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Abstract: A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated 
Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite element method (FEM) and the 
bulk deformation of flexible-die was analyzed with element-free Galerkin method (EFGM). The frictional contact between sheet 
metal and flexible-die was treated by the penalty function method. The sheet elastic flexible-die bulging process was analyzed with 
the FEM−EFGM program for coupled deformation between sheet metal and bulk flexible-die, called CDSB−FEM−EFGM for short. 
Compared with finite element code DEFORM-2D and experiment results, the CDSB−FEM−EFGM program is feasible. This method 
provides a suitable numerical method to analyze sheet flexible-die forming. 
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1 Introduction 
 

With the development of industrial technology, 
conventional rigid die forming technology faces more 
challenges to form complex-shaped parts and difficulty 
to form lightweight materials, such as magnesium, 
aluminum and titanium alloy [1,2]. Compared with 
conventional sheet forming technology, sheet metal 
flexible-die forming is one of the efficient and potential 
techniques to solve existing problems. They have a good 
application on sheet metal forming in aerospace and 
automotive industry [3−7]. 

The numerical simulation is a powerful tool to 
analyze the sheet metal forming processes. While, in 
sheet metal flexible-die forming process, there is a 
coupled deformation between sheet metal and 
flexible-die, which raises some limitations and 
difficulties for existing commercial softwares. Hence, 
several simplified approaches have been conducted to 
simulate the sheet metal flexible-die forming process 
approximately. For example, viscous medium 
flexible-die for viscous pressure forming was treated to 
be an incompressible fluid that could not account for the 
viscoelastic effect of the viscous medium [8]. Especially, 
during the finite element analysis of sheet metal 

flexible-die forming, deformation of the flexible-die is 
very large and often leads to distorted meshes, thus it 
needs remeshing [9]. Remeshing, which is a bottleneck 
problem for finite element method, not only increases 
computational efforts significantly, but also results in a 
degradation of the overall accuracy. Furthermore, 
hexahedron element meshes have been proved to be 
superior to tetrahedron element meshes in terms of 
analysis accuracy, amount of meshes, distortion 
resistance and regeneration times. This turns hexahedra 
an attractive choice for the numerical analysis of bulk 
forming. While, none of the existing methods has been 
proven to be an all-encompassing algorithm and each has 
drawbacks to their use. 

In the past decades, a node based numerical method, 
called meshless method, has been developed [10,11]. It 
discretizes a continuum body by a finite number of nodes, 
and the displacement field is interpolated under these 
nodes without the aid of an explicit mesh. Meshless 
methods require no costly mesh generation and 
remeshing. This characteristic can eliminate mesh 
distortion unavoidable in FEM. Based on these 
advantages mentioned above, meshless method can 
simulate bulk forming processes more effectively, 
especially when deformation is appreciable [12]. 

In this work, the deformation of sheet metal was 
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analyzed by shell element based on the Mindlin shell 
theory, and the flexible-die was analyzed based on a 
common meshless method called element-free Galerkin 
method (EFGM). Frictional contact between the 
flexible-die and the sheet metal is treated by a node-point 
contact method. The R-minimum strategy is introduced 
to deal with the contact condition at the interface in the 
solution algorithm. A CDSB−FEM−EFGM program for 
coupled deformation between sheet metal and bulk 
flexible-die is developed based on the above theories. 
Numerical examples are presented to show the validity 
of the developed program. 
 
2 Basic theories of finite element method and 

element-free Galerkin method 
 
2.1 Mindlin thick-shell element model 

Based on the Mindlin-Reissner theory, a 2-node 
axisymmetric degenerated shell element was employed 
for the finite element analysis of sheet metal [13], as 
shown in Fig. 1, where (r(x)Oz) is the global Cartesian 
coordinate system, (ξ, η) is the local coordinate system, 
ui and wi represent the displacements of node i, and φi  
denotes the rotation angel of node i to the normal of 
mid-surface. The displacement of an arbitrary point in 
the element can be expressed by 
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Fig. 1 2-node Mindlin thick-shell element 

( ) ( )1 1 ,
2i i iN ξ ξξ ξξ= +  1,2i = , and Ni(ξ) is the shape 

function of the element; tsi is the thickness of node i. 
 
