ground movement of LW32 in
West CIiff colliery, ten ALOS PALSAR data acquired
from 29 June 2007 to 01 October 2008 were used. Nine
differential interferograms were generated with temporal
baseline of one revisiting cycle (46 d) except the last pair
(92 d). The 2-pass method [5] was used for data
processing. The interferograms including deformation
phase were generated by two repeat orbit SAR images.
Then an external high precision digital elevation model

(DEM) was subtracted from the interferogram. The track
parameters are shown in Table 1 and the deformation
value is calculated.

Table 1 ALOS PALSAR data condition (Ascending)

Pair Date Orbit Perpen.dicular
Image 1 Image 2 baseline/m

1 29/06/2007  14/08/2007 370 45

2 14/08/2007  29/09/2007 370 =501

3 29/09/2007 14/11/2007 370 -110

4 14/11/2007  30/12/2007 370 =735

5 30/12/2007 14/02/2008 370 24

6 14/02/2008 31/03/2008 370 629

7 31/03/2008  16/05/2008 370 39

8  16/05/2008  01/07/2008 370 2851

9 01/07/2008  01/10/2008 370 1788

25 m resolution DEM provided by the New South
Wales land bureau in Australia was used and the different
stages of DInSAR results in line-of-sight (LOS) direction
are shown in Fig. 2 [15]. The negative value indicates the
subsidence.

4 Numerical simulation analyses

4.1 Model description

In order to ensure rapid and accurate simulation
calculation, considering the typical stratigraphic section
and the dimensions of the LW31 and LW32 (Table 2), the
model with dimensions of 4000 m in longitudinal (x)
direction, 2000 m in transverse (y) direction and 500 m
in vertical (z) direction was selected as the initial
geometry (Fig. 3). The entire model was divided by brick
element, and the whole calculation modeling had a total
of 332800 zones and 391245 grid points. Four sides of
model have displacement boundary conditions, four
vertical boundary faces and undersides were fixed, and
the surface was free. The Mohr—Coulomb yield criterion
of the rock mass destruction judgment was adopted [12].
The calculation parameters of the lithology and coal
characteristics used in the model were chosen according
to the geological investigation and similar projects.

To compare the subsidence with the DInSAR
measured results, the mining distances need to be equal
to the actual mining distance at different time stages. The
residual subsidence influence of LW31 could not be
ignored when LW32 was extracted. However, the
information on the extraction time for LW31 was not
available, therefore the calculation extracted speed was
uniform velocity which was 200 m per month.

4.2 Modelling results
Using the software ArcGIS, the dynamic surface
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Subsidence

Los direction

Fig. 2 Subsidence in LOS direction measured by DInSAR computing time started from 29/06/2007 to 14/08/2007 (a), 29/09/2007 (b),
14/11/2007 (c), 30/12/2007 (d), 14/02/2008 (e), 31/03/2008 (f), 16/05/2008 (g), 01/07/2008 (h) and 01/10/2008 (i)

Table 2 Dimensions of longwalls 31 and 32

Longwall Length/m Width/m
2270 300
LW31
1250 200
LwW32 3225 305
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Fig. 3 Initial geometry model and position of workface of West
CIiff colliery

deformation process extracted in LW32 could be
achieved. The wvertical subsidence and the surface
horizontal movement along the longitudinal and
transverse directions at different time stages can be
calculated as shown in Fig. 4. The black box is the
relevant mining area.

5 Comparison between DInSAR and

modeling results

The displacement measured from DInSAR is in
LOS direction. Therefore, the 3D displacements
calculated from modeling need to project into the same
direction to compare with the DInSAR measurements.
Figure 5 shows the modeling displacement along the
LOS direction of LW32 at different time stages
calculated using the following equation [16]:

Dy

[cond —sinfcosa sinfsina] | Dg |=AR

Dy

where 6 is the incidence angle at the target point; a is the
satellite heading vector angle (positive clockwise from
north); Dy is the vertical displacement; Dg is the easting
displacement; Dy is the northing displacement; AR is the
ground displacement between two acquisitions along
LOS direction.

