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Phase-field simulation of effect of lateral constrains on
dendritic spacing change

LIU Xiao-yuan, DU Li-fei, ZHANG Rong, ZHANG Li-min

(Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education,
School of Science, Northwestern Polytechnical University, Xi’an 710129, China)

Abstract: The mechanical properties of materials are strongly dependent upon their microstructures, and the lateral
constrains in presence of melt have a significantly effect on the microstructure evolution. A non-isothermal phase-field
model for pure metal was implemented to simulate the microstructure evolution in the presence of lateral constrains of
different shapes during the solidification of pure Ni, in order to study the effect of lateral constrains on the dendritic
spacing changes caused by these lateral constrains. The results indicate that lateral constrains have a direct influence on
the dendrite development, and the lateral constrains of different shapes can lead to different influences on the dendrite
arm spacing changes. The constrains of triangle with sharp corner at the bottom has the most significant influence on the
dendrite spacing changes, and rectangle and triangular constrains with its sharp corner above show a controlling effect on
the dendrite arm spacing, that is, the dendrite growth of different primary arm spacings has the same developing manner
with these two kinds of lateral constrains, the new developing dendrite arm spacing is determined by the shape of
constrains, and has less relationship with its primary arm spacing. When the lateral constrain of trapezoid is introduced,
the dendrite arm spacing can be determined by changing the size of the hemline of constrains. Therefore, the lateral
constrains in the solidification process can significantly change the dendrite arm spacing.
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Table 1 Parameters used in simulations

Parameter Value Parameter Value
& 0.01 0 0.04
T 0.000 3 j 4
a 0.9 Ax, Ay 0.03
4 10.0 At 0.000 2
a 0.005 K 1.5
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Fig. 1 Sketch maps of four different constrains: (a) Rectangle; (b) Triangle with sharp corner on top; (c) Triangle with sharp corner

at bottom; (d) Trapezoid
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Fig. 2 Microstructure evolution of dendrite growth with lateral constrains of triangle: (a) 2 000Az; (b) 4 000A¢; (c) 6 000Az; (d) 8
000A; () 10 000AZ; (f) 12 000AZ; (g) Temperature distribution at 10 000A; (h) Experiment result!?
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Fig. 3 Microstructures of dendrites with different primary spacings and lateral constrains of triangle with sharp corner on top:
(a) di=800Ax; (b) dy=400Ax; (c) di=200Ax; (d) dy=100Ax
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Fig. 4 Microstructures of dendrites with different primary spacings and lateral constrains of triangle with sharp corner at bottom:

(a) dy=800Ax; (b) d=400Ax; (c) dy=200Ax; (d) d=100Ax
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Fig. 5 Microstructures of dendrites with different primary spacings and lateral constrains of rectangle: (a) d¢=800Ax; (b) di=400Ax;

(¢) d=200Ax; (d) d=100Ax
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Fig. 6 Microstructures of dendrites with different primary spacings and lateral constrains of trapezoid at d,=300Ax and w,=100Ax:
(a) d¢=800Ax; (b) dy=400Ax; (c) di=200Ax; (d) dy=100Ax
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Fig. 7 Microstructures of dendrites with different primary spacings and lateral constrains of trapezoid at d,=300Ax and w,=200Ax:
(a) d¢=800Ax; (b) dy=400Ax; (c) di=200Ax; (d) dy=100Ax
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