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Hastelloy C­276/316L 激光异质焊焊缝腐蚀性能 
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摘要：利用连续激光对 Hastelloy C­276和 316L进行焊接，借助电化学腐蚀方法比较焊缝中心附近和母材在酸性、 

中性、碱性溶液中的腐蚀性能，并利用扫描电子显微镜和 X线能量色散谱分析腐蚀形貌以及腐蚀表面元素成分。 

结果表明：在酸性环境中，抗腐蚀性由大到小的顺序为 C­276的抗腐蚀性、焊缝、316L；在中性环境中，焊缝的 

抗腐蚀性和母材的相似；而在碱性环境中，焊缝的抗蚀性优于 316L 的，而其腐蚀趋势大于 C­276 的，但腐蚀速 

率小于 C­276的；C­276中 Mo元素较 316L中的多，认为焊缝中Mo元素主要来自 C­276，而Mo元素在焊缝枝 

晶间、枝晶杆的含量差别是造成焊缝在酸性、中性溶液中枝晶间腐蚀的重要原因之一；在碱性溶液中焊缝发生点 

蚀，这与晶格缺陷有关。 
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Corrosion performance of laser welding on 
dissimilar materials Hastelloy C­276/316L 
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Abstract: By using continuous  laser  to weld Hastelloy C­276 and 316L and method of  electrochemical  corrosion,  the 

corrosion resistances of the weld and base material in acid, neutral and alkaline solution were studied, continuously. The 

corrosion  morphology  and  the  composition  of  the  corrosion  surface  were  analyzed  by  scanning  electron  microscopy 

(SEM)  and  energy dispersive  spectroscopy  (EDS).  The  results  show  that,  in  the  acidic  environment,  the  sequence  of 

corrosion resistance from high to low are C­276, weld, 316L. In the neutral environment, there is little difference between 

corrosion resistance of the weld and base materials. In  the alkaline environment, the corrosion tendency of 316L is the 

largest, corrosion  tendency of  the weld follows, the corrosion tendency of C­276 is the minimum. While the  corrosion 

speed of weld  and 316L has no obvious difference, and both of  them are obviously  less  than C­276. In  the acidic  and 

neutral solution， the intergranular corrosion is found in the weld. The mass fraction of Mo in the intergranular is about 4% 

larger  than  that  in  the  grain.  This  shows  that  the  segregation  of  Mo  element  has  a  great  influence  on  intergranular 

corrosion. In the alkaline solution, pitting corrosion is found in the weld and it is associated with lattice defects. 
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Hastelloy C­276(以下简称 C­276)是一种万能的抗 

腐蚀合金，316L是一种奥氏体不锈钢，二者以其优异 

的抗蚀性能被广泛应用于化工、海洋及核能工程等领 

域，例如在第三代核主泵 AP1000 中，C­276 与 316L 
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分别被用作核主泵屏蔽套和定子、转子连接结构 [1] ， 

