文章编号:1004-0609(2014)02-0335-08

DZ125 镍基合金蠕变期间的组织演化与元素扩散迁移率

田 宁¹, 田素贵¹, 于慧臣², 孟宪林¹

(1. 沈阳工业大学 材料科学与工程学院,沈阳 110870;
 2. 北京航空材料研究院,北京 100095)

摘 要:通过蠕变性能测试及组织形貌观察,结合元素扩散迁移率计算,研究 DZ125 合金在1040 蠕变期间的 组织演化规律。结果表明:高温蠕变期间,合金在枝晶间/干区域发生不均匀的组织演化,枝晶间区域形成的筏状 y'相尺寸粗大,而枝晶干区域 y'相沿(001)晶面形成细小的 N-型筛网状筏形结构,且 y 基体相连续充填在筛网状 y' 相之间,可保证合金的高塑性。在1040 、137 MPa 蠕变期间,合金枝晶干区域的 y'相经3h 转变成筏状结构, 随施加应力的降低, y'相发生筏形化转变的时间延长;其中,Al、Ta 具有较高扩散迁移率是促使合金发生较快筏 形化转变的主要原因。

关键词:DZ125 镍基合金;蠕变;组织演化;元素扩散;迁移率 中图分类号:TG115.9 文献标志码:A

Microstructure evolution and element-diffusion mobility of DZ125 nickel-based superalloy during creep

TIAN Ning¹, TIAN Su-gui¹, YU Hui-chen², MENG Xian-lin¹

School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
 Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: By means of creep-curve measurements and microstructure observations, combined with the calculation of element-diffusion mobility, the microstructure-evolution regularity of DZ125 nickel-based superalloy during creep at 1 040 was investigated. The results show that, during high-temperature creep, inhomogeneous microstructure evolution occurs in the interdendrite and dendrite arm regions. The coarser rafted γ' phase appears in the interdendrite regions, the fine rafted γ' phase with the mesh-like N-type structure on (001) plane forms in the dendrite arm regions, and the γ matrix phase fills continuously between the mesh-like rafted γ' phase to ensure the better plasticity of the alloy. During creep at (1 040 , 137 MPa), the cuboidal γ' phase in the dendrite arm region transforms into the rafted structure after being crept for 3 h. As the applied stress decreases, the rafted time of γ' phase prolongs. Thereinto, the bigger diffusion mobilities of elements Al and Ta are the main reason for the alloy occurring rapidly microstructure evolution. **Key words:** DZ125 nickel-based superalloy; creep; microstructure evolution; element diffusion; mobility

定向凝固合金的组织结构由 y 基体、y'相组成,由 于晶体沿[001]取向定向生成成为柱状晶结构,可以基 本消除与应力轴垂直的横向晶界^[1],因而,与普通多 晶铸造合金相比,承温能力和持久寿命都得到较大幅 度的提高,已被国内外广泛应用于制备先进航空发动 机的热端叶片部件^[2]。

DZ125 合金是目前性能水平较好的定向凝固镍基 铸造合金之一^[3],具有良好的中、高温综合性能及优

基金项目:国家自然科学基金资助项目(51271125)

收稿日期:2013-01-20;修订日期:2013-10-20

通信作者:田素贵,教授;电话:024-25494089;E-mail:tiansugui2003@163.com

异的热疲劳性能,且没有明显的薄壁效应。一次枝晶 间距和二次枝晶间距均随着熔体处理温度的提高,呈 现出先减小后增大的规律,并在1650 熔体处理时 出现最小值^[4]。诸多研究证明,服役期间在高温离心 力作用下,使叶片部件发生蠕变损伤是其主要的失效 形式^[5-6],因此,DZ125 定向凝固合金的蠕变行为得到 众多研究者的重视^[7-8]。

在高温施加载荷作用下,单晶镍基合金中 y'相发 生明显的组织演化,且 y'相的演化速率与合金组织稳 定性密切相关,特别是 y'相的演化形态对合金蠕变性 能有重要影响^[9–10],因此,单晶合金在蠕变期间的组 织演化得到广泛研究^[11–12]。与单晶镍基合金相比,定 向凝固合金中存在与应力轴垂直的纵向晶界,尽管定 向凝固镍基合金的高温蠕变行为已有文献报道^[13–14], 但在高温蠕变期间,定向凝固合金中 y'相是否发生形 态演化,其各元素在蠕变期间扩散迁移特征并不清楚。

