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Kinetic analysis and control action of titanium and aluminium
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Abstract: Kinetic analysis of Ti-Al reaction was conducted through differential scanning calorimetry (DSC), and

mechanism of the preparation of titanium aluminides was elucidated. The results show that the reaction of titanium and

aluminium involves two processes. First, TiAl; is the priority generation phase of Ti-Al reaction, and the reaction
activation energy is (100+10) kJ/mol. Second, Al element of TiAl; diffused to Ti through the formed TiAl, TiAl, and
TizAl; and the reaction activation energy is (200+£10) kJ/mol. However, after fully diffusing of Al, the final stable

reaction product depends on Ti/Al atomic ratio. When the Ti/Al atomic ratio is 1:1, TiAl can be obtained.
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Fig.1 Typical DSC curves of Ti-Al reaction at different
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Fig.4 Curve of Friedman at different heating rates
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