24 B 4 W
Volume 24 Number 4

hERERERFR

The Chinese Journal of Nonferrous Metals

201444 H
April 2014

TEHES: 1004-0609(2014)04-0958-16

ERMHZESHNRFLENRANTTZE

LiEE, & 4h, RIPE, MRZE
CEFIL TR MU CFER, db3T 100072)

B OB R RICEU U GG R R NSER 0 )57k, 3P Vickers FRSSFIIHIFA 172000 DB HE R Sk H T4
JEM RS U], 3 RN AT BR JCEUE 7 BUE SIS T RN LRI Wy i & JE AR S Y
BN VERSE T4 SURE RS H, (142 R AR S 50 AR N R 5 7o MR LA 7 VR IR RS S A3 HT 45 4
1 78 S5 AT FE IR B 0. FNSASHEALFR AL n 1E 0 SR MR S E0R 0 H AR 240 6061 544 S45C B4R SS316
ANFER . SS304 ANFENHIEE AT S Fhax EARLEAT S IRSREE 00 MITRGIRZE N —17.5%~4%, HEA L TREFHE, 1
UFARHIF 7 G 1) 4 R AR M 2 S A R N YR 5 7 A 2k

KEEIR: WPE; OERALERN; JEARGEEE; NARREALFR G REAER T RN

RESZES: TH140 MHRFREED: A

Method for determining plastic properties of metals by
instrumented indentation

MA De-jun, CHEN Wei, SONG Zhong-kang, GUO Jun-hong

(Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072, China)

Abstract: The instrumented indentation is a useful tool to probe the plastic properties of metals. The finite element
computations combined with instrumented indentation experiments were applied to choose the diamond indenters which
were used to estimate the plastic properties of metals. The methods for determining the plastic properties of metals based
on the ratio of indentation work W./W; and nominal hardness H, were established with the aid of dimensional analysis
and finite element computations. 0.2% yield strength (0y,) and strain hardening exponent (H,) were suggested to be the
target parameters based on the accuracy analysis of the methods. The errors of ¢, of 6061 aluminum alloy, S45C carbon
steel, SS316 stainless steel, SS304 stainless steel and brass are from —17.5% to 4%, which satisfies the need of
engineering application. This verifies the effectiveness of the methods.
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Fig. 1 FEM mesh of indenter and indented material

I v RS P A A A R N PO ST f ok 1200
PIPUBEHE S Sk Vickers He Sk A4 17200 DU HE Hs
KT SS304 AN EN SI it 5 K Hs AT BEE A1 SON A
GRS, MBI B AT 5 K. [#
2 Fi7k SS304 ANEANR H I A7 2 120000 DU b HE & 3k
5 RS0 DA 1 e N 38— B i e RIE Y- £ 0 62.9°
(53] 1 s Sk {7 45 380 ) e N3 — IR P i 2k

K 2 ATLLE Y, SS304 ANEEAN K F I #1124 1200
VB HER Sk 5 RS0 AT IR e N 280 —R P52 it 4
AT SS304 ANEENR HHEY-M1 4 62.9°11 [E4HE & Sk
BSARATT ELAT 2 PRI I EE B RIS 1 43504 0 110,15 () s
NBAT—ERBE M2 AR U s SS304 ANEEHN S 16 it
P3N AT 5 2 R B 0 BT A R N A — K
JE AR R 200 o



960 A G A R

201444 H

55
A FEM, =0
s FEM, £ =0.15
507 Experiment 1
—— Experiment 2 "a ad
45| - - -+ Experiment 3 A .:
z — — Experiment 4
= — - - Experiment 5 "
40 g
.A
35¢
T .A
3pLz2z4 ., : : b :
30 32 34 36 38 40 42 44

h/um
2 A 120°H DU HE Sk A D0 T SS304 AR S
AT FPTR B N BT —IRE Hh 2k
Fig. 2 Experimental (four-sided pyramidal indenter with 120°
included angle) and computational (62.9° conical indenter)

indentation load—depth curves of SS304 stainless steel
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Fig. 3 Experimental (Vickers indenter) and computational
(70.3° conical indenter) indentation load—depth curves of

