
 

 

 

 
Trans. Nonferrous Met. Soc. China 23(2013) 3748−3757 

 
Analysis of high-power disk laser welding stability based on 

classification of plume and spatter characteristics 
 

Xiang-dong GAO1, Qian WEN1, Seiji KATAYAMA2 
 

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 
2. Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 

 
Received 7 January 2013; accepted 20 March 2013 

                                                                                                  
 

Abstract: Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to 
capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the 
area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of 
the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve 
transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, 
K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding 
quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be 
recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform. 
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1 Introduction 
 

Disk laser welding is one of the most advanced laser 
welding technology with characteristics of high laser 
power, excellent beam quality, high aspect ratio and high 
utilization of laser. Plume and spatter are significant 
phenomena in high-power disk laser welding process, 
which contains lots of information that relates to the laser 
welding quality and has a close relationship with the 
welding stability and energy utilization [1,2]. Metal 
plume could absorb and refract the laser beam and incur 
the deviation of the laser focus position, which will 
seriously affect the laser welding quality [3]. Stable heat 
transfer and metal melting process is the key to ensure 
the weld quality. The amount of spatters can reflect the 
stability of welding process and the quality of welding 
joint [4]. KATAYAMA et al [5] compared the effects of 
spatter and plume on high-power CO2 laser, YAG laser 
and fiber laser welding. So, real-time monitoring of 
spatter and plume is very necessary for monitoring of 
weld quality in laser welding process. 

Nowadays, many researches on enhancing welding 
quality are to study the behavior of plasma, the tracking 
and eruption of spatters [6−8]. With the development of 
pattern recognition technique, more and more pattern 
recognition methods were applied to the research of 
plasma and spatters. PARK et al [9] classified the factors 
that influence the weld quality into five categories 
according to the plasma and spatter captured by the UV 
sensor during laser welding, and used the fuzzy multi- 
feature pattern recognition algorithm for the real-time 
evaluation of welding quality. This research was based 
on the welding technological parameters and the 
measurement of heat. The extraction of image features is 
also an important method to monitor and analyze the 
welding process. GAO et al [10] calculated the number, 
area, and ejecting distance of spatters and the centroid 
height of spatter images as the characteristic parameters 
of spatters, and studied the correlation between the 
spatter characteristics and the quality and stability 
of welding. This work is to further study the evaluation 
of high power disk laser welding stability based on 
classification of plume and spatter characteristics. 
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The austenitic stainless steel 304 was used as the 
specimen for high-power disk laser welding experiments. 
A high-speed camera was used to capture the ultraviolet 
band and visible light band plume and spatter images 
during the laser welding. Image processing techniques 
such as median filtering, Wiener filtering, gray level 
threshold and gray level transform were applied to 
processing these images. The area and number of spatters, 
the average gray level of a spatter grayscale image, the 
entropy of a spatter grayscale image, the coordinate ratio 
of the centroid of metal vapor plume and the welding 
point, the polar coordinates of the centroid of metal 
vapor plume which were extracted from the processed 
metal vapor plume and spatter images were defined as 
the characteristic parameters. To obtain a set of 
characteristics that reflect the actual welding results more 
obviously and for a better classification, Karhunen- 
Loeve (K-L) transform method was used to get three 
primary new characteristic parameters. Then, K-nearest 
neighbor method was used to classify the plume and 
spatter images into two categories.  
 
2 Experimental 
 
2.1 Experimental setup 

The experimental system consisted of a 
TruDisk-10003 disk laser welding equipment (laser 
power of 10 kW), a Motoman 6-axis robot and a welding 
experimental platform equipped with a camera, shielding 
gas (argon), motor servo and fixing devices. The 

diameter of laser spot was 480 μm, the wavelength of the 
laser was 1030 nm, and the welding speed was 4.5 and 
3.0 m/min, respectively. Plume image recording was 
carried out at 2000 frame/s by a 512×512 pixel high- 
speed NAC camera. The wave band collected by the 
camera was in the scope of UV light and visible light. A 
bead-on-plate welding was carried out, in which the 
specimen was a stainless steel 304 plate with 
dimensional size of 150 mm×100 mm×20 mm. The 
schematic drawing of the whole experimental system is 
given in Fig. 1. 
 
