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铁磁形状记忆合金Mn2+xNiGa 的室温组织结构特征 
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摘 要： 采用 X射线衍射分析与透射电子显微分析相结合的方法， 对铁磁形状记忆合金Mn2+xNiGa(x=0, 0.02, 0.06) 
室温下微观组织结构进行研究。XRD结果表明：3种合金在室温下主要为奥氏体相。TEM以及 HREM观察发现 

Mn 含量对合金母相的微观组织形态有很大影响，在Mn2NiGa合金基体中存在 Ni2In 型六角结构的MnNiGa 相； 

除存在MnNiGa相外，Mn2.02NiGa合金基体中还出现了少量层状无调制结构马氏体相；Mn2.06NiGa合金中不存在 

MnNiGa 相，基体中有大量的无调制马氏体。HREM 观察发现，3 种合金在室温下都存在局域的晶格畸变，这种 

晶格畸变形成纳米尺度微畴，具有应变玻璃相的特征。 
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Abstract:  The  microstructures  of  the  ferromagnetic  shape  memory  alloys  Mn2+xNiGa  (x=0,  0.02,  0.06)  at  room 

temperature were investigated by X­ray diffractometry and TEM. XRD results show that the main phases of all the three 

alloys are austenites. By TEM and HREM, remarkably various microstructures can be found in Mn2+xNiGa alloys with 

different contents of Mn element. Ni2In­type hexagonal MnNiGa phase is found in the Mn2NiGa alloy. Beside MnNiGa 

phase,  a  few  of  layered  non­modulated martensites  appear  in matrix  of Mn2.02NiGa  alloy. Non­modulated martensites 

appear conspicuously in Mn2.06NiGa alloy, meanwhile, MnNiGa phase disappears in  this alloy. By HREM observation, 

the  local  lattice  distortions  which  form  nano­scaled  domains  with  a  characteristic  of  strain  glass  are  found  in  the 

austenites of these three alloys at room temperature. 
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铁磁形状记忆合金是最近十几年发展起来的一种 

新型磁性功能材料，具有磁性形状记忆效应、可恢复 

大应变 [1] 、大磁电阻 [2] 、霍尔效应 [3] 、巨磁热效应 [4] 等 

丰富的物理行为，引起了人们的广泛关注。目前已开 

发了多种磁性形状记忆合金，如  Ni­Mn­Ga [ 5 ] 、 
Ni­Fe­Ga [6] 、Co­Ni­Ga(Al) [7] 、Ni­Mn­In(Sn，Sb) [8] 和 
Fe­Mn­Ga [9] 等系列具有 L21 结构的 Heusler 合金， 其中 

以  Ni2MnGa  合金的研究最为广泛。以往的研究工 
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作 [10−12] 主要集中在正分和稍微偏离正分  Ni2MnGa 的 