SS304 stainless steel
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Fig. 4 Experimental (four-sided pyramidal indenter with 172°
included angle) and computational (86.45°conical indenter)

indentation load—depth curves of SS304 stainless steel
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representative strain
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1 0.008 —0.002 0.122 -0.215 0.129
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3 0.007 0.003 0.069 —0.120 0.072

35

1— 7=0.0671
308 2— 5 =0.1917

3— 5=03834
25t

201

Jr /Er

15¢

0 O.bl 0‘62 0.‘03 O..()4 0.65 0.06
H/E,
11 AR SRHE AN 70.300 AP N AR SRR 2
t y 40F N o/E R HYE, (1555
Fig. 11
indenter of 70.3° and different # values

Relationship between o,/E;, and H,/E, at conical

0.08
1 — 7=0.0671
2— 7=0.1917
— 7=0.3834
0.06F 27
& 0.04]
0.02|

0 O.IOI O.I02 0.I03 0.I04 0.05 0.06
H/E,
12 [EVHERSKHE A 70.300 AP AR B R 2
F oy 46F F e B HYE, (1565
Fig. 12 Relationship between ¢, and H,/E, at conical indenter
of 70.3° and different  values

X e, MlH, JE, RFBAFAELW o 8 SCHE B 5 MRS
Egpos =1/[(A=v?)/E+0.91-v)/ E AT & ok
B By, MNTIAS ZI0S T AN ] PR Y AR S PR 2 L
n i e 5 H, | Egpos KFR, WE 13 JiR. B4R, P
N ARGAMEAS 2 L Xt e, B H | | E g0 3 <R RY
Wi, A SRHEE A1 86.45° UL T, X T AR
THI AR P A 2 LG PRAREAE Y ) o, 55 T4 P A
W EZWo, /E A SHERE H, 5Ira s £ 2
FLH, JE 55 FR, MEFIENAS o R4 SUHERE H, 5Ek
BRI E 645 L E0 H | Egige 45 IR FR, WK 14
1S Fron, FRBA SR E s 05 = 1/[A-v?)/
E+0.6(1-v)/ E;] » AR, P10 NAS SR b %)
e MV H | | E g6 45 RERAMIEFEI o



964 o E A (8 R R 2014 44 f
0.07 30
1—7=0.0671 1— #=0.0671
0.06+ 2— #=0.1917 251 2—#=0.1917
3— 7 =0.3834 3— 5=0.3834
0.05} 30l
0.04 7
Q;- : 15 [
0.03} &
10+
0.02
0.01} St
0 0.01 0.02 0.03 0.04 0 2 4 6 8 10 12

H/Eci703
13 [EHEE SKHEF A O 70.300 ARSI AR AR R 2
Lty Z2F T & Hy/Eepros IR R
Fig. 13 Relationship between & and H,/E.yj3 at conical

indenter of 70.3° and different # values

30
1— 7=0.0671
25F 2—5=0.1917
3—17=03834
20t
ST
N
10¢
5.

0 2 4 6 8 10 12 14
(H/E)N073
14 [IHERSKHEE A 86.45°, ANIRIY-[HI N ARG EA £
2t AT o/E N HYE, I %
Fig. 14 Relationship between o/E, and H,/E, at conical

indenter of 86.45° and different # values

F3 RHd M g HRE
Table 3 Values of d;; and g;

(H/E 136.45)/107
15 FHERCKHE M 86450, AN[]T THI W AR H A5
Z o ZAFF e HyEcpigoas (MR R
Fig. 15 Relationship between & and H,/E ygs4s at conical

indenter of 86.45° and different n values

e PR R E, n] B AR EROE 2 I 3
W E, X, o, /E, M H, |E X&Z¥% o, /| E,F
H,/E R % . FIH 2 50 ek 2ons 15 HE I Sk HE - #1 0
70.3°F1 86.45°15 N o, /E, M H, | E, <AL K ¢,
HUH, | Eg KREBATIA, W ERSCRIMNTRIE
ﬁ:

6 .
0 Ey=f,(H,/E;))=Y d;(H,/E,) (19)
j=0
6
& =fo(Hy/Eq))= ez (Hy/Egqy))* (20)
k=0

