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Abstract: How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus 
problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem was obtained by the regularization 
methods in which some desired structures were imposed to stabilize the inverse problem. By the smoothness-constrained model and 
approximate sensitivity method, the stable subsurface resistivity structures were reconstructed. The synthetic examples show that the 
smoothness-constrained regularized inversion method is effective and can be reasonable to reconstruct three-dimensional subsurface 
resistivity structures. 
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1 Introduction 
 

To invert magnetotelluric data for three-dimensional 
electrical conductivity structures has been a major 
challenge in applied geophysics for many years. 
Three-dimensional inversion involves forward modelings 
for general three-dimensional structures, which is very 
computationally time-consuming compared with the 
one-dimensional and two-dimensional inverse problems. 
Despite this difficulty, several attempts have been made 
to carry three-dimensional inversions using different 
forward numerical solutions. MACKIE and MADDEN 
[1] developed an inversion procedure for magnetotelluric 
data based on the finite difference and conjugate gradient 
methods. ZHDANOV and TOLSTAYA [2] used the 
integral equation to formulate three-dimensional 
magnetotelluric inverse problems with a minimum 
support nonlinear parameterization in the solution. 
NEWMAN [3] presented an inversion scheme in which 
the finite difference method is used for the forward 
modeling and the integral equation for the inverse 
formulation. HAN et al [4] used the finite element 
method and approximate sensitivities to formulate 
three-dimensional magnetotelluric inverse problems. 

These inversion methods required powerful higher-end 
workstations or supercomputers. Thus, it is commonly 
accepted that three-dimensional magnetotelluric 
inversions are too expensive and cannot be a practical 
interpretation tool for most field geophysicists. 

Large-scale inverse problems are usually 
underdetermined, meaning that there are more unknowns, 
typical in the forms of highly digitized model meshes. A 
stable solution of an ill-posed inverse problem can be 
obtained by the regularization methods [5−7] in the 
objective functional subjected to a minimum. The 
regularization is to search for a solution within a specific 
class of selected models. The traditional way to 
implement regularization in inverse problem solutions is 
to select the class of inverse models with a smooth 
distribution of model parameters. 

The main difference between the present inversion 
method and those previous works is that the present 
smoothness-constrained inversion approach is applied to 
solving the three-dimensional magnetotelluric data. 
Firstly, the modeling code was concludes which used the 
finite element method and was designed to deal with the 
three-dimensional forward problem. In order to check the 
validity of the code, the numerical results were 
compared with the analytical solutions. Secondly, a 
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smoothness-constrained least-squares inversion method 
was developed to describe the adjoint-equation method 
for calculating the sensitivities. Finally, the inversion 
method was tested on synthetic data to verify its 
performance. 
 
2 Forward modeling 
 
2.1 Governing equation 

At the low frequency used in magnetotelluric, 
displacement currents are negligible and there is no 
electric current source in magnetotelluric problems. 
Assuming a time harmonic dependence of tie ω− , the 
pair of vector equations can be expressed as 
 

HE μωi=×∇                                (1) 
 

EH σ=×∇                                  (2) 
 
where E and H are the electric and magnetic fields, 
respectively; ω is the angular frequency; σ is the spatially 
variable electrical conductivity; μ (μ=4π×10−7 H/m) is 
the magnetic permeability of free space. No finite source 
is considered in the above equations because a 
plane-wave source is assumed in the magnetotelluric 
method. From Eqs. (1) and (2), the governing equation of 
the electric field, E, can be obtained as 
 

EE μωσi=×∇×∇                            (3) 
 
2.2 Finite element equation 

To solve the governing differential Eq. (3) by the 
finite element method, firstly, a computing domain into 
is divided non-uniform grid capable of modeling 
irregular geometries, as shown in Fig. 1. Then utilizing 
the finite element method, the linear system can be 
derived as follows [8]: 
 
KE=p                                      (4) 
 
where K is a large sparse, banded, symmetric, 
ill-conditioned, non-Hermitian complex matrix, and p is 
the source vector that depends on the boundary 
conditions and source field polarization. This system can 
 

 
Fig. 1 Non-grid imposed upon the earth model to simulate 
three-dimensional magnetotelluric fields 

be efficiently solved using the Bi-CGSTAB method [9], 
which belongs to the class of Krylov subspace 
techniques that are highly efficient in iteratively solving 
sparse linear system. Considering boundary conditions, 
the electric field of each point can be obtained by solving 
linear equation. 
 