相结构、磁性能、马氏体转变、磁场控制形状记忆效 

应以及磁场诱导应变等方面。当采用Mn原子替换 Ni 

原子时，LIU 等 [13] 发现了一种新的 Heusler 型铁磁形 

状记忆合金Mn2NiGa。该合金具有接近室温的马氏体 

相变温度，具有较大的磁场诱发应变以及更宽的相变 

热滞后，而且在 Heusler 合金中具有高达 588  K 的居 

里温度，因而具有更广阔的应用前景。 

在传统 Ni2MnGa 合金中，Ni 占据(1/4,1/4,1/4)位 

置，Mn 占据(1/2,1/2,1/2)位置，Ga 占据(0,0,0)位置， 

具有高度有序性的 L21 结构(即 Cu2MnAl 型)，空间群 

为  3 Fm m， 其原子结构模型如图 1(a)所示。 在Mn2NiGa 

合金中，根据  X 射线衍射分析及第一性原理计算结 

果 [13−14] ，奥氏体相结构为  Hg2CuTi  型，空间群为 

43 F m， 其中， Mn原子占据(0,0,0)和(3/4,3/4,3/4)位置； 

Ni  和  Ga  原子分别占据(1/4,1/4,1/4)和(1/2,1/2,1/2)位 

置，如图  1(b)所示，晶格参数  a=b=c=5.9072  Å， 

α=β=γ=90°。 

目前，关于该合金的研究工作 [13−20] 主要集中在元 

素替代、外应力、残余应力和时效工艺等对材料的磁 

性能、晶体结构以及马氏体相变行为的影响，而对于 

相变前后两相晶体结构的深入研究较少，更多的是采 

用X射线衍射分析方法确定了合金的晶体结构类型和 

晶格参数。X 射线衍射的手段只能获得相对宏观的平 

均统计信息，难以精确给出局部、具体的结构变化和 

组织特征， 在一定程度上制约了该材料的发展。因此， 

深入了解该合金的微观组织结构特征，将有利于加深 

对该新型铁磁形状记忆合金的相变行为特征的认识， 

促进对磁场诱发大应变及磁场驱动马氏体相变的有效 

调控，使其成为具有应用潜力的新型功能材料。 

为此，本文作者采用透射电子显微分析与 X射线 

衍射分析相结合的方法， 并采用微调合金成分的方式， 

研究正分配比及偏离正分Mn2+xNiGa合金(x=0，0.02， 

0.06)母相的组织结构。研究发现，该Mn2NiGa合金系 

列具有丰富的微观组织结构特征，为新材料的开发提 

供了重要的借鉴依据。 

1  实验 

将纯度为 99.95%以上的 Ni、Mn 和 Ga 单质按所 

需成分配料后，在高纯氩气保护下的电弧炉熔炼得到 

样品，每个样品翻转 3 次，共熔炼 4次，多次熔炼以 

确保得到的合金锭子成分均匀。将熔炼好的合金锭密 

封到真空石英管内， 在高纯氩气保护下持续退火 72 h， 

退火温度为 1073 K，然后在冰水混合物中进行快淬冷 

却。将合金锭子切片，用 SiC砂纸将样品打磨到粒径 

小于  50  μm  后再用胶水固定到钼环上，最后采用 
Gatan691  型离子减薄仪对固定好的薄片样品进行减 

薄。采用 X′ Pert PRO MPD型 X射线衍射仪(Cu靶， 
X射线波长为 1.54 Å)对样品室温晶体结构进行分析， 

采用  JEM−2000FX  分析型透射电子显微镜以及 
JEM−2010 高分辨型透射电子显微镜对不同成分合金 

进行微观组织形貌观察、微区成分分析、选区电子衍 

射分析以及精细结构的高分辨电子显微分析。 

图 1  Cu2MnAl型 Ni2MnGa奥氏体相和 Hg2CuTi型Mn2NiGa奥氏体相晶体结构示意图 

Fig. 1  Structure schematic diagrams of Cu2MnAl­type Ni2MnGa austenitic phase (a) and Hg2CuTi­type Mn2NiGa austenitic phase 

(b)
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2  结果与讨论 

2.1  XRD谱分析 

图 2所示为Mn2+xNiGa铁磁形状记忆合金在室温 

下的 XRD谱。通过 XRD衍射峰的标定，这 3种合金 

在室温下主要为奥氏体相(标识为 α)， 奥氏体相晶格参 

数为  a=b=c=5.8986  Å，α=β=γ=90°，标定结果如图  2 
所示。晶格常数与文献[10]中报道的结果一致。XRD 
谱中主衍射峰附近存在一些不属于奥氏体相的弱衍射 