Kbs E,=1[0-v)/ E+g,(-v])/E] , Eg =
VA=V E+LA-v)/E]; i=1, 2 XFRHEF1h N
70.3°F1 86.45° A HER ko R ¥ d, FIFREL g; MILE
WA 3, FHle, MARE HIIHEINZK 4,

i d; d; d; di d; d; &
1 2.644X107%  2.137X10? 5.138X10° -1.273X10° 6.333X10°  —9.087Xx10"  7.816%X10° 1
2 6.764 —-8.331X10°  4207X10°  -1.026X10°  1.345X10" -8.937x10? 2.392x10" 1
R4 FH ey M L HIHE
Table 4 Values of ¢;; and /;
i e e en eis ejs eis I;
1 2739X10%  1.751X10" 22.88 -1.630X10°  6.702X10*  —7.405X10°  1.953X107% 0.19
2 —2412X107° 6.796 -2.570X10°  5.160X10°  —4.765X10"  1.687X10° 1.024X10°  0.60




24 %4 R, G SRR S HOEHEEAN BN T 965

3 AEMEIL

MR (17)F1(18), HALEE T RALLT) Wy W, (114
JEM BB SRR NN T, %A EL T
IR A

1) FJH R B AC#s A R AN ACFT Vickers [k 3k
(Berkovich Hs Skl HE- 14 70.3° 00 [RHE K Sk )% 4
DA R SR K AR BE R T 3 pm AR AL s A
R, PAFRNBAT—IRE M. WRIszthde 54 X
BHRE Hygos FUEALCIN(W W05, RETTARYE “2life &=
27 BYSUG IR AR R B, AT S B
PVERL R Ecwros SOV N ARTRME R R 2 B N o

2) WA TRPERIE Eowros AURACII(WS W3
RANKRA(17), WIHFIEN T oy -

3) KNI W03 RAKRA(18), AT
ST N AR PR R 2 H B 0.0671, 0.1917 H10.3834
FHXS N FRFAE N AE €, (=1, 2, 3)o I FH RS B H e
AT A5 S [T AR SR A 2 L g, A OGS I PR R AIE Y AR
£, o

4) F08 )R Vickers Ji3k(Berkovich [ kg
BHE A 70.3° ([ HE s Sk) SE SN TR A 1722 Y
PHER S (HE- 4 86.45° )[R HE R 3k), HE AT
R BPDE 3 1At A3 S 17200 DU HE S
S 7 (A G 91 oy RIS 6,

5) FIH Hollomon FAf A, R £i6] Py 20 R 1E WY AL —
FEEN ) E i (e,,0,0) Bl (e,0,) BATHI G, 456
SRPERCR UM SR E, FTASREAT R i AR o, A1
N ARREANAREL n, BETT T E S5 AT S IR o 5 o

R HER(19)F1(20), HALEET4 R H, (48
MRHB P ZHACEA A TON T, Ik L R
PR

1) FJH e R B AC#s A R AN AXCFT Vickers [k 3k
(Berkovich Hs Skl HE- 14 70.3° 0 [RHE K Sk )X 4
DA R SR K AR EE R T 3 pm A4 s A
R, PAFRNBAT—IRE M. WRIszthde it 54 X
BERE Hygos FUEALCII(W W05, RETTARYE “2life =
R A3 BIBANAR AR E, AT E B i
*ﬁ% EC7OA3 %ﬂ ECH70A3 o

2) ¥4 45 SIS Hq0 3 ARG SPERR B E 05 fRAR
#30(19), "THFIEN ) oy

3) KA MAHE Hyo3 ANERA PR Eggo3 1O
K#H(20), FHFHENAZ ¢, .

4) F08 DR Vickers Ji3k(Berkovich [ kg
BHE AN 70.3° ([ HE s Sk SEH AT A 1722 )Y
P e R SR (HEY /Ao 86.45° M IRIHE R k), HAEHATH
R BPDE 3 1At A3 S 17200 DR HE s
SKAHRS B RFAER. ) o FIFFIENAE &5 o

5) FIH Hollomon FAf A, R £i6] P 20 5 1E WA —
RN I E 5 (e,,00) Bl (e,,0,) BATIG, 456
SRPERCR UM SR B, PTASREAT R AR o, AT
P ARREAFEEL n, T W] E S I IR L o 5