2.2 Image processing 

Figure 2 shows the high-power disk laser welding 
image processing process. Figure 2(a) shows an original 
plume and spatter image. It was first turned into 
grayscale image, then Median filtering and Wiener 
filtering were used to eliminate the image noises    
(Fig. 2(b)). It was found that when the global threshold 
183 was applied to the filtered image, the morphology of 
the plume was the most accurate and could be used to 
calculate the centroid of plume. The image after deleting 
the areas which were less than 240 pixels in a binary 
image is shown in Fig. 2(c). Otsu method was applied to 
the filtered image by which the lightness was increased 
to get a binary spatter image that the morphology of 
spatters was the most accurate, so it could be used to 
compute the area of spatters in a plume and spatter image. 
Figure 2(d) shows a binary spatter image in which    
the areas of less than 450 pixel2 were erased. The spatter  

 

 
Fig. 1 Schematic of high-power disk laser welding experimental setup 
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grayscale image could be obtained by a method that the 
binary spatter image was multiplied by the filtered image 
(Fig. 2(e)). 
 
2.3 Extraction of plume and spatter characteristics 

The success or failure of a pattern recognition 
system depends on whether the used characteristics could 
better reflect the classification problem [11−13]. Totally, 
seven characteristics of plume and spatters were 
extracted in this experiment. They are the number and 
area of spatters in an image (N and A), the coordinate 
ratio of the centroid of metal vapor plume and the 
welding point (Rcw), the average gray level of a spatter 

grayscale image )(G , the polar coordinates of the 
centroid (radius vector ρ and polar angle θ) and the 
entropy of a spatter grayscale image (H). They all reflect 
the real welding results and they are irrelevant. 

Calculating the number that the grayscale value is 1 
in a spatter binary image could obtain the area of spatters 
in a plume and spatter image. A pixel with a connected 
region was considered to be a spatter. Calculating the 
number of connected regions in a spatter binary image 
could obtain the spatter number. The nature of the 
connected region is decided by the adjacent mode, for 
which the most common ways are 4-adjacent and 
8-adjacent methods [14]. Here, 8-adjacent connection 

Fig. 2 Plume and spatter image processing 
of high-power disk laser welding: (a) 
Original image; (b) Filtered image; (c) 
Plume binary image; (d) Spatter binary 
image; (e) Spatter grayscale image 
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way was applied to searching for the connected region in 
the spatter binary images. 

Figure 3 shows the definition of the origin 
coordinate of an image (0, 0), the centroid of plume (xc,yc) 
and the welding point (xo,yo). In the laser welding 
experiments, the welding point was fixed, where 
(x0,y0)=(255,485). 
 

 
Fig. 3 Definition of relevant characteristic points 
 

The calculation formulae of the centroid (xc,yc) and 
other four characteristics Rcw, ,G  ρ, and θ are shown as 
Eqs. (1) to (5). 
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where i, j are the row and column numbers, respectively; 
n is the total number of rows; m is the total number of 
columns; g(i, j) stands for the gray level value of a pixel. 

In the information theory, entropy is the appearance 
probability of a certain types of information, which is a 
quantitative measurement of information [15]. The 
entropy H of the spatter grayscale image is 
 

)(
2

1
log)( gp

s

x
gpH ∑

=
−=                          (6) 

where g represents the gray level, s is the number of  
gray level and p(g) is the appearance probability of  

gray level x. 
 
2.4 K-L transformation 

Feature extraction is a key step in pattern 
recognition. There are many feature extraction methods 
[16,17]. Karhunen-Loeve transform (K-L transform) is 
an optimum orthogonal transform based on objective 
statistical characteristics. It is a commonly used feature 
extraction method in pattern recognition. It has some 
important properties. For example, the transformed new 
components are orthogonal and irrelevant in comparison 
with original vector, the mean square error of the new 
components is up to the minimum, the transformed new 
components are more identified and the energy is more 
concentrate [18]. Also, K-L transform method is a 
normal method of feature extraction and it has been 
widely used [19−21]. The transform formula of K-L 
transform is 
 

xy TW=                                    (7) 
 
where D-dimensional original feature ,DRx∈  
d-dimensional transformed new feature dRy∈ , W is 
the D×d dimensional transformation matrix. The key is 
to seek for an appropriate transformation matrix W. The 
steps of calculating the transformation matrix W are 
shown as follows [22]. 

