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Numerical simulation of multiple grains with different preferred
growth orientation of magnesium alloys using phase-field method
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Abstract: Based on the KKS model which couples concentration field, flow field, orientation field and temperature field,
the phase-field model for magnesium alloys with hcp structure was developed. In order to simulate the growth of multiple
grains with different preferred growth orientation and reduce calculation amount, a orientation field which keeps the same
of orientation in the interior of the grain using the strangeness of diffusion is added to describe the crystallographic
orientation, which implements the control of multiple grains with different preferred growth orientation using one phase
field controlling equation. The double mesh technique is used to solve the model in order to improve the computing
efficiency ulteriorly. Taking AZ91D alloy for example, the dendritic growth of multiple grains with different preferred
growth orientation during solidification without and with flow are simulated, the microstructure simulation results are
compared with the experimental results, and they are in good agreement in dendritic morphology.
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Table 1 Physical properties of AZ91D magnesium alloy

Property Value
Interface energy, o/(J:m ?) 0.115
Density, p/(kgm ) 1810
Melting point, 7,,/K 868
Latent heat of solidification, L/(kJ -kgﬁl) 373
Coefficient of thermal conductivity, /(W-m K ") 85
Equilibrium constant, &, 0.4
Solute diffusivity (liquid), Dy /(m*s ") 1.8%x107°
Solute diffusivity (solid), Dg/(m*s ") 1.0X107"2
Specific heat capacity, ¢,/(kJ'kg K™ 1.3
Molar volume, V/(m*mol ) 10.38X10°°
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Fig. 1 Dendritic morphologies((a),(c))and distributions of solute ((b),(d)) for multiple grains growth without flow at different times:

(a), (b) =5 000AZ; (c), (d) =9 000A?
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Fig. 2 Distributions of solute for multiple grains growth without flow at different times used continuous nucleation model: (a) =

5 000A¢; (b) =10 000AZ; () £=15 000A?
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Fig. 3 Dendritic morphologies((a),(c))and distributions of solute ((b),(d)) for multiple grains growth without flow at different times:

(a), (b) =5 000AZ; (c), (d) =8 000A?
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Fig. 4 As-cast microstructure of sand mould AZ91D casting
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