在制造过程中，需对这两种材料进行焊接，而焊缝抗 

腐蚀性是评价这种异质材料接头质量的重要方面。采 

用传统焊接很容易造成薄板母材的变形，激光焊接具 

有小光斑直径和集中热输入量等优点，从而大幅提高 

了焊接质量。 
C­276 作为一种镍基合金，不仅具有优秀的耐盐 

酸腐蚀性能 [2−3] ， 也是少有的对氯离子具有很好抗蚀性 

的合金，而且其抗蚀性能对 NaCl、KCl等盐浓度的增 

加并不敏感 [4] 。合金中的  Cr、Mo 元素对腐蚀性能有 

很大影响， 研究发现，增加 Cr 元素含量能明显提高镍 

基合金的抗腐蚀性能 [5] ，在焊接、热处理时，C­276 
中的 Mo 元素很容易发生偏析，从而诱发各种失效问 

题 [6−8] 。针对 316L的研究发现，在盐酸、硫酸溶液中， 
316L易发生点蚀 [9−10] ，而在弱酸、弱碱溶液中会有明 

显的钝化现象，Cr、Mo 元素对钝化膜的形成具有重 

要作用 [11−12] 。国内关于 316L腐蚀性质的研究也较多， 

主要集中在氯离子、硫离子等离子对  316L 腐蚀性的 

影响 [13−15] 以及  316L 在酸、碱中的抗腐蚀性能和钝化 

性能方面 [16−19] 。尽管国内外关于 C­276 和 316L 抗腐 

蚀性能的研究已有很多，但关于二者异质焊焊缝抗蚀 

性能的研究却鲜见报道，仅吴东江课题组对 Hastelloy 
C­276/316L激光异质焊接过程微观组织进行了研究， 

证实了其激光焊接的可行性 [20] ，但并未对异质焊缝的 

抗蚀性能进行研究。 

在此， 本文作者采用电化学方法， 在已有Hastelloy 
C­276/316L激光异质焊接研究的基础上，分析了激光 

异质焊接焊缝在酸性、中性、碱性溶液中的抗腐蚀性 

能，并将其与母材进行比较，为其工业应用提供理论 

指导。 

1  实验 

1.1  激光焊接 

实验所用材料为厚度 0.4 mm的 C­276和 316L薄 

板，其成分见表  1。焊接方式为平板对接，焊接前用 

丙酮、无水乙醇及蒸馏水清洁被焊表面。焊接设备采 

用 Nd:YAG连续激光器，焊接参数设置如下：焊接功 

率 190 W，焊接速度为 350 mm/min，氩气为保护气， 

流量为 10 L/min，离焦量为 0 mm。 

1.2  电化学腐蚀 

图 1所示为 Nd:YAG连续激光焊接得到的焊缝截 

面形貌，图 2所示为 Nd:YAG脉冲激光焊接下焊缝的 

主要元素分布， 直线 L1、 L2 之间的焊缝主要元素为 Fe、 
Ni、 Cr 和Mo， 且分布均匀 [20] 。 试样尺寸为 30 mm×20 
mm×0.4 mm，用 400~3000号金相砂纸进行粗磨和细 

磨，然后抛光，得到焊缝腐蚀截面 S，腐蚀面处于 L1 
与 L2 之间，且平行于 L1 面。 

图 1  焊缝截面形貌 

Fig. 1  Cross­section morphology of weld 

腐蚀液成分如表 2所列，腐蚀温度为室温。电化 

学测试体系采用三电极体系， 待测工件作为工作电极， 

饱和甘汞作为参比电极，铂片作为辅助电极，电化学 

仪器采用 PARSTAT  2273型电化学测试仪，配合自带 

软件 Electrochemistry  Power  Suite  Software测试了焊 

缝和母材在酸性、中性、碱性溶液中的腐蚀性能。极 

化曲线扫描电位范围为−0.5 ~1.5 V，扫描速率设定为 
5  mV/s。腐蚀后利用扫描电子显微镜(SEM)观察焊缝 

腐蚀形貌，并利用 X 线能量色散谱(EDS)选取 3 处不 

表 1  C­276 和  316L的化学成分 

Table 1  Chemical composition of C­276 and 316L 

Mass fraction/% 
Material 

Ni  Fe  Cr  Mo  W  Co  Mn  C  Si  P  S  V 

C­276  Bal.  4−7  14.5−16.5  15−17  3−4.5  ≤2.5  ≤1.0  ≤0.01  ≤0.08  ≤0.04  ≤0.03  ≤0.035 

316L  10−14  Bal.  16−18  2−3  −  −  ≤2.0  ≤0.03  ≤1.00  ≤0.035  ≤0.03  −
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图 2  焊缝主要元素分布 