峰， 说明合金的室温组织中存在其他相(H表示六角结 

构相，M表示马氏体相)。为了进一步确定合金室温组 

织随 Mn 元素含量的变化情况并探明基体中其他相的 

具体结构信息，本文作者对样品进行了透射电子显微 

分析(TEM)和高分辨透射电子显微分析(HREM)。 

图 2  3种合金在室温下的 XRD谱 

Fig. 2  XRD patterns of three alloys at room temperature 

2.2  TEM分析 

2.2.1  Mn2NiGa合金的组织结构 

1) 基体相晶体结构的确定 

图 3(a)所示为Mn2NiGa合金室温组织的明场像。 

通过多个样品的观察， 发现合金以基体相(文中统一用 

α标识)为主(见图 3(a)中区域 A)， 其中存在大量数百纳 

米尺度的块状相(见图 3(a)中区域 B)。根据前面 XRD 

谱分析基体相为奥氏体，通过基体相 3 个低指数晶带 

轴的选区电子衍射谱(SAED)分析(见图  3(b)~(d))，该 

基体相的晶体结构符合  XRD 测定结果。此外，从基 

体 α ] 0 1 1 [  晶带轴的  SAED 谱可以看到典型的{111}晶 

面反射(见图  3(b)中箭头所指)，进一步确定该母相为 

具有高度有序性的 Hg2CuTi型结构。 

2) 块状相晶体结构的确定 

为了确定基体中分布的大块相的晶体结构，首先 

采用 X 射线能量色散谱(EDS)进行成分分析，经分析 

合金基体中各元素的摩尔分数为Mn 49.3%、 Ni 26.4% 

和  Ga  24.3%，而块状相各元素的摩尔分数为  Mn 

32.1%、Ni  32.3%和  Ga  35.6%，各元素摩尔比接近 

1:1:1，这种块状相是一种贫 Mn 相(文中统一用 H 标 

识)。图 3(e)~(g)所示为对沿块状相 3 个不同晶带轴进 

行观察得到的 SAED谱，当电子束分别沿上述 3个方 

向入射时，与块状相相邻的奥氏体基体相分别满足沿 

[110] α 、 [111] α 和 α ] 001 [  晶带轴的对称入射条件，如 

图  3(b)~(d)所示。可见，基体与块状相具有特定的取 

向关系，将其与基体对应的 SAED谱进行比较，发现 

两者的主斑点位置相同， 另外， 这种贫Mn 相的 SAED 

图 3  Mn2NiGa室温组织的明场像、基体区域和贫Mn相的 SAED谱 

Fig. 3  Bright­field image of Mn2NiGa alloy at room temperature (a) and SAED patterns for austenitic phase ((b)−(d)) and Mn­poor 

phase ((e)−(g))
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谱在主衍射斑的基础上有额外超结构衍射斑出现(见 