据此,本文作者对 DZ125 定向凝固合金进行蠕变 性能测试及组织形貌观察,考察合金中 y'相在高温、 低应力蠕变期间的形态演化规律,并采用热力学方法 计算各元素的扩散迁移率,研究合金在高温蠕变期间 的组织演化行为,试图为合金的应用提供理论依据。

1 实验

采用定向凝固技术在真空定向凝固炉中沿[001] 取向制取直径为 16 mm 的 DZ125 合金试棒,其合金 的化学成分如表 1 所列。选取的热处理工艺如下: (1 180 ,2 h, F)+(1 230 ,3 h, AC)+(1 100 ,4 h, AC)+(870 ,20 h, AC)。合金经 4 级热处理后,用线 切割将试棒加工成横断面为 4.5 mm × 2.5 mm,标距长为 15 mm 的板状拉伸蠕变试样。

蠕变试样经机械研磨和抛光后,将其置入 GWT504型高温蠕变/持久试验机中,在1040 施加 137 MPa条件下进行蠕变性能测试,并在同样条件下 蠕变不同时间终止试验,进行 SEM 组织形貌观察, 采用尝试法确定合金中 y'相的筏形化时间(其中,两相 邻立方 y'相因元素扩散相互连接的时间,定义为 y'相 的筏形化时间),将合金蠕变 40 h 后终止试验,观察 不同晶面的组织形貌,构建合金中 y'相在空间的存在 方式。同时采用热力学方法计算合金中各元素在 1 040 的扩散迁移率,考察合金在蠕变期间的组织演 化规律。

表1 DZ125 合金的化学成分

Table 1 Chemical compositions of DZ125 superalloy (massfraction, %)

Cr	Со	W	Мо	Al	Ti
8.68	9.80	7.08	2.12	5.24	0.94
Та	Hf	H	3	С	Ni
3.68	1.52	0.0	12	0.09	Bal.

2 结果与分析

2.1 合金的组织结构

合金经完全热处理后,样品经腐蚀后在 SEM 下 观察的组织形貌如图 1 所示。由图 1(a)可以看到,合 金经热处理后仍保持着完整的枝晶形貌。图中长线段 为合金中一次枝晶的生长方向,短线段为二次枝晶生

图 1 合金经完全热处理后的组织形貌

Fig. 1 Microstructures in local region of alloy after fully heat treatment: (a) Dendritic morphology on (100) plane; (b) Magnified morphology in dendritic/interdendritic region; (c) Fine cubical γ' phase in dendritic region; (d) Coarser cubical γ' phase in interdendritic region

长方向,图 1(a)局部枝晶的放大形貌如图 1(b)所示, 可以看出,合金的组织结构由 γ' 和 γ 相组成,细小的 立方 γ' 相存在于枝晶干区域,粗大的 γ' 相存在于枝晶 间区域,晶界位于枝晶间区域;枝晶干 *A* 区域的放大 形貌示于图 1(c),立方细小 γ' 相在枝晶干区域均匀分 布,其尺寸约为 0.4 μ m。在枝晶间 *B* 区域的放大形貌 示于图 1(d),可以看出枝晶间粗大 γ' 相仍为立方体形 貌,其立方体边缘尺寸约为 1.0~1.2 μ m,其尺寸分布 并非均匀,较小尺寸的立方 γ' 相约为 0.7 μ m,如图中 短箭头所示,较大尺寸的立方 γ' 相约为 1.5 μ m,如图 中长箭头所示,表明合金在枝晶干/间区域存在明显的 组织不均匀性。

2.2 蠕变期间 y'相的演化规律

在 1 040 施加 137 MPa 测定的蠕变曲线如图 2 所示,表明合金在稳态蠕变期间具有较低的应变速率, 蠕变持续 50 h 后进入加速蠕变阶段,直至 88 h 发生

蠕变断裂。

合金在相同条件蠕变不同时间的组织形貌如图 3 所示。施加应力轴的方向如图中箭头标注所示,可以 看出,蠕变 1 h 合金中立方 y'相已转变成球状形态, 其中,y'相沿水平方向伸长,沿垂直方向尺寸略有减 小,并沿垂直于应力轴方向相互连接成串状结构(图 3(a)),蠕变 2 h 和 2.5 h 后,合金中 y'相已逐渐扩散连 接形成筏状组织(见图 3(b)和(c))。但仍有粒状 y'相独 立存在(见图 3(c));随蠕变至 3h,合金中 y'相已完全 转变成与应力轴垂直的 N-型筏状结构,与图 3(b)相比, 筏状 y'相的厚度尺寸略有增加(见图 3(d)),因此,定义 该合金在 1 040 、137 MPa 条件下的筏形化时间为 3 h。