Fig. 2  Distribution of major elements in weld 

表 2  腐蚀液配制 

Table 2  Corrosion liquid preparation 

Solution  pH  Etching solution 

Acid  1  100 mL H2O+5 mL HCl+3 g NaCl 

Neutral  7  100 mL H2O+3 g NaCl 

Alkaline  14  100 mL H2O+3 g NaOH+3 g NaCl 

同的腐蚀表面，检测元素质量分布，求取平均值。 

2  结果与讨论 

2.1  酸溶液中焊缝抗蚀性分析 

根据腐蚀学原理，合金腐蚀电压越低，热力学上 

腐蚀趋势就越大，而腐蚀电流密度越大，腐蚀速率越 

快。所以，合金的腐蚀电压越高，腐蚀电流密度越小， 

耐蚀性越好。由表 3可知，焊缝的腐蚀电压大于 316L 
的，而略小于 C­276 的，所以，在焊缝的腐蚀倾向低 

于 316L 的，却稍高于 C­276 的。从动力学的角度分 

析， 焊缝和 316L的腐蚀电流密度同在一个数量级(10 −6 

A/cm 2 )，但是比 C­276 的腐蚀电流密度大一个数量级 

表 3  酸性溶液中焊缝、316L和 C­276的电化学参数 

Table 3  Electrochemical parameters of weld, 316L and C­276 

in acidic solution 

Material  φcorr/mV  Jcorr/(A∙cm −2 ) 

316L  −365.996  5.41×10 −6 

Weld  −274.509  2.78×10 −6 

C­276  −249.406  8.02×10 −7 

(10 −7  A/cm 2 )，显然，焊缝和 316L腐蚀速率无太大差 

别，而大于 C­276的腐蚀速率。综上分析，酸性环境 

下焊缝的耐腐蚀性能差于 C­276的，但优于 316L的。 

图 3所示为焊缝、 316L和 C­276在酸性环境下的 

极化曲线。由图 3可以看出，在电压小于 0.5  V 的区 

域，焊缝处于极化腐蚀状态，此时反应速率很快；当 

电压为 0.5~1.0 V时， 焊缝进入稳定钝化阶段， 很显然， 

焊缝的稳定钝化区范围小于 C­276 的稳定钝化区范围 
(0.2~0.9 V)，且焊缝的维钝电流密度(1×10 −2 A/cm)远 

远大于 C­276的维钝电流密度(1×10 −5 A/cm)， 说明虽 

然同处于钝化状态，但焊缝腐蚀速率比 C­276的大。 

而在  316L  不锈钢的极化曲线中无明显钝化区，在 
−0.2~1.0  V之间，随着电压增大，电流密度先减小后 

增大。

图 4 所示为焊缝酸性腐蚀条件下的 SEM 像。由 

图 4 可看出，焊缝在酸性环境下发生了明显的枝晶间 

腐蚀， 利用 EDS分别测量枝晶杆和枝晶间主要元素质 

量分数。结果如下：枝晶杆中 Fe 35.32%，Ni 29.25%， 
Cr  17.32%，Mo  13.31%；枝晶间中  Fe  33.01%，Ni 
27.49%，Cr 17.60%，Mo 17.48%。枝晶间和枝晶杆中 