图  3(e)和(f)中椭圆圈处)。根据文献[21−23]报道，在 

Ni2In 型六角结构的三元合金中也发现了磁场诱导形 

状记忆效应，在富 Mn 的 Ni­Mn­Ga 体系，存在一种 

Ni2In  型六角结构的(Mn，Ni)2Ga  相，晶格参数为 

a=4.1629 Å、c=5.2983 Å、α=β=90°、γ=120° [24] ，空间 

群为 P63/mmc， 而且作者曾冶炼过元素摩尔比为 1:1:1 

的 MnNiGa 合金，并且通过 X 射线衍射确定了该合 

金具有 Ni2In 型六角结构，结构模型如图 4(a)所示。 

采用晶体学软件模拟其低指数晶带轴的  SAED  谱， 

如图  4(b)~(d)所示，经对比发现模拟  MnNiGa  的

 [2 110] H  、  [0001] H  和 [0111] H 带轴的电子衍射谱与 

实验获得的贫 Mn 相的电子衍射谱吻合。 因此可以确 

定这种贫Mn相是具有Ni2In型六角结构的MnNiGa， 

晶格参数为  a=4.1926  Å、c=5.2935  Å、α=β=90°、 

γ=120°。由此可以对正分 Mn2NiGa 的 XRD 谱出现的 

弱衍射峰进行标定，结果如图 2 所示。通过贫 Mn 相 

与基体 SAED谱的关系，可进一步确定其与基体存在 

特定取向关系：  110 //[211 [ ]  0] H α ，  224) //(03 (  30) H α ；

 111 //[000 [ ]  1] H α ，220) //(21 (  10) H α ；  [001] //[0111] H α ， 

040 //(22 ( )  02) H α ，其中前两者是等效的，因此，从目 

前实验结果可以确定贫 Mn 相与基体存在两种特定的 

取向关系。 

2.2.2  Mn2.02NiGa合金组织结构分析 

图 5(a)所示为 Mn2.02NiGa 合金的 TEM 明场像。 

从图  5(a)中可以看出，在合金的基体中存在许多块状 

组织， 与正分Mn2NiGa基体中出现的贫Mn相很相似， 

通过基体与块状相 SAED 谱分析(见图 5(b)和(c))，发 

现块状相的衍射谱与上述  Mn2NiGa 中块状相的衍射 

谱一致，能谱结果也表明此块状相中各元素的摩尔比 

接近 1:1:1，说明在Mn2.02NiGa合金中也存在 Ni2In型 

六角结构的 MnNiGa 相。因此，Mn2.02NiGa 的  XRD 

谱中弱衍射峰标定结果与正分样品一致， 如图 2所示。 

为了研究贫 Mn 相与基体之间界面微结构以及共格关 

系，对样品进行高分辨电子显微分析。图 5(d)所示为 

基体与贫 Mn 相界面处沿[110] α 晶带轴的高分辨电子 

显微像。从图  5(d)中可以看出，  110 //[211 [ ]  0] H α 和 

(220) //(0112) H α ， 相应的面间距  (220) 2.04 3 Å 5 d α = ， 

图 4  Ni2In型六角结构的MnNiGa晶体结构和MnNiGa模拟衍射谱 

Fig. 4  Ni2In­type hexagonal structure (a) and simulated SAED patterns (b)−(d) of MnNiGa 

图 5  Mn2.02NiGa室温组织的明场像、基体相和贫Mn块状相的 SAED谱以及基体与贫Mn相界面处高分辨电子显微像 

Fig. 5  Bright­field image of Mn2.02NiGa (a), SAED patterns for matrix phase (b) and Mn­poor phase (c) and HREM image of grain 

boundary between matrix and Mn­poor phase (d)
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(01 12) 2.0525 Å H d = 。另外，在这个合金的局部区域 

存在一些层状组织，如图 6 所示，通过软件构建其晶 

体结构模型，并模拟相应的电子衍射谱，最后根据模 

拟的衍射谱来标定实验中得到的衍射斑点，SAED 谱 

的标定结果(如图  6 插图所示)，表明这种具有孪晶取 

向关系的组织是无调制体心四方结构的马氏体，空间 

群为 I4/mmm，晶格参数为 a=3.9192 Å，c=6.7842 Å， 

文献[17]也证实了在室温下非化学计量的富  Mn  的 
Mn2NiGa合金中都具有明显的层状马氏体组织，由于 

这些孪晶马氏体组织在基体中所占的体积分数较小， 

因此在 XRD谱中不能明显看出。 

图  6  无调制马氏体相明场像及相应  [110]晶带轴的  SAED 

谱

Fig.  6  Bright­field  image  of  no­modulated  martensite  and 

corresponding SAED pattern insert 

2.2.3  Mn2.06NiGa合金的组织结构 

在Mn2.06NiGa合金中，不存在正分配比以及 

Mn2.02NiGa 合金中的六角结构贫 Mn 相，在基体许多 

区域存在纳米尺度间距的层状组织，如图 7(a)和(b)所 

示，通过高分辨电子显微像的观察(见图  7(c))及其 

SAED谱标定结果(见图 7(a)中插图)分析， 发现这种层 

状组织具有孪晶取向关系。根据前面的分析，这种层 

状孪晶组织是无调制马氏体相，因此可以对 

Mn2.06NiGa 中  XRD 谱的弱衍射峰进行标定，标定结 

果如图 2所示。 

2.2.4  室温奥氏体相中的短程有序结构 

通过对  3  种成分合金奥氏体基体相的〈111〉及 

〈100〉晶带轴的高分辨电子显微分析， 发现在部分区域 

特定方向上均存在晶格畸变，这种畸变与奥氏体的晶 

体学方向有关。 图 8 所示为以 Mn2.06NiGa 合金为例反 

映在这 3种合金中存在的普遍现象， 图 8(a)中沿 (220) 

晶面部分区域原子的不规则排列引起晶面的弯曲，从 

而造成局部区域原子面间距不一致， 从[001]晶带轴的 

高分辨像也能看出在 (220)晶面上部分区域原子不规 

则排列形成的纳米团簇，如图 8(b)所示，这种畸变也 

造成了选区电子衍射谱主衍射斑点之间由于漫散射 

而产生的衍射条纹，如图 8(b)插图所示。这些纳米尺 

度的团簇很可能是马氏体相以纳米尺度团簇的形态 

分布在奥氏体基体中，这与在 Ti­Ni 合金系中发现的 

应变玻璃相 [25−26] 很相似。这说明在 Mn2NiGa 合金中 

也可能存在应变玻璃相。通过对高分辨电子显微像的 

不同区域进行傅立叶(FFT)变换后，发现局部区域(见 

图  8(c)方框所指)对应的电子衍射无微弱的超斑点存 

在，说明该区域不具有  Hg2CuTi 高度有序结构(见图 

8(c)椭圆所指)，很可能是 B2 结构，这些需要进行进 

一步研究。 

图 7  Mn2.06NiGa合金不同放大倍数下具有孪晶取向关系层状组织的明场像、相应[110]带轴的 SAED谱(插图)和高分辨电子 

显微像 

Fig.  7  Bright­field  image  showing  layered  microstructure  with  twinning  orientation  relationship  for  Mn2.06NiGa  in  different 