4 ERMBEUSEORANFZEZRE
S

R TR L8 AR <5 e G R ARL 0 AT 9 e
14 SR A RHB P 2 B A F N R 752 ) U3 RS
BEAT AT BB R AR HE R IR R, HLAT X
Vickers Sk AR AN LI (W/ W)10.5 40T 0.04 2]
0.4 Z [] . 5 <@ Aok e koo B R ) iR %
Oyin =(Oy —0y) 0y oy H R IR U 45
oy N R SEPE R ISR s E SR AR AT i i it
VUNBRZE 0 o5 = (002 = 002)/ 0gn » T AN
SRIERVUNEE R, oo, AT IR R S &
N4 JE AR N AR RE AL PR A AL U R E npy, =0 -1
n, R NS TR ARG R, n S AR AR EL )
HSHAE.

4.1 EFENLLDh w/w S BRI S B

ENRBIFEEEE 27

Bl 16 Fros <@ sk iR IR 7% o g, 1
e SR LR, SEAEHEIRE IR o g, 70
AAE=5%~15% 2 8], WA FEEL n 24 0 Fi1 0.45 14
JEAA T it U 8 222 Ay Jekt R o S8 TR R ZE 5 1R 1
A LGt HE 16 nTLLE Y, BTN AR S
B 2 LU o IS 0, Jes Rt R TR a5 22 s 1) o 2 34
PR ZET AT ARAR AN A o 3K 0 W] S AR RO 1)
MoRE, e TR R U R 22 O . BEAE RN EE D)
W, | W RIS, e AR YR58 22 5 1R B O

Bl 17 ok & @ ARk AR R T o] S0
& nge WM. A BE, SIRM RN AR FE 24
SFUUMNRE ngy 23 AT FE—0.05~0.08 2 1], [ ARAEAL$5
Hn 2k 0 1 0.45 (194 JE AR AR AL Fig i 2 0 ] 5%
7 N N A A FE B A 0 R S 1 I VR R
Gt HINASTEALFRE n ol 0.15 F1 0.3 HI4: @ AR AR
Tk Fi Heda st U 58 22 W /N T N AR FR B n ol O



966 A e R 2014 4 4 J
25 35
(@) A — n=0.45 (b) s — n=0.45
ad x— p=0.30 el x— n=0.30
PN +— n=0.15 25 R +— n=0.15
15+ AA n— =0 ‘A N n— =0
AL 4
o < AAAAAAAA AAA © 15 A X AAAA AAA‘
SN 5 X x R x o\t oo X A A A
ui B X xxX XXy " =) R Xx « .
N ‘f‘, Xy e, o :‘ N 5 -Q" KXx o x X7 ox
" l"‘ " g omEm " :'.0’00 * e o . ox
-5t ¥ - L] % at . " n "
D) n - -5 b 3 .
x %
- 4 L L L L _1 L L L L
150 0.1 0.2 0.3 0.4 0.5 5O 0.1 0.2 0.3 0.4 0.5
W IW, W IW,
40l © 4 s— ;=045
Aty x— n=0.30
& e — n=0.15
S I "0 16 S PHELE BRI B oy 1O
X 20+ * x . éj\%ﬁ
& X xx AMoaSe Fig. 16 [Ilustration relative determination
g 4 x a
10 é‘ XXX X R error of metal field strength (oys.) at #=
wi’ ety
e e . 0.0671(a), 7=0.1917(b), 7=0.3834(c)
n X
or f . " o oam a7
10 01 02 03 04 05
W,
0.10 0.08
@) s — n=0.45 (b) . s — n=045
- x— n=0.30 0.06 - . x— n=0.30
. o — n=0.15 . . o — n=0.15
0.06 . - =0 0.04| . ] 0
] n L - [ ] ]
. . .o . 0.02f % = . .
g 0.02r #* 0 . . . E . * oy
x* o o * . = L i:-’ vee o d S .
. C ., . 0 y
ﬁ:: ™ x ¢ ¢ % o X X =
= L X X
—0.02l %;X)?(AAA:{XX x ok x X x 0.02 ‘r»(x o Axx x 3
AA‘“ Aa AAAX A A _0 04 L AA XXAAM Aar 4 A AXA A A 4
A, . A . A“A A A
~0.06 : : : : ~0.06 - : : :
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
W,IW, W, IW,
0.06
© . e, -
0.04 | . .
0.02p .. 17 IR MRS AR AR S YU e
Cof e o e 195
& ool e e L % Fig. 17 Illustration of absolution determination
4 x"x x x X x A error of metal strain hardening exponent (ng,) at
— L XX % a A 4
004r ot art s s 7=0.0671(a), 7=0.1917(b), 7=0.3834(c)
) 5 x— n=0.30
006 e —n=0.15
n— p=0
-0.08 : : : :
0 0.1 0.2 0.3 0.4 0.5