含量最多的为 Fe和 Ni，且二者含量相差不大。Cr 元 

素质量分数在枝晶间和枝晶杆中也没有明显差别，说 

明在焊接过程中，Cr  元素并没有发生明显的微观偏 

析，即枝晶间腐蚀并非由 Cr 元素偏析引起。C­276中 

的Mo元素质量分数为 15.0%~17.0%，而 316L中Mo 
元素的质量分数只有 2.0%~3.0%，可以认为，焊缝中 

的Mo元素主要来自 C­276。在焊接熔池结晶过程中， 
Mo元素发生偏析， 使得枝晶间Mo元素的质量分数比 

枝晶杆Mo元素的质量分数提高 4%左右， 增大了枝晶 

图 3  酸性溶液下焊缝、316L和 C­276的极化曲线图 

Fig.  3  Polarization  curves  of weld, 316L  and C­276  in  acid 

solution
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图 4  酸性条件下焊缝腐蚀的形貌 

Fig. 4  Corrosion morphology of weld in acid solution 

间和枝晶杆在焊缝中成分和结构的不均匀性，从而逐 

渐造成了枝晶间腐蚀。 

2.2  中性溶液中焊缝抗蚀性分析 

表 4所列为中性溶液下 316L、 焊缝和 C­276的电 

化学参数。从表 4 中可以看出，焊缝和 316L、C­276 
的腐蚀电压都在−250 mV左右，由热力学知识可知， 

焊缝、母材在中性环境中的腐蚀趋势相差不大；而从 

动力学角度分析，焊缝和母材的腐蚀电流密度均在 
10 −8 A/cm 2 数量级上，表明焊缝和母材的腐蚀速率没 

有明显差别。综上分析，在中性溶液中，焊缝和母材 

的抗腐蚀性能相似。 

表 4  中性溶液下 316L、焊缝和 C­276的电化学参数 

Table 4  Electrochemical parameters of 316L, weld and C­276 

in neutral solution 

Material  φcorr/mV  Jcorr/(A∙cm −2 ) 

316L  −229.967  1.63×10 −8 

Weld  −257.133  2.95×10 −8 

C­276  −273.355  1.22×10 −8 

图 5 所示为在中性环境下焊缝和母材的极化曲线 

图。由图 5可看出，在−2.5~−0.1 V阶段，焊缝和母材 

都处于极化腐蚀阶段，腐蚀速率很快。在−0.1 V时， 

腐蚀表面状态不稳定，因钝化−活化交替进行而导致 

电流出现震荡，焊缝和 C­276 进入了钝化过渡区，而 
316L却没有明显钝化过渡现象。在 0 V左右，焊缝和 
316L 进入稳定钝化区，研究表明，Cr 元素是提高合 

金抗蚀性能的有效元素， 其以 Cr2O3、 CrOOH、 Cr(OH)3 

等多种形态组成了钝化膜的主要成分 [21−22] 。比较发 

现，焊缝的稳定钝化区范围(0~0.3  V)明显小于  316L 
的钝化区范围(0~0.6  V)，并且维钝电流密度也大于 
316L 的，说明在钝化状态时，焊缝的腐蚀速率大于 
316L，而 C­276没有明显的稳定钝化区。焊缝的过钝 

化电位为 0.3 V，小于 316L的过钝化电位(0.6 V)，在 

焊缝和 316L各自的过钝化区内都发生了“二次钝化” 

现象，此现象与 Cr 的氧化物转变有关 [23] 。 

图 6 所示为焊缝中性条件下的腐蚀形貌。由图 6 
可见，在中性溶液中发生了明显的枝晶间腐蚀，利用 
EDS分别测量枝晶间和枝晶杆主要元素的含量。结果 

如下(质量分数)：枝晶杆中 Fe  39.12%，Ni  29.02%， 
Cr  18.24%，Mo  13.62%，枝晶间中  Fe  32.16%，Ni 
31.37%，Cr 18.07%，Mo 18.40%。比较发现，枝晶间 

和枝晶杆中 Cr元素质量分数相差不大， 排除铬元素的 

偏析造成晶间腐蚀的可能性； 如在酸性环境中的分析， 

图 5  中性环境下焊缝和母材的极化曲线 

Fig. 5  Polarization curves of weld  and base metal  in neutral 

solution 

图 6  中性条件下焊缝腐蚀的形貌 

Fig. 6  Corrosion morphology of weld in neutral solution
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焊缝中的 Mo 元素在熔池结晶过程中发生偏析，使得 

枝晶间Mo元素质量分数比枝晶杆提高 4%左右， 导致 

了枝晶间抗腐蚀性性能下降， 逐渐造成了枝晶间腐蚀。 

2.3  碱性溶液中焊缝抗蚀性分析 

表 5所列为碱性溶液下电化学参数。 由表 5看出， 

在碱性环境中，焊缝的腐蚀电压大于  316L 的腐蚀电 

压，很显然，在热力学上焊缝比不锈钢  316L 有更稳 

定的腐蚀倾向， 而焊缝的腐蚀电压明显小于 C­276的， 

所以在碱性环境中焊缝的腐蚀趋势介于C­276和316L 
之间。但是从动力学的角度来看，焊缝的腐蚀电流密 

度和 316L同在一个数量级(10 −7  A/cm 2 )，而明显小于 
C­276的腐蚀电流密度(10 −5 A/cm 2 )，由此可知，在碱 

性环境下焊缝和  316L 的腐蚀速率相当，而明显小于 
C­276的。 

表 5  碱性溶液下电化学参数 

Table 5  Electrochemical parameters in alkaline solution 

Material  φcorr/mV  Jcorr/(A∙cm −2 ) 