magnifications ((a), (b)) and corresponding SAED pattern in inset and HREM image for twining microstructure (c)
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图 8  Mn2.06NiGa高分辨像和相应的[001]带轴 SAED谱(插图)及基体中具有不同有序度的纳米尺寸微畴 

Fig.  8  HREM  images  of Mn2.06NiGa  (a)−(c)  and  corresponding  SAED  pattern  in  inset  (b)  nano­scaled  domains  with  different 

crystal structures in matrix (c) 

3  结论 

1) 成分为  Mn2NiGa、Mn2.02NiGa 和  Mn2.06NiGa 
的 3种合金在室温下母相均以 Hg2CuTi型结构的奥氏 

体相为主。 
2）正分Mn2NiGa合金基体中存在大量数百纳米 

块状的贫 Mn 相，经分析该相为 Ni2In 型六角结构的 
MnNiGa  相。在  Mn2.02NiGa  合金中也发现了六角 
MnNiGa 相的存在，而且在样品的局部区域存在具有 

孪晶取向关系的无调制结构马氏体相。在 Mn2.06NiGa 
合金中不存在贫 Mn 相，基体中大部分区域呈现出非 

调制马氏体相。Mn  含量对室温下合金基体中微观组 

织形态具有显著影响。 
3) 通过 3种合金的高分辨像观察， 发现基体局部 

区域存在晶格畸变， 从而引起[001]带轴 SAED谱中的 

漫散射衍射条纹，基体部分区域存在不同有序度的纳 

米尺度微畴。 

REFERENCES 

[1]  KAINUMA,  R,  IMANO  Y,  ITO  W,  SUTOU  Y,  MORITO  H, 

OKAMOTO  S,  KITAKAMI  O,  OIKAWA  K,  FUJITA  A, 

KANOMATA  T,  ISHIDA  K.  Magnetic­field­induced  shape 

recovery by reverse phase transformation[J]. Nature, 2006, 439: 

957−960. 

[2]  BARANDIARAN  J  M,  CHERNENKO  V  A,  LAZPITA  P, 

GUTIERREZ  J,  FEUCHTWANGER  J.  Effect  of  martensitic 

transformation  and  magnetic  field  on  transport  properties  of 

Ni­Mn­Ga  and Ni­Fe­Ga Heusler  alloys[J].  Phys Rev  B,  2009, 

80: 104404−104410. 

[3]  DUBENKO  I,  PATHAK  A  K,  STADLER  S,  ALI  N, 

KOVARSKII  YA,  PRUDNIKOV  V  N,  PEROV  N  S, 

GRANOVSKY A  B.  Giant  hall  effect  in  Ni­Mn­In  Heusler 

alloys[J]. Phys Rev B, 2009, 80: 092408−092411. 

[4]  GUTFLEISCH  O,  WILLARD  M  A,  BRÜCK  E,  CHEN 

CHRISTINA H, SANKAR S G, LIU J P. Magnetic materials and 

devices  for  the 21st  century:  Stronger, lighter, and more energy 

efficient[J]. Adv Mater, 2011, 23: 821−842. 

[5]  PONS  J, CHERNENKO V  A,  SANTAMARTA R, CESARI  E. 

Crystal  structure  of  martensitic  phases  in  Ni­Mn­Ga  shape 

memory alloys[J]. Acta Mater, 2000, 48: 3027−3038. 

[6]  DU Z W, SHAO B L, LIU A S, WU G H, QIAN J F, ZHANG Z 

Y, GAO Z. Martensitic  transition and  structural modulations  in 

Ni51Fe24Ga25  ferromagnetic  shape­memory alloy[J]. J Mater Sci, 

2011, 46: 2733−2740. 