2.2 Element-free approximation 

In the element-free Galerkin method, the 
displacement u(x) at point x is approximated by the 
moving least-squares (MLS) interpolants as 
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where coefficients ai(x) are functions of x, m is the order 
of basis function pT(x) and pi(x) is monomial in the space 
coordinates x=[x, y]T. A linear basis in a two- 
dimensional domain is provided by 
 

( ) [ ]T 1, , ,  3x y m= =p x                        (3) 
 
and a quadratic basis by 
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In the moving least-squares interpolants, 
coefficients ai(x) are obtained by minimizing 
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and w(x−xI) is the weight function; 

( )T1 2 3, , , , .nu u u u=u L  
The stationarity of Eq. (5) with respect to a leads to 

 
( ) ( ) ( )1−=a x A x C x u                         (6) 

 
where ( )T=A P W x P and ( )TC P W x= . 
 

Substituting Eq. (6) into Eq. (2) yields 
 

( ) ( ) ( ) ( ) ( )T 1hu −= =x P x A x C x u x uΦ          (7) 
 
where  
 

[ ]T 1
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Unlike the finite element method, the nodal value of 

the interpolation function uh(x) is not equal to the nodal 
value u(x) at the point x, namely uh(x)≠u, so the essential 
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boundary condition should be imposed by Lagrange 
multipliers or penalty method [10]. 
 
3 Coupled formulation of FEM−EFGM 
 

The updated Lagrangian (UL) formulation was 
employed to describe the coupled deformation between 
sheet metal and flexible-die. The configuration at time t 
is adopted as the reference state to evaluate the 
deformation from time t to t+∆t. The principle of virtual 
work-rate principle for the coupled deformation with 
updated Lagrange formulation is represented as [14] 
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where V1 and V2 are body domains for sheet metal and 
flexible-die at time t, respectively; S denotes the surface 
boundary area for two bodies; SiF&  is the applied 
external surface force rate; ijσ∇  is the Jaumann rate of 
Cauchy stress σij; Lij is the velocity gradient; Dij is the 
symmetric part of Lij; 1

cS  and 2
cS  are the contact 

interfaces of sheet metal and flexible-die; iFα&  is the 
surface force rate at contact surface cSα (α=1,2). 
 
3.1 Constitutive model 

In this work, an elastoplastic material model is 
chosen for describing the deformation of sheet metal. 
The equivalent stress−equivalent plastic strain relation is 
represented by Swift equation: 
 

0 p( )nKσ ε ε= +                              (9) 
 
where σ  is the equivalent stress; ε0 is the initial 
yielding strain; pε  represents the equivalent plastic 
strain; K is the material strength coefficient and n is the 
work hardening exponent. 

In the local coordinate system x′O′y′, the 
constitutive equation can be expressed as follows: 
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where ijσ∇  represents the Jaumann rate of Cauchy stress; 
lkl is the velocity gradient in the local coordinate system; 

ep
ijklD  denotes the elastoplastic constitutive matrix; E and 

μ are the elastic modulus and Poisson ratio, respectively; 
δij is the Kronecker delta tensor; pd / dH σ ε′ =  
corresponds to the slope of the equivalent stress σ  
divided by plastic strain pε ; ijσ ′  is the deviatoric stress 
components. 
 
3.2 Formulation of contact problem 

Aiming at the characteristics of coupled 
deformation between sheet metal and flexible-die, a 
slave-master node-to-point contact element is employed 
to treat the frictional contact between these two bodies. 
The flexible-die is defined as slave body and the sheet 
metal is master body. A slave node on the slave body and 
its contact point on the master segment compose a 
contact point pair. Therefore, the total contact force 
virtual power rates on the contact surface are the 
summation of contact force virtual power rate of each 
contact point pair. 
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where nc is the number of contact point pairs, ( )c

t t
k

W+Δ &  
is the equivalent contact force virtual rate of each contact 
point pair at time t+∆t and can be calculated by 
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where cδu&  is the relative nodal velocity; Nc is the shape 
function; t+∆tθ is the coordinate transformation matrix at 
time t+∆t. 