2.3 Verification of forward solution 

To test the forward modeling algorithm, the code is 
applied to a homogeneous half-space. For a nonmagnetic 
homogeneous half-space, the analytical response can be 
expressed as [10] 
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where 0

xE  is the electric field on the earth’s surface. 
Considering a homogeneous half-space of 100 Ω·m, 

the numerical solutions computed by the finite element 
method (FEM) and the analytical solutions on the surface 
are shown in Fig. 2. The finite element method responses 
are in good agreement with the analytical responses.  
 

 
Fig. 2 Magnetotelluric response of 1 Hz on surface of a 100 
Ω·m half-space: (a) Analytical solution; (b) FEM solution 
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From this result, it is confirmed that the forward 
modeling method is effective. 
 
3 Inverse problem 
 
3.1 Smoothness-constrained least-squares method 

Inverse problem of magnetotelluric sounding data is 
ill-posed and non-linear, and can be solved by some 
regularization methods. The following parametric 
functional is minimized in the regularization [5]. 
 

)()()( mmm SP ⋅+= βφ                        (6) 
 
where )(mφ  is a misfit function, S(m) is a stabilizing 
function, β is a regularization parameter which controls 
the trade-off between these two contributions in this 
minimization process. The misfit and stabilizing 
functions are written as 
 

2||)(||)( mFdm −=φ                           (7) 
 

2||||)( Cmm =S                                (8) 
 
where F is a forward modeling operator which is 
generally non-linear, m is a model parameter vector, d is 
a model response (predicted data) vector, and C indicates 
the model parameter weighting matrix [11]. 

There have been many algorithms suggested so far 
to solve Eq. (6) [12,13]. In this work, the 
smoothness-constrained least-squares inversion is 
adopted for solving the regularized inverse problems. 
Linearization of Eq. (6) and some manipulation yields: 
 

dJCCJJm Δ+=Δ − T1TT )( β                    (9) 
 
where Δd is the error or discrepancy vector between the 
observed and calculated data, Δm denotes the model 
updates to be obtained, J is the sensitivity matrix or 
Jacobian matrix of forward modeling operator F, and C 
is a Laplacian (second-order) smoothness operator. 
 
3.2 Sensitivity calculation 

In principle, the sensitivities can be computed by 
three methods: the brute-force method, the sensitivity- 
equation method, and the adjoint-equation method [14]. 
The computation times of these methods are roughly 
equal to N×Mf, N×Mf and Mo×Mf forward computations 
respectively (N is the number of model parameters, Mf is 
the number of frequencies and Mo is the number of 
observation locations). Because there are more model 
parameters than observations on inversion, the 
adjoint-equation method is therefore the most efficient 
method in calculating the sensitivities. 

We have used the adjoint-equation method for the 
calculation of the sensitivities, which is used by 
FARQUHARSON and OLDENBURG [15] for 
electromagnetic inverse problem. For the purposes of the 

inversion, the conductivity is represented as a finite 
linear combination of suitable basis functions:  

∑
=

=
N

j
jj

1
)()( rr ψσσ                           (10) 

 
where ψj are the basis functions and σj are the 
coefficients. 

The sensitivity with respect to the conductivity of 
the jth cell can be given by 
 

∫ ⋅′=
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σ
                           (11) 

 
where the auxiliary field, E′, is defined as the electric 
field in the domain, f is any component of the electric or 
magnetic field, and vj is the volume of the jth cell. 
 
3.3 Determination of regularization parameters 

Determination of the regularization parameter 
(Lagrangian multiplier), which balances the 
minimization of the data misfit and model roughness, 
may be a critical procedure to achieve both resolution 
and stability. In our implementation, the adaptive 
regularization parameter algorithm is adopted [16], 
which is defined as  
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where k is the kth iteration. Just as for the 
implementations of the discrepancy principle and the 
adaptive approach, the regularization parameter is chosen 
at the kth iteration according to the expression: 
 

),max( *)1()( βββ −= kk c                       (13) 
 
where 0.01≤c≤0.5, and β* is the minimizer of the 
adaptive algorithm given in Eq. (12). 
 