24 %4 R, G SRR S HOEHEEAN BN T 967

1 0.45 {34 ML AS BB ALHE AR AU 5222 . T 1
REASHE R H 30 AT AL HE SR R 5 22
B FE R A4 b et 0 8 5 LT AR 0
18 77 o 4 8 P 46 e R B 30 i 2
o MG AR LT, 4 I 4 P P30
I gy A ATE—S5%~5%2 ], RASHAL AR n
Iy 0 1 0.45 114 R 26 1 IR A5 22 S 6
MR S 522 A R R B, SR 4

10
(a)
A A
A A
S5t - . A;AX N
X
L x 5§ *oxox
£ 0 Smelppal ot . e e
\t: : A e . n - . n L]
E\'}s [ I ] ¢ m®
bo -5 % L
x 4 — n=0.45
x— n=0.30
101 o — n=0.15
Py =— =0
_15 L
0 0.1 0.2 0.3 0.4 0.5
W, /Ww,
A
A
s| l'..‘xX . AXA A R
A KK x X
o ma A XX x
X A.o" XAXAO 4 . X
X 0 * *. :. ¢ ¢
\IE ‘x Am?® - n n
5 -5t XA "
X4 A — =045
N x— n=0.30
-op o, +— n=0.15
n— =0
A
_15 L
0 0.1 0.2 0.3 0.4 0.5
W.IW,
10
oy s
S JOR LN B &
5 }::Afwxﬁ“x‘} x A
.X * A X
oX A L A . X
A X
o\\o 0 o A . ¢ ., S
& Xa - L .
S x
S -5} 4
A A—n=045
10+ a x— n=0.30
0 A *— n=0.15
n— =0
_15 L L 1 I
0 0.1 0.2 0.3 0.4 0.5

W.IW,
18 BB IR LR AR TE 0028 AT

Fig. 18 Illustration of relative determination error of metal
yield strength (o 2g,) at #=0.0671(a), n=0.1917(b), n=0.3834(c)

e o I 5 PEE TR 5 2 P 8 5 W A8/ e I 6 52 14U
WREEM LI, X RYNZ AU G R AR I
I8 52y 1 SE AT DL

42 ETZNEE H, MEBMHZEMHSHIELE
NIRRT ERE S

19 Bz o < A e Ak i PURR 22 o g, 1
M. R EE, SRR ERE VU o gy 0
50
@ A — 1=0.45
40 - x— n=0.30
. *— n=0.15
307 =— n=0
A
s 20+ ‘
\15 A Aa
5 10 e - s
X X " AAX % N .
0 X :X  x x 4
" )2800. * e ‘.X‘ .X.X. X
LR 4
S10F M e vt
_20 " L X
0.1 0.2 0.3 0.4
w./Ww,
60
®) s — =045
A x— n=0.30
. +— n=0.15
40¢ ‘. n— =0
A A
§ A
ng 201 A A
N XX, a ATA a
X A L4 a A
X, s x A
0 :?’ XXX‘X‘X. 'X X x.X X X
:. .“’. . R R4 [ ] -
-
_20 L 1 1
0.1 0.2 0.3 0.4
W W,
col© 4 —n=045
4 x— n=0.30
*+— n=0.15
Los =— =0
40+ 4
= ot
S0 % 4
S x Aa,
x A oA, A R
x % “x X X 5 5 Aa,
O k 0’ X : . P . X' X . X X
on s - - M mn . .
_20 L L L
0.1 0.2 0.3 0.4
W./Ww,