将合金分别在 1 040 施加 137、100、80 和 50 MPa 不同应力,蠕变不同时间终止试验,结合组织形 貌观察,按照上述方法确定合金中 y'相的筏形化时间,在 1 040 施加 137、100、80 和 50 MPa 条件下,测 定出合金中 y'相的筏形化时间分别为 3、4.5、7 和 15 h,在 1 040 施加应力与合金中 y'相筏形化时间的依赖 关系如图 4 所示。这表明在 1 040 蠕变期间,随施 加应力降低,合金中 y'相的筏形化时间延长。

合金经完全热处理后,仍存在枝晶干/间区域的组 织不均匀性,在枝晶干区域 γ '相尺寸较小,枝晶间区 域 γ '相尺寸较大,如图 1 所示。合金经 1 040 、137 MPa 蠕变 40 h 后,沿蠕变样品的(100)晶面切取试样, 其枝晶干/间区域的组织形貌如图 5 所示。由图 5 可以 看出,合金中 γ '相已转变成与应力轴垂直的 N-型筏状 结构,但在枝晶干/间区域仍存在 γ '相的尺寸不均匀性, 合金中在枝晶干 A 区域,筏状 γ '相的尺寸细小,约为 0.4 μ m,而在枝晶间 B 区域,筏状 γ '相的尺寸较粗大, 约为 0.8 μ m。

图 3 合金在 1 040 、137 MPa 蠕变不同时间的组织形貌 Fig. 3 Microstructures of alloy crept at 1 040 and 137 MPa for different times: (a) 1 h; (b) 2 h; (c) 2.5 h; (d) 3 h

图 4 在 1 040 施加应力与 DZ125 合金中 y'相筏形化时间 的依赖关系

Fig. 4 Dependence of rafted time of γ' phase in DZ125 alloy on applied stress at 1 040

由于合金在枝晶干/间区域存在组织不均匀性,故 仅选取图 5 中枝晶干 A 区域进行组织形貌观察,确定 出合金中 y'相在三维空间的存在方式,考察合金的组 织演化特征与规律。合金经 1 040 、137 MPa 蠕变 40 h 后,分别观察枝晶干区域不同晶面筏状 y'相的形 貌,如图 6 所示。其中,合金经电解深腐蚀后,y 基

图 5 在 1 040 、137 MPa 蠕变 40 h 后合金中筏状 y'相在 枝晶干/间区域的形貌

Fig. 5 Microstructure in dendritic/interdendritic regions for alloy crept at 1 040 and 137 MPa for 40 h

体被溶解腐蚀消失,呈暗颜色,而 y'相被保留呈亮颜 色。枝晶干区域中单胞施加应力的方向如图 6(a)所示, 在枝晶干区域(100)晶面的(见图 5 中 A 区域)筏状 y'相 形貌示如图 6(c)所示,可以看出,在合金的(100)晶面 中 y'相已沿垂直于应力轴方向形成 N-型筏状结构,而 在(010)晶面中,合金中 y'相仍为沿垂直于应力轴的

图 6 经 1 040 、137 MPa 蠕变 40 h 合金中不同晶面筏状 y'相的形貌

Fig. 6 Morphologies of rafted γ' phase in different crystal planes of alloy crept at (137 MPa, 1 040) for 40 h: (a) Schematic diagram of cubic cell subjected to applied stress; (b), (c), (d) Corresponding to morphologies of γ' rafted phase in (001), (100) and (010) planes, respectively

N-型筏状结构,如图 6(d)所示。合金在(001)晶面中 γ' 相的形貌示于图 6(b),表明合金中的 γ'相在(001)晶面 沿[100]、[010]方向相互扩散连接,形成类似筛网状的 筏形结构,其筏状 γ'相之间为 γ 基体相,与 γ'相相邻 的上下两层 γ 基体相穿过筛网而相互连接,并连续充 填在筏状 γ'相之间,以保持合金的高塑性。