Step 1: Calculate the total scatter matrix within 
class Sw (Eq. (8)). The calculation formula of covariance 
matrix Σ of each category is given by Eq. (9). 
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where P is the priori probability, E is the expectation, u 
is the mean value of each category and c is the total 
number of categories. 

Step 2: Calculate the eigenvalue and eigenvector of 
Sw and selecting d eigenvectors which correspond to the 
first d-largest eigenvalue as the transformation matrix W. 
 
2.5 K-nearest neighbor classification 

K-nearest neighbor (KNN) classification is a simple 
and effective classifying method. It can classify the 
unknown sample directly from the training samples, and 
is still one of the most important methods in 
non-parametric pattern recognition. K-nearest neighbor 
method is a classifier which has piecewise-linear 
discriminate function. Because of its clear principle, 
excellent classification ability and simplification, it has a 
very wide range of applications [23−25]. 

Suppose that there are n known samples which 
belong to c categories wi (i=1, …, c), the category of the 
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new sample q is decided by studying its first k-nearest 
neighbor in the known samples. Assume there are ki 

which belong to category wi, the discriminant function of 
category wi is gi(q) =ki (i=1, …, c). The decision rule is  

If )(max)(
,,1

qgqg i
ci

k
L=

= , then kwq∈  

where wk means the category. 
There are two types of images in this experiment. If 

k1 is greater than k2, the new sample belongs to type 1; 
otherwise, it belongs to type 2. 
 
3 Results and discussion 
 

The weldment with welded seam length of 91 mm is 
shown in Fig. 4(a). It can be seen that the weld bead 
width in area B was significantly smaller than that in area 
A or C. In fact, area B was the poor welding quality 
region, and areas A and C were the good welding quality 
regions. The weld bead width corresponding to each 
image is shown in Fig. 4(b). 
 

 
Fig. 4 Original information of high-power disk laser welding: 
(a) Top view of welded specimen of 304 austenitic stainless 
steel; (b) Weld bead width with image sequence 
 

The whole welding process lasted for 1.2 s, totally 
2427 images were captured by the high-speed camera, 
and 2360 continuous images were analyzed in this 
experiment. All images could be divided into two 
categories, Images No.1−996 corresponding to area A 
and Images No.1348−2360 corresponding to area C were 
defined as type 1 and were represented by number 3.  
Images No.997−1347 corresponding to area B were 
defined as type 2 and were represented by number 0. 
Original feature x was a seven-dimensional vector which 
was composed of the seven extracted characteristics, 
x=[N, A, Rcw, G , ρ, θ, H]. According to the proportion 

of each categories in the total number of images, the 
priori probability of each category was P1=0.85 (type 1), 
P2=0.15 (type 2). Images No.997−1099 and No.1301− 
1347 were selected as the training samples of type 1. 
Images No.151−550 and No.1401−1550 were selected as 
the training samples of type 2. The seven-dimensional 
vector x was transformed into 3-dimensional vector xt= 
[x′, y′, z′] by using K-L transform method. The value of 
each characteristic with image sequence is shown in   
Fig. 5. 

It can be concluded from Figs. 4 and 5 that the 
change of each characteristic parameter was consistent 
with the actual welding results, and all values performed 
a sudden change in the middle of the image sequence, 
which was corresponding to the area B in Fig.4 where 
was the poor welding quality region. These characteristic 
parameters can be used to describe the stability of high- 
power disk laser welding process. It took 1.154 s for 
MATLAB 7.11.0 to process a plume and spatter image 
and extract seven characteristic parameters at the 
computer environment of Inter+Pentium(R) CPU P6000 
1.87 GHz, RAM 2 GB. The processing speed will 
promote 100−400 times using C program [26]. Figure 6 
shows the value of three new characteristics with image 
sequence. 