The Coulomb friction model and penalty function 
method are chosen for solid flexible-die forming of sheet 
metal, the contact force rate on the contact surface can be 
expressed by 
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coordinate system, αu&  is the relative velocity between 
the contact point pair (α=1, 2) and g&  is the penetration 
rate in the normal direction. 
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where βt is the tangential penalty factor, βn is the normal 
penalty factor, u&  is the friction coefficient, and when 
the element is in the adhesive state α=0, the element slide 
α=1. 
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where n

t g&  is the value of peneration rate in the normal 
direction. 

Substituting Eqs. (13) and (14) into Eq. (12), we get 
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( )T T
c c c ct c c ct
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It can be written in the matrix form:  
T T

c c c c c c
t tW δ δ+Δ = − +u K u u F& && & &                  (16) 
 
where  
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Substituting Eqs. (1), (7), (10) and (16) into Eq.(8), 

the equilibrium equation is represented in the following 
form: 
 
( )c c+ Δ = Δ + ΔK K U F F                      (17) 
 
where K is the total stiffness matrice of sheet metal 
deformation and bulk flexible-die deformation; Kc is the 
contact stiffness matrix between the sheet metal and the 
bulk flexible-die; ∆U denotes the displacement 
increment of the nodes; ∆F is the external force 
increment on the boundary area; ∆Fc is the contact force 
increment on the contact surface. 
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where n1 is the element number of the sheet metal, n is 
the nodes number of the flexible-die, and α is penalty 
coefficient that imposed the essential boundary condition 
of flexible-die. 
 
3.3 Time integration algorithm 

Because of strong non-linear during coupled 
deformations between sheet metal and bulk flexible-die 
in sheet metal flexible-die forming, a static-implicit 
algorithm may face the disadvantage of misconverged 
iteration. Unlike the static-implicit algorithm, the 
static-explicit algorithm controls the size of the time step 
to keep the material state and contact state stable in each 
loading step. In this work, a static-explicit algorithm 
called R-minimum strategy proposed by YAMADA and 
YOSHIMURA [15] has been adopted. It is suggested 
that all rates in Eq.(17) can be considered constant within 
a sufficiently small time increment from t to t+∆t as long 

as there are no radical changes of materials or contact 
state take place. The increment of each loading step is 
controlled by the smallest value of the following five 
controlled parameters r1−r5 [16]: 

1) For each elastic element, r1 is calculated to 
ascertain the equivalent stress just reaches the current 
yield stress; 

2) For each element, r2 is obtained by the ratio of 
the default maximum strain increment 0.002 to the strain 
increment; 

3) For each element, r3 is calculated by the 
defaulted maximum rotation increment 0.5 to the rotation 
increment; 

4) For each node of flexible-die on contact surface, 
r4 is calculated such that the free nodes just contact the 
sheet metal or the contact nodes just separate from the 
contact surface; 

5) For each contact node of flexible-die body, r5 is 
obtained to ensure the contact state just changes from 
sticking to sliding or from sliding to sticking. 

The minimum value of the factors above is defined 
as rmin. By multiplying ∆u by the rmin, we obtain the time 
step increment rmin∆u. 
 
4 Numerical examples 
 
4.1 Sheet metal flexible-die bulging 

In order to verify the reliability of the developed 
CDSB−FEM−EFGM code based on the above theory, 
the simulation of sheet flexible-die bulging of Al1060 
sheet is conducted. Figure 2 shows the numerical 
analysis model of coupled deformation between sheet 
metal and flexible-die, which is an axisymmetric model. 
The flexible-die is a cylinder with height of 40.0 mm and 
radius of 50.0 mm, and is discretized with 456 nodes. 
The elastic modulus and Poisson ratio of the elastic 
flexible-die are 10.0 MPa and 0.49, respectively. The 
Al1060 sheet is discretized with 33 two-node Mindlin 
axisymmetric shell elements and its property parameters  
 

 
Fig. 2 Numerical analysis model of coupled deformation 
between sheet metal and flexible-die 
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are listed in Table 1. In order to compare CDSB−FEM− 
EFGM with FEM results, the similar FEM analysis 
model is established by DEFORM-2D, and the initial 
model is shown in Fig. 3. Flexible-die is discretized with 
500 four-node isoparametric elements. 
 