合金经完全热处理后,立方 y'相以共格方式嵌镶 在 y 基体中的示意图,如图 7(a)所示。经拉应力蠕变 40 h 后,在(001)晶面形成筛网状筏形组织的形貌示于 图 7(b)中。

图 7 沿[001]取向施加拉应力蠕变前后合金中 y'相在三维空间存在方式的示意图

Fig. 7 Schematic diagram of γ' phase in [001] orientation single crystal nickel-base superalloy at different states in 3-D space: (a) Before creep, cubical γ' phase embedded coherently in γ matrix; (b) After creep, mesh-like rafted γ' phase formed in alloy

2.3 蠕变期间元素的扩散迁移率

根据图 5 可以看出,合金在蠕变期间可发生 y'相 的筏形化转变,其中,y'相的筏形化转变归因于元素 的定向扩散。在高温拉应力蠕变期间,元素 A1、Ta 定向扩散进入立方 y'相与应力轴平行、且发生晶格扩 张的(100)和(010)晶面,可促使立方 y'相沿[100]和[010] 方向定向生长[15],可沿(001)晶面生长成为筛网状筏 形组织。因此,在服役条件下元素的扩散速率对合金 的组织稳定性有重要影响。

可以认为合金经完全热处理后成分均匀,蠕变前 后 y'相体积分数无明显变化,y'相筏形化后,立方 y' 相两侧的 y 基体通道完全转变为 y'相 ,此时 ,元素 *i* 的 扩散迁移量 Δx_i (摩尔分数)可用 *i* 元素在 y'与 y 两相之间 的浓度差表示 ,即 $\Delta x_i = x_i^{\gamma'} - x_i^{\gamma}$ 。利用 TEM 电镜对试 样进行 EDS 成分分析 ,测定出合金中 y'、 y 两相的化 学成分 , 列于表 2 ,并计算出 Δx_i 值。

将相关元素的自由能数据及蠕变前后相应元素的 扩散迁移量 Δx_i 带入式(1),可求得各元素的扩散激活 能 ΔG_i^* 值:

$$\Delta G_i^* = \sum_{j=1,n}^n \left[\Delta X_j \Delta G_i^{*j} + \frac{1}{2} \sum_{\substack{j,k=1,n \\ (j \neq k)}} \Delta X_j \Delta X_k \Delta G_i^{*jk} \right] \quad (1)$$

式中: ΔG_i^* 为元素 *i* 的扩散(迁移)激活能; ΔG_i^{*j} 为元 素 *i* 在元素 *j* 中的扩散激活能; ΔG_i^{*jk} 为元素 *i* 在元素 *j、k* 中的扩散激活能。将 ΔG_i^* 带入式(2)可计算出各元 素在 1 040 的扩散迁移率,各元素扩散迁移率(M_i) 的表达式为^[16]

$$M_i = \frac{1}{RT} \exp\left[\frac{-\Delta G_i^*}{RT}\right]$$
(2)

式中: R 为摩尔气体常数; T 温度(K)。将计算出的 Δx_i 值代入式(1)和(2), 计算出合金中各元素在 1 040 的 扩散迁移率(M_i)如表 3 所列。

由表 3 可以看出,不同元素在合金中具有不同的 扩散激活能和扩散迁移率,其中,元素 Mo、W 具有 较大的扩散激活能及较低扩散迁移率,Co、Ti 的扩散

表 2 经 1 040 蠕变 40 h 后合金中 γ' 和 γ 两相的化学成分 **Table 2** Chemical compositions of γ' and γ phases in alloy after crept at 1 040 for 40 h

Phase –				Mass fraction/%)		
	Al	Та	Cr	Мо	W	Co	Ti
γ'	6.45±0.8	3.2±0.5	2.05±0.2	0.1±0.1	5.85±0.2	4.65±0.2	1.9±0.3
γ	1.4±0.3	0.9±0.2	10.6±2.2	0.9±0.2	5.65±0.2	7.15±1.5	0.4±0.1
γ'/γ	4.61	3.56	0.19	0.11	1.04	0.65	4.75

表3	10	40	各元	素在含	う金り	中的扩	散激	活能	及打	散迁	:移率
Table	3	Diffu	sion	activa	tion	energy	and	mob	ility	of al	loying
eleme	nts a	at 1 04	40								