19 <EJEAEHE IR R oypn FI70 A
Fig. 19 Illustration of relative determination error of metal
yield strength (oyg,) at #=0.0671(a), #=0.1917(b), #=0.3834(c)



968 o E A (8 R R 2014 44 f

AE—10%~15% 2 18], NARREAFRE n oA 0 1 0.45 (1)
G JE A AR i e e PR VR 5 2 Ay Jee e e PR R R 2 (1
NLFR IS PN ASHVEA T g R R B R EA AT . B TR LR W
FEE RO A58 25 1R B P ARG T ARARRRE A LA, DU 227 1) 98 FE A /N
PR . B RN LCT W, /W, R ST N e i <21 Fiom o 4 @ A R4 2 JeE I B TR R 22
JSE VU 2 10 B S R W IR AL, AR Coopn WM. A BE, SRR R N
UM 22T 1) 5 B 1 AR /N o R ZE 6 apre I ATAE=10%~10%2 [71], N AFAELL HEHY n
Kl 20 Froh & @ AbRl N AR R FR S e BOMR O 0 T 0.45 B IE A LA A i i B U i 2 Ky 2% A
2 ng W93 R B, SIRM RN AR 4L FE 24 Je RS FE UM R ZE A (0 R I N Bl gt S e RS

SHRMRZE ngy SALE—0.01~0.04 2 (8], HNAREEAL,
6500 N 0. 0.15. 0.3 F10.45 1148 A RE N ARt 4135

0.06 15
(@ A — =045 (@) s — n=0.45
., x— n=0.30 “ x — n=0.30
0.04} . " +— n=0.15 10 R L as o —n=0.15
'-. . — =0 . A i ‘AA n— =0
5% A
0.2 &% .. 3 x . « X Ax A
i :. 5ax :“0 x L A é}; ol x x, A :x * 5 .
Rm bd X&I. xe Xa A “u Lﬁ 0" X>§?‘ xxz(xo x
0F . x‘A>! A"‘"" S 5 % RPN ‘.-'. .
XX R X A4 . DT P - .
n * [}
_ | X, * N
0.02 . _10t —
A
-0.04 : : : -1 . - :
0 0.1 0.2 0.3 0.4 50 0.1 0.2 0.3 0.4
W, /W, W, IW,
0.05 15
(b) (b)  aa A — pn=0.45
. = x— p=0.30
0.03 F gt 10 | A AA AA A ¢ — n=0.15
4 A m—pn=0
‘A.l‘q‘ " . . x o . 4 ’
% XK Ay x X m St ® AL x
0.01- 7 T N Ax TR . " x X
= x z A a e é 2 x x X X X X
& . o x qfm - E Of o Xxx x x
>?(A>3( . S ut P .o .
001F K x S TN oo n
. A— n=045 Sra e . .
_ L N x— n=0.30 L ="
.03 :‘ *— n=0.15 —-10t .
n— =0
-0.05 . : - . . .
0 0.1 0.2 0.3 0.4 150 0.1 0.2 0.3 0.4
W.IW, W.IW,
0.04 15
©) €) A— 5n=0.45
. IR x— 1n=0.30
=, L ¢ — n=0.15
. L] [ ] 10 n
L 4 Xt A o
0.02 ; ... :‘- s . . X‘x . RN R . [ ] n=0
A A x‘x‘ X A N A, R
. 0 ﬂ- X,Xx’O At * .- . o\\c > 0 Xx As: * '
x S . X X
A R S 0 ;A . « o .
- L X
002 A — n=0.45 4 e RN
x— p=0.30 P "
*AA +—n=0.15 =3 " .
-0.04 - A " — =0 .
L n I _10 L L L
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
WeIW, W.IW,

20 <R ATRN ARRE AR BT IR AR ZE gy 1204 21 R ARSE SRR ZE 60 26 120

Fig. 20 Illustration of absolute determination error of metal Fig. 21 Illustration of relative determination error of metal
strain hardening exponent (ng,) at #=0.0671(a), #=0.1917(b), yield strength (op2e,) at #=0.0671(a), #=0.1917(b),
n=0.3834(c) n=0.3834(c)