Table 1 Property parameters of Al1060 sheet 

Hardening 
rule 

E/ 
GPa μ K/

MPa n ε0 
σs/

MPa
ts/

mm
P

0( )nKσ ε ε= +  69.8 0.3 163.0 0.27 0.0055 40.0 1.0

 

  
Fig. 3 Finite element analysis model of coupled deformation 
between sheet metal and flexible-die 

Figure 4 shows the coupled deformations of both 
sheet metal and flexible-die with bulging height h=19.5 
mm by proposed FEM-EFGM method and 
DEFORM-2D. A good agreement between them is 
observed. During finite element analysis, the meshes of 
flexible-die around the die outlet distort and need to 
remesh in the next incremental step, as shown in Fig. 5. 
While, because the flexible-die is discretized through 
meshless method in developed CDSB−FEM−EFGM 
program, it is free of the trouble caused by mesh 
distortion. 

Both the radial and circumferential strain 
distributions of the sheet obtained by developed program 
and DEFORM-2D for the bulging height of 30.0 mm are 
shown in Fig. 6. It can be seen that both the radial and 
circumferential strains are increasing with the rise of the 
bulging height. The strain distribution trends and values 
obtained by the proposed methods and DEFORM-2D are 
similar. The thickness of the sheet with bulging height is 
shown in Fig. 7. It is obvious that CDSB−FEM−EFGM 
results are in good agreement with FEM results. 

 
4.2 Polyurethane rubber bulging of sheet metal 

The second example is to analyze the sheet metal 
polyurethane bulging process. In this example, sheet 

 

  
Fig. 4 Coupled deformation of sheet metal and flexible-die with bulging height of 19.5 mm: (a) FEM−EFGM; (b) DEFORM-2D 
 

  
Fig. 5 Coupled deformation of sheet metal and flexible-die with bulging height of 19.7 mm: (a) FEM−EFGM; (b) DEFORM-2D 
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Fig. 6 Strain distribution of sheet metal with bulging height of 
30.0 mm: (a) Radial strain; (b) Circumferential strain 
 

 

Fig. 7 Thickness distribution of sheet metal with bulging height 
of 30.0 mm 
 
metal polyurethane bulging experiments of 1Cr18Ni9Ti 
sheet were carried out. Figure 8 shows the sketch of the 
polyurethane bulging. Circular meshes with the diameter 
of 2.0 mm are printed on the surface of sheet before 
experiments. Figure 9 shows the polyurethane rubber 
used in sheet metal polyurethane bulging and the 
stress−strain relationship curve of polyurethane is shown 
in Fig. 10. The sheet is clamped between blank holders 
to prevent any material from drawing-in. Then the piston 
was pushed to employ the pressure of polyurethane  

 

 

Fig. 8 Sketch of sheet metal polyurethane bulging test 
 

 
Fig. 9 Polyurethane rubber used in experiment 
 

 

Fig. 10 Relationship between stress and strain of polyurethane 
 
rubber on sheet blank, and the sheet deforms in a pure 
stretching condition. After the experiments, the strain 
state of deformed sheet metal can be obtained through 
measuring the shape of deformed meshes. Figure 11 
shows the specimen with bulging heights of 15.0, 20.0, 
30.0 and 35.0 mm. 