Element	Diffusion activation energy	M_i		
Al	-18 260.93	4.88×10^{-4}		
Та	-13 447.69	3.14×10^{-4}		
Cr	-36 354.09	2.56×10^{-3}		
Mo	-5 741.15	1.55×10^{-4}		
Co	-12 312.99	2.83×10^{-4}		
W	-2 947.31	1.2×10^{-4}		
Ti	-9 711.91	2.2×10^{-4}		

激活能及扩散迁移率居中,而元素 Cr、Al、Ta 具有较低的扩散激活能及较高扩散迁移率,故其扩散速率对合金的组织稳定性具有重要影响。由于元素 Al、Ta 是 y'相形成元素,且与元素 Ta 相比,元素 Al 的扩散速率较大,因此,元素 Al 是合金中 y'相形态演化的控制性环节。

3 讨论

3.1 蠕变期间元素的定向迁移

在高温低应力拉应力蠕变期间,元素定向扩散的 速率决定着立方 y'相定向生长的速率。分析认为:经 完全热处理后,合金中立方 y'相以共格方式嵌镶在 y 基体中,其中,与 y 基体相比,y'相有较大的弹性模量。 在高温沿[001]方向拉应力蠕变期间,合金中 y 基体相 发生塑性变形,致使立方 y'相中与施加应力轴方向平 行的(001)界面晶格扩张,其扩张的晶格可诱捕较大半 径的 Al、Ta 原子,促进其 y'相沿[100]和[010]方向定 向生长。当相邻 y'相定向生长相连接时,可沿(001)晶 面形成筛网状筏形组织,如图 6 和图 7(b)所示。再则, 在高温蠕变期间,随施加拉应力增大,合金中 y'相的 筏形化速率提高,如图 4 所示。因此可以推论:在高 温拉应力蠕变期间,合金中 y'相的筏形化速率主要取 决于立方 y'相沿与应力轴平行晶面的晶格扩张程度, 随施加应力增大,y基体的塑性变形程度增加,致使 y' 相的晶格扩张程度增大,该区域的晶格应变能增加。 当扩张晶格诱捕较大半径的 Al 和 Ta 原子时,可充填 该区域的原子间隙,降低应变能,并促使 y'相沿扩张 晶格的法线方向定向生长,当 y'相完全形成筏状结构 时,y'/y 两相界面减小,界面能及晶格应变能降低。因 此,蠕变期间,扩张晶格诱捕 Al、Ta 原子促使 y'相定 向生长的过程是合金体系自由能降低的过程。

另一方面,蠕变初期,合金中立方 y'相发生组织 演化的过程是 y'/y 两相界面迁移的过程,随施加应力 增大,蠕变时间延长,扩张晶格诱捕Al、Ta原子的数 量增加, y'/y 两相界面迁移的速率增大,因此,y'相的 筏形化速率提高。其中,蠕变初期合金发生组织演化 期间, y'/y 两相界面定向迁移的示意图, 如图 8 所示。 在立方 γ'/γ 两相侧向界面迁移的分析中,建立的局部 立方 y'/y 两相的示意图如图 8(a)所示,其中,合金中 立方 y'相以共格方式嵌入 y 基体相,选取的局部放大 区域,如图 8(b)。在拉应力蠕变初期,由于横向切应 力(go)的作用,在立方 y'/y两相水平界面发生晶格收缩, 可排斥较大半径的 Al、Ta 原子,使界面向下迁移;由 于主应力(σ1)的作用下,在立方 γ'/γ 两相垂直界面发生 晶格扩张,可诱捕较大半径的 Al、Ta 原子,促使 y' 相定向生长,使界面向右迁移,如图 8(b)中箭头标注 所示。随蠕变进行,立方 y'/y 两相垂直界面逐渐向外 迁移,直至与相邻 y'相界面相连接,形成 N-型筏状 y' 相,如图 8(c)所示。其 y'相定向生长期间的界面迁移 力(F^{mig})可用 Eshelby 能量张力公式表示^[17],其表达

Fig. 8 Schematic diagrams of γ'/γ interface motion during creep: (a) Selected area; (b) Magnification of selected area; (c) Direction of interface motion marked by arrows

式为

$$F_{\text{inter}}^{\text{mig}} = [M] - T[\frac{\partial u}{\partial n}]$$
(3)

式中:T 为是界面移动的牵引力;M 为系统的总应变能;($\partial u / \partial n$)是弹性位移梯度。式(3)表明,随弹性应变能增大,y'相的筏形化驱动力增大。