The subsidence curves of DInSAR and numerical
modeling along the longitudinal and transverse directions
at different mining stages are shown in Fig. 6 [15]. As
can be seen from the graph, good correlations between
displacements along the longitudinal and transverse
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Fig. 4 Vertical subsidence of LW32 of modeling results computing time started from 29/06/2007 to 14/08/2007 (a), 29/09/2007 (b),
14/11/2007 (c), 30/12/2007 (d), 14/02/2008 (e), 31/03/2008 (f), 16/05/2008 (g), 01/07/2008 (h) and 01/10/2008 (i) (unit: mm)
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Fig. 5 Modelling displacement along LOS direction computing time started from 29/06/2007 to 14/08/2007 (a), 29/09/2007 (b),
14/11/2007 (c), 30/12/2007 (d), 14/02/2008 (e), 31/03/2008 (f), 16/05/2008 (g), 01/07/2008 (h) and 01/10/2008 (i) (unit: mm)
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Fig. 6 Comparison of DInSAR and modeling subsidence: (a) Along longitudinal direction; (b) Along transverse direction
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directions estimated from both methods were observed.
The correlation coefficient is more than 95%. The
boundary angle is 45°. It is also indicated that the results
of numerical modeling are the same with actual
condition.

Tilt is an first order derivative of subsidence. The
tilt contrast of DInSAR and numerical simulation along
the longitudinal and transverse directions are shown in
Fig. 7. With the working face advancing, the maximum
tilt value of open-off cut located at the same position
increases gradually, and finally tends to be stable. The
results of DInSAR and numerical simulation show
performance for the deformation value gradually
increasing with face of advance, and the maximum
deformation value and the effects range between results
are closer along two directions. The tilt deformation
curves of numerical simulation are similar with theory
distribution. But tilt deformation curves distribution of
DInSAR have large fluctuations. The maximum tilt is
always at the middle of the workface. This cannot reflect
the actual surface deformation, and regularity is not
apparent. Measured and theoretical tilt deformation and
distributions should be consistent if there are no special
geological and geomorphologic conditions in the study
area. It is due to mainly noise and other factors that cause
the phenomenon of inconsistent.
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Curvature is second derivative of subsidence. Figure
8 shows curvature deformation comparison chart of
DInSAR and numerical simulation along the transverse
directions. The curvature values of DInSAR deviated
from the theoretical ones are large along the transverse
main sections. The maximum curvature value is not
stable and there are no regular rules to be found. But the
results of numerical simulation are closer to the
theoretical form. From Fig. 8(b), there are three areas on
the surface. The tensile deformation zones are on both
sides and the compressive deformation zone is in the
middle of mining-out area. Being affected by LW31
mining, the maximum curvature value of this side is less
than the other side, but the influence range is increased.

The numerical simulation with the appropriate
parameters can well reflect the dynamic
subsidence based on DInSAR monitoring data. But due
to the noise and other factors impact on DInSAR data, its
analysis of dynamic deformation of tilt and curvature is a
little poor than numerical simulation. It is difficult to
evaluate the surface deformation and the buildings of the
safety implications only with DInSAR data. Therefore,
when researching on the surface and its subsidiary
structures and buildings and calculating other
surface deformation parameters due to longwall mining,
the numerical simulation method can supply the

surface
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Fig. 7 Tilt comparison of DInSAR and modeling: (a) DInSAR tilt along longitudinal direction; (b) Modeling tilt along longitudinal

direction; (c) DInSAR tilt along transverse direction; (d) Modeling tilt along transverse direction
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Fig. 8 Curvature comparison of DInSAR and modeling: (a) DInSAR curvature along transverse direction; (b) Modeling curvature

along transverse direction

shortcomings of DInSAR technology. Both unions can
better describe the dynamic
deformation and provide the basis for safe mining under
buildings.

surface movement

6 Conclusions

1) DInSAR technology can reflect the actual
dynamic surface subsidence with all weather and
24-hours. But due to the noise and other factors, the
DInSAR monitoring results are difficult to reflect the
actual surface tilt and curvature deformation.

2) The numerical simulation method is used for
modeling dynamic surface deformation based on
DInSAR monitoring data. The subsidence correlation
between simulation and DInSAR results is high, and the
tilt and curvature deformations calculated from modeling
are consistent with theory form.

3) When the tilt and curvature deformations need to
be calculated based on DInSAR data, the numerical
simulation method can supply the shortcomings of
DInSAR technology.
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