4 Examples for synthetic data 
 
4.1 Two-dimensional model 

The two-dimensional model used to generate the 
data is shown in Fig. 3. It consists of a 0.5 Ω·m 
conductive block with dimensions of 1 km×2 km in a 
100 Ω·m background half-space. The top of the 
conductive block is at a depth of 250 m, and its bottom is 
at a depth of 2250 m beneath of the surface. 

For numerical forward modeling, the two- 
dimensional model, 6 km×6 km×3 km, was unevenly 
discretized into 54×54×44 cells, including the 10 km air 
layer. Magnetotelluric data from a total of 81 
magnetotelluric soundings are used in the inversion, and 
the magnetotelluric frequencies used here range from 0.1 
to 120 Hz. The inversion takes six iterations to reduce 
the misfit to 0.093, and the inversion results are shown in 
Fig. 4. From the inversion result, a low resistivity can be  
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Fig. 3 Two-dimensional model used to generate magneto- 
telluric data 
 

 
Fig. 4 Slices for two-dimensional model of three-dimensional 
inversion: (a) At depth of 1000 m; (b) At x=0 
 
clearly identified anomaly in the inverted section. It is 
clear that the smoothness-constrained inversion 
algorithm for magnetotelluric data can effectively 
recover the simple geo-electrical model. 
 
4.2 Three-dimensional model 

The three-dimensional model used to generate the 
data is shown in Fig. 5. It consists of a 0.5 Ω·m buried 
body with size of 1 km×2 km×2 km in a 100 Ω·m 
background half-space. The top of the buried body is at a 
depth of 250 m, and its bottom is at a depth of 2250 m 
beneath of the surface. 

For numerical forward modeling, the three- 
dimensional model, 6 km×6 km×3 km, is unevenly 
discretized into 54×54×44 cells, including the 10 km air 
layer. Magnetotelluric data from a total of 81 
magnetotelluric soundings are used in the inversion, and 
the magnetotelluric frequencies used here range from 0.1 
to 120 Hz. The inversion takes six iterations to reduce 
the misfit to 0.128, and the inversion results are shown in 
Fig. 6. From the above model study, it is confirmed that  
 

 
Fig. 5 Three-dimensional model used to generate magneto- 
telluric data: (a) Cross-section at x=0; (b) Plan view 
 

 
Fig. 6 Different horizontal and vertical depth slices for model 
of three-dimensional inversion: (a) At depth of 1000 m; (b) At 
x=0; (c) At y=0 
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the smoothness-constrained inversion of magnetotelluric 
data can efficiently reconstruct three-dimensional 
subsurface resistivity structures. 
 
5 Conclusions 
 

1) A regularized method to invert the 
magnetotelluric data of three-dimensional structures was 
developed, with the forward calculations based on the 
finite element method. The system of equations resulted 
from the finite-element was solved by the iterative 
Bi-CGSTAB method, which is a Krylov subspace 
technique with high efficiency in solving sparse linear 
system. 

2) The sensitivities were obtained from the 
adjoint-equation method, which is among the most 
efficient methods of calculating the sensitivities. The 
inverse problem was formulated to have a smooth 
structure and incorporate a desired reference model, 
which was solved by an iterative lease-squares method. 

3) The synthetic examples showed that three- 
dimensional inversions are effective and give reasonably 
accurate results for simple three-dimensional problems. 
However, as more complicated problems or field data are 
considered, further work should be required. 
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摘  要：如何得到快速稳定的反演结果和更清晰地重建地下电阻率结构等问题仍然是当前大地电磁反演研究的一

个重点。在构制目标函数中采用正则化方法，使不适定反演问题具有稳定的反演结果，并改善解的稳定性和非唯

一性；将光滑约束模型和近似灵敏度矩阵求解方法应用于反演过程中，快速稳定地构建地下电阻率结构。理论模

型试算的结果表明光滑约束正则化反演方法是可行的，并能合理地重建地下三维电阻率结构。 

关键词：大地电磁；正则化反演；近似灵敏度矩阵；光滑约束模型 
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