3.2 蠕变期间元素扩散的驱动力

在高温蠕变期间,随施加应力增大,合金中 y'相 的晶格应变增加,并有位错在基体中运动,可加速元 素的扩散及 y'相的定向粗化过程^[11]。如果认为外加应 力引起的晶格应变能变化与晶体中原子间势能的变化 幅度等价,则可用原子间势能的变化表示晶格应变能 的变化,则施加应力使原子间势能、界面能及 y/y'两相 的错配应力变化是促使合金中发生原子扩散及 y'相定 向生长的驱动力(F)可表示为

$$F = \Delta W + \left| \Delta G_{\rm S} \right| + \left| \Delta \delta \right| \tag{4}$$

式中:W 是原子势能; G 是界面能; δ 为 γ/γ' 两相错 配应力。

因此,该合金在蠕变期间元素定向扩散及 y'相发 生筏形化转变驱动力(*F*_M)的表达式为

$$F_{\rm M} = \frac{2A}{3a_0} \left[1 - \frac{E}{(E + \sigma_\alpha)}\right] + \left[\Delta G_{\rm S}\right] + \frac{B}{2E} (\sigma_\alpha - \sigma_{\rm mis})^2 \quad (5)$$

式中: A 和 B 为常数; E 为弹性模量; a_0 为未施加应 力时合金中 γ' 、 γ 两相的平均晶格常数; σ_{α} 为外加应 力; σ_{mis} 为错配应力。式中第一项为施加应力致使合 金中原子间势能的变化,第二项为组织演化前后的界 面能变化,第三项为施加应力引起 γ/γ' 两相错配应力的 变化。表明随施加应力的提高,元素扩散的驱动力随 之增大, γ' 相的筏形化速率也随之提高,以上分析与 图 4 的结果相一致。

4 结论

 1) 经完全热处理及高温蠕变后,DZ125 合金在枝 晶间/干仍然存在组织结构的不均匀性,在枝晶干区域 的立方 y'相及筏状 y'相尺寸细小,而枝晶间区域的立 方 y'相及筏状 y'相尺寸粗大。

2) 在1040 、137 MPa 蠕变期间,合金枝晶干
 区域的立方 y'相经 3 h 可完全转变成与应力轴垂直的
 N-型筏状结构,随施加应力值降低,y'相发生完全筏
 形化转变的时间延长;确定出合金组织演化后的组织

结构是 y'相沿(001)晶面形成筛网状筏状结构 , y 基体 相连续充填在筛网状筏形 y'相之间 , 可保证合金的高 塑性。

3) 在 1 040 蠕变期间,合金发生的组织演化归 因于元素的定向扩散,其中,元素 Mo、W 具有较低 的扩散速率,而元素 Al、Ta 具有较高的扩散迁移率是 促使合金发生较快组织演化的主要原因。

REFERENCES

- HENDERSON P J, MCLEAN C. Creep transient in the deformation of anisotropic nickel-base alloys[J]. Acta Metallurgica, 1982, 30(6): 1121–1128
- [2] 孙鸿卿, 钟敏霖, 刘文今, 何金江, 李晓莉, 朱晓峰. 定向凝 固镍基高温合金上激光熔覆 Inconel738 的裂纹敏感性研究[J]. 航空材料学报, 2005, 25(2): 26-31.
 SUN Hao-qing, ZHONG Min-lin, LIU Wen-jin, HE Jin-jiang, LI Xiao-li, ZHU Xiao-feng. Cracking sensitivity on laser cladding Inconel 738 on directionally solidified Ni-base superalloy[J]. Journal of Aeronautical Materials, 2005, 25(2): 26-31.
- [3] 陈荣章, 佘 力, 张宏炜, 王罗宝. DZ125 定向凝固高温合金的研究[J]. 航空材料学报, 2000, 20(4): 14-19.
 CHEN Rong-zhang, SHE Li, ZHANG Hong-wei, WANG Luo-bao. Investigation of directionally solidified alloy DZ125[J].
 Journal of Aeronautical Materials, 2000, 20(4): 14-19.
- [4] 张 军,杨 敏,王常帅,刘 林,傅恒志. DZ125 高温合金 熔体超温处理定向凝固组织的演化规律[J]. 铸造技术, 2009, 30(9): 1108-1111.
 ZHANG Jun, YANG Min, WANG Chang-shuai, LIU Lin, FU

Heng-zhi. Microstructure evolution of DZ125 superalloy directionally solidified with melt superheating treatment[J]. Foundry Technology, 2009, 30(9): 1108–1111.