[7]  MORITO  H,  FUJITA  A,  FUKAMICHI  K,  KAINUMA  R, 

ISHIDA  K,  OIKAWA  K.  Magneto  crystalline  anisotropy  in 

single­crystal  Co­Ni­Al  ferromagnetic  shape­memory  alloy[J]. 

Appl Phys Lett, 2002, 81: 1657−1659. 

[8]  SUTOU Y,  IMANO Y,  KOEDA N,  OMORI T, KAINUMA R, 

ISHIDA  K,  OIKAWA  K.  Magnetic  and  martensitic 

transformations  of  NiMnX(X=In,  Sn,  Sb)  ferromagnetic  shape 

memory alloys[J]. Appl Phys Lett, 2004, 85: 4358−4360. 

[9]  OMORIA  T,  WATANABEA  K,  XUA  X,  UMETSUB  R  Y, 

KAINUMAA  R,  ISHIDA K.  Magnetocrystalline  anisotropy  in 

Fe­Mn­Ga magnetic shape memory alloy[J]. Scripta Mater, 2011, 

64: 669−672. 

[10]  郭世海, 张羊换,  王国清,  祁 焱,  全白云, 王新林. 淬速对 

Ni­Mi­Ga 快淬合金相变的影响[J]. 中国有色金属学报,  2005, 

15(11): 1755−1760. 

GUO  Shi­hai,  ZHANG Yang­huan, WANG Guo­qing, QI Yan, 

QUAN  Bai­yun,  WANG  Xin­lin.  Effect  of  quenching  rate  on 

phase  transformation of Ni­Mr­Ga melt­spinning alloys[J]. The 

Chinese  Journal  of  Nonferrous  Metals,  2005,  15(11): 

1755−1760.



中国有色金属学报  2014 年 3 月 764 

[11]  蔡培阳,  冯尚申,  薛双喜,  陈卫平,  周 英,  吴建波,  王古平. 

定向凝固 Ni47Mn32Ga21 多晶合金的结构、 相变及磁特性[J]. 中 

国有色金属学报, 2011, 21(11): 2869−2874. 

CAI  Pei­yang,  FENG  Shang­shen,  XU  Shuang­xi,  CHEN 

Wei­ping, ZHOU Ying, WU Jian­bo, WANG Gu­ping. Structure, 

phase  transformation and magnetic properties  in  polycrystalline 

Ni47Mn32Ga21  directionally  solidified  alloy[J].  The  Chinese 

Journal of Nonferrous Metals, 2011, 21(11): 2869−2874. 

[12]  MA Yun­qing, LAI San­li, YANG Shui­yuan, LUO Yu, WANG 

Cui­ping,  LIU  Xing­jun.  Ni56Mn25−xCrxGa19 (x=0,  2,  4,  6)  high 

temperature shape memory alloys[J]. Transactions of Nonferrous 

Metals Society of China, 2011, 21(1): 96−101. 

[13]  LIU G D, CHEN J L, LIU Z H, DAI X F, WU G H. Martensitic 

transformation  and  shape  memory  effect  in  a  ferromagnetic 

shape  memory  alloy:  Mn2NiGa[J].  Appl  Phys  Lett,  2005,  87: 

262504−262507. 

[14]  LIU G D, DAI X F, YU S Y, ZHU Z Y, CHEN J L, WU G H. 

Physical  and  electronic  structure  and  magnetism  of Mn2NiGa: 

Experiment  and  density­functional  theory  calculations[J].  Phys 

Rev B, 2006, 74: 054435−054442. 

[15]  LUO H Z, MENG F B, FENG Z Q, LI Y X, ZHU W, WU G H, 

ZHU X X,  JIANG C B, XU H B. The  structural and magnetic 

properties of Mn2−xFexNiGa Heusler alloys[J]. J Appl Phys, 2010, 

107: 013905−013909. 

[16]  SINGH  S,  MANIRAJ  M,  D’SOUZA  S  W,  RANJAN  R, 

BARMAN S R.  Structural  transformations  in Mn2NiGa  due  to 

residual stress[J]. Appl Phys Lett, 2010, 96: 081904−081906. 

[17]  ZHANG  J,  CAI  W,  GAO  Z  Y,  SUI  J  H.  Microstructures  and 

magnetic  property  in  Mn­rich  off­stoichiometric  Mn2NiGa 

Heusler alloys[J]. Scripta Mater, 2008, 58: 798−801. 