Table 1 shows the mean value of each characteristic 
in different areas before K-L transform. It can be seen 
from Table 1 that though the mean values of N, A, Rcw, 
G , ρ and H in area B were larger than those in area A or 
C, the differences of N, A, G  and H between area B 
and area C were not very obvious, and the difference of 
Rcw between areas A and B was not very obvious. It also 
can be seen that there was large difference between areas 
A and C in ρ. The mean value of θ in area B was lower 
than that in area A or C, but the difference among these 
three areas was very small. So, there exists message that 
has no relationship with classification in those seven 
original characteristics, and the difference between the 
two categories is not very obvious. 
 
Table 1 Mean values of each characteristic parameters in 
different areas before K-L transform 

Mean value/pixel 
Area

N A Rcw G  ρ θ H 

A 42.8835 3783.5 22.1462 1.2852 514.23 1.0658 0.1421

B 51.9516 4475.1 24.8574 1.5119 531.18 1.0500 0.1682

C 49.5499 4335.4 15.5952 1.4916 523.85 1.0718 0.1635

 
Table 2 shows the mean value and standard 

deviation of each transformed new characteristic in 
different areas. It can be seen from Table 2 that the mean 
values of x′ and z′ in area B were very different from the 
mean value in area A or C, also the difference between  
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Fig. 5 Values of each characteristic parameter with 
image sequence: (a) Value of characteristic N with 
image sequence; (b) Value of characteristic A with 
image sequence; (c) Value of characteristic Rcw 
with image sequence; (d) Value of 
characteristic G with image sequence; (e) Value of 
characteristic ρ with image sequence; (f) Value of 
characteristic θ with image sequence; (g) Value of 
characteristic H with image sequence 
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Fig. 6 Values of three transformed new characteristics with 
image sequence: (a) Value of characteristic x′ with image 
sequence; (b) Value of characteristic y′ with image sequence;  
(c) Value of characteristic z′ with image sequence 
 
Table 2 Mean values and standard deviation of each 
transformed new characteristic in different areas 

Mean value/pixel  
Standard 

deviation/pixel Area 
x′ y′ z′  x′ y′ z′ 

A 3739.6 10.2115 −506.3827  1312.0 118.4 16.51
B 4476.2 13.0993 −521.7969  946.6 227.4 19.10
C 4336.5 21.2613 −514.6828  839.5 74.87 16.95

the values in areas A and C was more smaller than the 
difference between the values in areas A and B or areas C 
and B. This means the difference between the two 
categories was more obvious. But those features were not 
evident for y′. However, it can be seen from Table 2 that 
the standard deviation value of y′ in area B was more 
larger than that in areas A and C, and the difference 
between areas A and B or areas C and B was more larger 
than that in areas A and C. Standard deviation is a 
standard of measuring the dispersion degree of data 
distribution [27]. That means the gap in the data of area 
B was much larger than that in area A or C, and the 
welding process in area B was unstable. This is 
consistent with the actual welding results. So, it could 
conclude from Tables 1 and 2 that the transformed new 
data were the best compression of the original data. It 
reduced the information that has no relationship with 
classification in the original seven characteristics. By 
using K-L transform, the information of the seven 
characteristics was expressed by three new 
characteristics. The difference between the two 
categories was more apparent in the three transformed 
new characteristics and it contributed to classify the three 
new characteristics more easily. 

In order to eliminate the dimensional effects and the 
effect of value difference among the characteristics itself 
and value difference between different characteristics, 
the deviation standardization method was used to 
standard the new data [28]. The standard formula is 
 

L2 ,1,
)(Min)(Max

)(Min)()( =
−

−
= i

xx
xixix

ss

ss
s             (10) 

 
where xs is a variable. It is one of the three new 
characteristics in this experiment. 