316L  −603.790  3.88×10 −7 

Weld  −438.168  2.36×10 −7 

C­276  −239.706  1.08×10 −5 

从图 7极化曲线看出，当电压−0.5~−0.25 V范围 

内时，焊缝处于极化腐蚀阶段，腐蚀速率很快，而电 

压在−0.25~0.5  V  之间时，极化曲线的斜率较−0.5~ 
−0.25 V阶段的大， 说明腐蚀速率有所减小，发生了不 

完全钝化，这是由于在碱性环境中钝化膜的生成速率 

小于溶解速率引起的。在 316L的极化曲线中，可以 

图 7  碱性环境下焊缝、316L和 C­276的极化曲线 

Fig.  7  Polarization  curves  of  weld,  316L  and  C­276  in 

alkaline solution 

看到明显的钝化区(0.2~0.4 V)，而在不含 NaCl的质量 

分数为  1%的  NaOH  溶液中，316L  的钝化区间为 
0.1~0.9  V [19] ，可以看出受 Cl − 的影响，钝化区间明显 

减小，说明在 0.4 V时钝化膜被破坏。根据吸附理论， 

氯离子和氧在钝化膜上竞相吸附，当氧的吸附点被氯 

离子取代时，形成了可溶性络合物，从而钝化膜被破 

坏。而从 C­276 的极化曲线可以看出，C­276 始终处 

于极化腐蚀阶段，没有观察到钝化现象，从而解释了 
C­276的腐蚀电流密度比焊缝和 316L的都大的原因。 

图 8 所示为碱性条件下焊缝的腐蚀形貌。由图 8 
可以看出，焊缝发生明显的点蚀，而点蚀与元素分布 

的均匀程度、晶体缺陷程度有很大关系 [24−25] 。利用 
EDS在点蚀和没有点蚀处测量主要元素的含量，结果 

如下(质量分数)：点蚀处 Fe  27.04%，Ni  34.64%，Cr 
19.37%， Mo 18.95%， 非点蚀处 Fe 27.19%， Ni 34.47%， 
Cr 17.84%，Mo 20.30%，发现在点蚀处和非点蚀处主 

要元素的质量分数并没有显著差别，这就排除了金属 

元素分布不均匀造成点蚀的可能。而由于激光焊接过 

程的快速冷却，使焊缝存在大量非平衡晶体缺陷，因 

此认为焊缝点蚀与晶格缺陷有关。 

图 8  碱性条件下焊缝的腐蚀形貌 

Fig. 8  Corrosion morphology of weld in alkaline solution 

3  结论 

1)  在酸性环境中，抗腐蚀性从大到小的顺序为 
C­276、焊缝、316L；焊缝的稳定钝化区小于  C­276 
的，而 316L没有明显的钝化区；Mo元素偏析是造成 

焊缝酸性环境中的枝晶间腐蚀的重要原因之一。 
2) 在中性溶液中， 焊缝和母材的抗腐蚀性相差不 

大；焊缝的稳定钝化区范围明显小于  316L 的钝化区 

范围，C­276无明显钝化区；Mo元素偏析是造成焊缝 

中性环境中的枝晶间腐蚀的重要原因之一。 
3) 在碱性环境中，从热力学角度评价，腐蚀趋势
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从大到小的顺序为  316L、焊缝、C­276；从动力学角 

度评价，焊缝的腐蚀速度和  316L 的相当，但明显小 

于 C­276的；焊缝的钝化现象并不明显，316L的稳定 

钝化区很小，而 C­276 中没有观察到稳定钝化区；晶 

格缺陷是造成焊缝在碱性溶液中点蚀的重要原因。 
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