Polyurethane rubber bulging is simulated by the 
developed CDSB−FEM−EFGM program and the 
calculated results are compared with experimental 
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measurements. The numerical analysis model of sheet 
metal polyurethane bulging is shown in Fig. 12. Since 
the geometry of the polyurethane bulging is 
axisymmetric, only a section of the geometry was 
analyzed. The diameter of die hole is 70.0 mm. The 
diameter of sheet blank is 90.0 mm and its initial 
thickness is 0.978 mm. The mechanical properties of 
1Cr18Ni9Ti sheet are listed in Table 2. The finite 
element discretization includes 51 two-node Mindlin 
axisymmetric shell elements to model the sheet metal. 
The edge of sheet blank is constrained at all degrees of 
freedom. The polyurethane rubber is discretized with 546 
nodes. The friction coefficient between polyurethane 
rubber and sheet metal is 0.1. 
 

 

Fig. 11 Sample formed by polyurethane rubber bulging with 
bulging heights: (a) 15.0 mm; (b) 20.0 mm; (c) 30.0 mm; (d) 
35.0 mm 
 

 
Fig. 12 Numerical analysis model of sheet metal polyurethane 
bulging 
 
Table 2 Property parameters of 1Cr18Ni9Ti sheet 

Hardening 
rule 

E/ 
GPa 

μ 
K/ 

MPa 
n ε0 

σs/
MPa

ts/
mm

P
0( )nKσ ε ε= +  200.0 0.3 980.0 0.34 0.0102 206.0 0.978

 
The comparisons of the calculated radial and 

circumferential strains, thickness distribution of bulge 
specimen and experimental ones at the dome height of 
15.0, 20.0, 30.0 and 35.0 mm are shown in Figs. 13 and 
14. It can be seen that both the radial and circumferential 
strains reach the maximum values at the dome center and 
decrease along the radius direction. The same conclusion 
can be obtained for thickness distribution, and the  
largest thinning of sheet occurs at dome center. From the 

 

 
Fig. 13 Strain distribution of sheet metal with different bulging 
heights: (a) Radial strain; (b) Circumferential strain 
 

  
Fig. 14 Thickness distribution of sheet metal with different 
bulging heights 
 
comparison of numerical simulation results and 
experimental data, we can find that both of them have the 
similar tendency. The calculated radial and 
circumferential strains of specimen around the entrance 
of the die are a little bigger than those of experimental 
measurements. The difference between experimental 
data and numerical simulations can be attributed to mesh 
dividing of the sheet metal and the effect of die on the 
sheet. 
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5 Conclusions 
 

1) The element-free Galerkin method is introduced 
into the analysis of the sheet metal flexible-die forming, 
a numerical analysis method for coupling the 
deformation of sheet metal and flexible-die is developed. 

2) The sheet flexible-die bulging process is 
analyzed with the developed CDSB−FEM−EFGM 
program. The strain and thickness distributions obtained 
by the CDSB−FEM−EFGM are compared with those by 
DEFORM-2D and experiments in detail. Clearly, the 
CDSB−FEM−EFGM simulation results are consistent 
with those obtained by DEFORM-2D and experiments. It 
shows that the FEM−EFGM model and key techniques 
for frictional contact are effective and accurate. With the 
introduction of element-free Galerkin method, the 
presented method avoids the need of expensive meshing 
and remeshing procedures unavoidable in conventional 
FEM. Especially, this method could be further developed 
to analyze the effect of mechanical properties (such as 
elastic, viscoelastic and visco-elastoplastic) of flexible- 
die on sheet metal in sheet flexible-die forming. 
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摘  要：提出一种板材变形和软模体积变形耦合的数值分析方法。基于更新的拉格朗日(UL)列式，板材的弹塑性

变形采用有限元法(FEM)分析，软模的体积变形采用无网格伽辽金法(EFGM)分析，板材和软模之间的摩擦接触通

过罚函数法来处理。利用开发的有限元−无网格法耦合算法程序(CDSB−FEM−EFGM)分析板材弹性软模胀形过程。

同有限元软件 DEFORM-2D 得到的数值解以及实验结果相比，验证了所开发程序的有效性。这种方法为分析板材

软模成形提供了一种适合的数值方法。 

关键词：板材软模成形；有限元法；无网格伽辽金法；耦合；铝合金 
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