[18]  马 丽,  朱志永,  李 敏,  于世丹,  崔启良,  周 强,  陈京兰, 

吴光恒. 铁磁形状记忆合金 Mn2NiGa 中应力诱发马氏体相的 

结构和磁性[J]. 物理学报, 2009, 58(5): 3479−3484. 

MA  Li,  ZHU  Zhi­yong,  LI  Min,  YU  Shi­dan,  CUI  Qi­liang, 

ZHOU Qiang, CHEN Jing­lan, WU Guang­heng.  Structure and 

magnetic  properties  of  stress­induced  martensites  in 

ferromagnetic  shape memory alloy Mn2NiGa[J]. Acta Phys Sin, 

2009, 58(5): 3479−3484. 

[19]  宋瑞宁,  李 祥,  朱 伟,  刘恩克,  李贵江,  王文洪,  吴光恒. 

低温时效处理对铁磁形状记忆合金 Mn2NiGa的结构、相变和 

磁性能的影响[J]. 物理学报, 2011, 60(7): 077501−077506. 

SONG Rui­ning, LI Xiang, ZHU Wei, LIU En­ke, LI Gui­jiang, 

WANG  Wen­hong,  WU  Guang­heng.  Low  temperature  aging 

effect  on  structure,  martensitic  transformation  and  magnetic 

properties  of  ferromagnetic  shape  memory  alloy  Mn2NiGa[J]. 

Acta Phys Sin, 2011, 60: 077501−077506. 

[20]  宋瑞宁,  李 祥,  朱 伟,  刘恩克,  李贵江,  王文洪,  吴光恒. 

内应力对Mn2NiGa 铁磁形记忆合金的结构、 相变和磁性能的 

影响[J]. 物理学报, 2012, 61(2): 027501−027506. 

SONG Rui­ning, LI Xiang, ZHU Wei, LIU En­ke, LI Gui­jiang, 

WANG Wen­hong, WU Guang­heng. Effect of internal stress on 

structure, martensitic  transformation and magnetic  properties  of 

ferromagnetic  shape memory alloy Mn2NiGa[J]. Acta Phys Sin, 

2011, 60(2): 027501−027506. 

[21]  ZHANG C L, WANG D H, CAO Q Q, HAN Z D, XUAN H C, 

DU Y W. Magnetostructural phase transition and magnetocaloric 

effect  in  off­stoichiometric  Mn1.9−xNixGe  alloys[J].  Appl  Phys 

Lett, 2008, 93: 122505−122507. 

[22]  LIU E K, ZHU W, FENG L, CHEN J L, WANG W H, WU G H, 

LIU H Y, MENG F B, LUO H Z, AND LI Y X. Vacancy­tuned 

paramagnetic/ferromagnetic  martensitic  transformation  in 

Mn­poor  Mn1−xCoGe  alloys[J].  Europhysics  Letters,  2010,  91: 

17003−17007. 

[23]  LIU E K, WANG W H, FENG L, ZHU W, LI G J, CHEN J L, 

ZHANG H W, WU G H, JIANG C B, XU H B , BOER F. Stable 

magnetostructural  coupling  with  tunable  magnetoresponsive 

effects  in  hexagonal  ferromagnets[J].  Nature  Communications, 

2012, 3: 873−882. 

[24]  MA Y Q, YANG S Y, ZHOU Y, WANG C P, LIU X J. A  new 

ternary  compound  (Ni,  Mn)2Ga  in  Ni­Mn­Ga  system[J]. 

Intermetallics, 2010, 18: 2105−2108. 

[25]  SARKAR S, REN X B, OTSUKA K. Evidence for Strain Glass 

in  the  ferroelastic­martensitic  system  Ti50−xNi50+x[J].  Phys  Rev 

Lett, 2005, 95: 205702−205706. 

[26]  WANG  Y,  HUANG  C  H,  GAO  J  H,  YANG  S,  DING  X  D. 

Evidence for ferromagnetic strain glass in Ni­Co­Mn­Ga Heusler 

alloy system[J]. Appl Phys Lett, 2012, 101: 101913−101916. 

(编辑 陈卫萍)