- [5] MOHAMMAD V, MASOUD S. Creep life prediction of inconel 738 gas turbine blade[J]. Journal of Applied Sciences, 2009, 9(10): 1950–1955.
- [6] YU Q M, YUE Z F, WEN Z X. Creep damage evolution in a modeling specimen of nickel-based single crystal superalloys air-cooled blades[J]. Materials Science and Engineering A, 2008, 477(1/2): 319–327.
- [7] 闵志先,沈 军,熊义龙,王 伟,杜玉俊,刘 林,傅恒志. 高温度梯度定向凝固镍基高温合金 DZ125 的组织演化[J]. 金 属学报, 2011, 47(4): 397-402.
 MIN Zhi-xian, SHEN Jun, XIONG Yi-long, WANG Wei, DU Yu-jun, LIU Lin, FU Heng-zhi. Microstructural evolution of directionally solidified Ni-based superalloy DZ125 under high temperature gradient[J]. Acta Metallurgica Sinica, 2011, 47(4): 397-402.
- [8] 闵志先,沈 军,王灵水,冯周荣,刘 林,傅恒志.定向凝

中国有色金属学报

固镍基高温合金 DZ125 平界面生长的微观组织演化[J]. 金属 学报, 2010, 46(9): 1075-1080.

MIN Zhi-xian, SHEN Jun, WANG Ling-shui, FENG Zhou-rong, LIU Lin, FU Heng-zhi. Microstructural evolution of directionally solidified Ni-based superalloy DZ125 under planar growth[J]. Acta Metallurgica Sinica, 2010, 46(9): 1075–1080.

- [9] DAROLIA R, WALSTON W S, NATHAL M V. NiAl alloys for turbine airfoils[C]// Superalloy 1996, Metal Park: TMS, 1996: 561–570
- [10] 胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 单晶镍基高温合金的发展
 [J]. 航空发动机, 2005, 31(3): 1-7.
 HU Zhuang-qi, LIU Li-rong, JIN Tao, SUN Xiao-feng.
 Development of the Ni-base single crystal superalloys[J].
 Aeroengine, 2005, 31(3): 1-7.
- [11] TIAN S G, ZHOU H H, ZHANG J H, YANG H C, XU Y B, HU Z Q. Directional coarsening of the γ' phase for a single crystal nickel base superalloy[J]. Materials Science and Technology, 2000, 16: 451–458.
- [12] TIAN S G, CHEN C R, ZHANG J H, Evolution and analysis of γ' rafting during creep of single crystal nickel-base superalloy[J]. Materials Science and Technology, 2001, 17: 736–744.
- [13] 顾林喻, 刘忠元, 史正兴. 高梯度快速定向凝固下 DZ22 高温

合金的显微偏析[J]. 中国有色金属学报, 1996, 6(2): 110-113. GU Lin-yu, Liu Zhong-yuan, SHI Zheng-xing. Microsegregation of DZ22 superalloy under unidirectional solidification with high temperature gradient and rapid growth rate[J]. Transactions of Nonferrous Metals Society of China, 1996, 6(2): 110-113.

- [14] 郭建亭. 一种性能优异的低成本定向凝固镍基高温合金 DZ417G[J]. 金属学报, 2002, 38(11): 1163-1174.
 GUO Jian-ting. A directionally solidified nickel-base superalloy DZ417G with excellent properties and low cost[J]. Acta Metallurgica Sinica, 2002, 38(11): 1163-1174.
- [15] TIAN S G, ZHANG S, LI C X, YU H C, SU Y, YU X F, YU L L. Microstructure evolution and analysis of a [011] orientation single crystal nickel-based superalloy during tensile creep[J]. Metallurgical and Materials Transactions A, 2012, 43(10): 3887–3896.
- [16] ENGSTROM A, HOGLOUND L, AGREN J. Computer simulation of diffusion in multiphase systems[J]. Metallurgical and Materials Transactions A, 1994, 25(6): 1127–1134.
- [17] NABARRO F R N, CRESS C M, KOTSEHY P. The thermodynamic driving force for rafting in superalloys[J]. Acta Materialia, 1996, 44: 3189–3198.

(编辑 龙怀中)