524 %5 4

R, G SRR S HOEHEEAN BN T

969

P o I 5 PEE TR 5 2 P 8 5 W A8/ o I 5 2 14U
WM WL, XRINZINEAE N B m BT
J 8 B T SR . i AR SRR R B AN
AN ECI W, /W, %ot 25 APF D I 5 JEE R R 22 i 1) 9 J3E AT
RO e A e EVACWIRR RN )5 % A TR

ST IR Wy, < m ARV E S U AR
ANV AR T4 S H, W< @A R 2
HAEAC ANV TTE RS S AT A RS U0
EEMEH RS oy » AT 1 m AT R
YES UM T A DO 26 S RS o 5 1T BEHAT
s AUk, 00E A0 R IR IE o ) 9@ ARH BT
SRV HIRZ R ST IR W/, (K16 )& 4
FHEYE S HACRSAC A VU T IR I R o,
YT AL 144 SCRETE H,, 1)< B A RHEVE S B0
S AU AW 5

5 SCIGISE

VNI SR E VA =Y p SR EL e N X N A WA AT |
JrER R B B AT R PR R A AR, T SERE L,
K23 B R ELSE N j— AR AR 775
FRUEREEATE 0. R, A B AR SR 42 &
PORHEB PR ZHS U T R AT BB T SR B0 UE .
6061 {54z S45C 1AM SS316 ANHEEN. SS304 ANEf

AR 5 < JE AR AT R I k. FIH
B EE AR AR Vickers JE3Sk A& TfA4 172°/9
VURHEH Sonf ik 5 < A4 ) S it dpe K Fs AN 8idar by
50 N (AR IRANSESS o 4 PRUF SE 5045 IR mT Sk,
R H SKAE A BER AN R B R AT 5 k. K
22 [l A Vickers Hs Sk KORTA 2 1720 DU R HE s Sont
6061 #1554z S45C 4. SS316 ANHEEN. SS304 ANEf
TR 5 Fh<e @A REEAT 5 I N SERRAF 21 N
B —IR B 2.

5 A0k 5 Bl @A RDRE . F R P b WA
KI5 BN SEEG 45 RISME, Horh Eges AR “4lRE
LT YUNRIE BB & . 38 6 T8 230
N IR TN ECTl W W, ()46 JE A BB E S B
FEANVUN TR T44 SCHEFE H, 048 R R 2
BN U T7 L0 58 (1) 5 M @ ARkt 28 1 2
o oy, Moy MBI EIAAT e Mk B2 Sty A ik
B 45 RAMEACENSEI VOISR, 05, HEATE
Je MR BE MR 2, n, AR FR ) PR 45

SBAKRE, 5 MR e IR o, 1R
G RNT S, R EER R 5 M
JEA RS AT Je Mt BE R 22 K —17.5%~4%, BEATH
S TRETE, BUEANT TR 1)< B BB I 2 40X
ANV A RN T HRALLD wo/w, iR
5 < A LA i B PRI 2 AP T 2R T 44
SCERE H, 50 45 R 22 AT, X — i 5 BN 7 VRS

x5 RGNS R
Table S Average values of experimental parameters
Indented metal (W W03 (Hy)703/GPa (Es)703/GPa (Wel W)ge.45 (Hy)s6.45/GPa

6061 aluminum alloy 0.102 1.228 75.87 0.382 0.596
S45C carbon steel 0.076 2.131 204.06 0.267 1.136
SS316 stainless steel 0.105 2.711 189.44 0.363 1.296
SS304 stainless steel 0.109 2.527 166.90 0.342 1.185
Brass 0.095 1.427 95.95 0.357 0.730

F 6 EMEPENESEAE N RS R

Table 6 Plastic parameters determined by instrumented indentation

Indentation results based on W,/ W,

Indentation results based on H,

Indented metal 00,/MPa
002/MPa ny 00260/ %0 002/MPa ny 00260/ %0
6061 aluminum alloy 299.37 311.20 0.110 4.0 260.87 0.162 -12.9
S45C carbon steel 431.08 388.26 0.188 -9.9 424.51 0.145 -1.5
SS316 stainless steel 610.11 59431 0.160 -2.6 505.56 0.218 -17.1
SS304 stainless steel 510.03 436.75 0.252 -14.4 420.45 0.272 -17.5
Brass 346.67 338.01 0.116 -2.5 399.95 0 154
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