The three-dimensional figures of the three new 
characteristics before and after data standardization are 
shown in Figs. 7(a) and (b), respectively. A point stands 
for a three-dimensional vector xt(i) (i=1, 2, …, 2360), 
and a vector means an image. Blue points belong to type 
1 and red ones belong to type 2. The data after 
standardization was pure number without unit. After 
deviation standardization, the value of each characteristic 
was ranged from 0 to 1 and the samples of each category 
were more focused and the boundary between the two 
categories was more obvious than before. 

Based upon the previous experiments, KNN method 
was used to classify the 2360 images into two categories. 
The training samples were the same as the training 
samples of K-L transform. The rest were divided into 
three groups according to the areas A, B and C. The 
classification result was different with the change of k. It 
was found that when k=115, the recognition result was 
the best. The comparison of classification result and 
actual weld bead width is given in Fig. 8. The distance  
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Fig. 7 3-dimensional figure of data standardization and 
classification: (a) Before data standardization; (b) After data 
standardization 
 

 
Fig. 8 Comparison of classification result and actual weld bead 
width 
 
between the samples was European distance. The 
recognition rate of each area is shown in Table 3. 
 
Table 3 Recognition rate of each area of weld bead 

Area A B C 

Recognition rate 99.66% 75.12% 93.86%

 
It can be concluded from Fig. 8 that there was a 

high wrong recognition rate during the transition stage of 
areas B and C, and this is the main factor of the relatively 
low recognition rate of area B. Welding is a complex, 

time-varying and nonlinear process. With the change of 
welding situation, the amount of spatters was fewer and 
fewer at the end of area B, and this phenomenon 
influenced the value of some characteristic parameters 
such as N, A, G  and H. The value difference between 
area B and area C was reduced gradually as shown in 
Figs. 5 and 6. This is different from the transition stage 
of area A and area B when the value increased suddenly. 
The characteristic parameters such as N, A, G  and H 
were influenced by the amount of spatters, and this is the 
main reason of classification boundary blur between area 
B and area C and, and could result in the relatively low 
recognition rate of area B. However, the plume and 
spatter image could be recognized effectively by KNN 
method based on K-L transform and this will provide a 
theory basis for the realization of real time monitoring of 
welding process. 

Another welding experiment at welding speed of  
3 m/min was carried out to test the proposed model. 
Totally 3596 plume and spatter images were captured. 
The whole welding process was stable and the welding 
quality was good. The welded specimen is shown in  
Fig. 9. Because the number of testing samples increased, 
the value of k increased accordingly. It was found that 
the recognition rate was up to 98.80% when k=211. The 
classification result is shown in Fig. 10. 
 

 
Fig. 9 Top view of welded specimen at welding speed of     
3 m/min 
 

 
Fig. 10 Classification result at welding speed of of 3 m/min 
 
4 Conclusions 
 

1) Laser-induced metal vapor plume and spatters 
during high-power disk laser welding contain a lot of 
information associated with the welding quality. Image 
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processing method such as median filtering, Wiener 
filtering, lightness transform and Canny edge detection 
can be applied to processing the plume and spatter 
images captured by a high-speed camera, and to 
obtaining the accurate information of the images for the 
extraction of characteristics. 

2) The extracted characteristics such as the area and 
number of spatters, the average gray level of a spatter 
grayscale image, the entropy of a spatter grayscale image, 
the coordinate ratio of the centroid of metal vapor plume 
and the welding point, the polar coordinates of the 
centroid of metal vapor plume, have a close relationship 
with the actual welding quality. 

3) K-L transform method can reduce the 
information that has no relationship with classification in 
the seven original characteristics, and distinguish the 
difference between the two categories. This will 
contribute to the classification of high-power disk laser 
welding images and monitoring of welding behaviors. 

4) After deviation standardization, the data of each 
category are more concentrate and the boundary between 
the two categories is more obvious. Using K-nearest 
neighbor method to classify the metal vapor plume and 
spatter images of high power disk laser welding into two 
categories could obtain a good recognition rate. The 
proposed method provides a new method for the 
real-time monitoring of laser welding quality. 
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金属蒸汽和飞溅图像特征分类的 

大功率盘形激光焊稳定性分析 
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摘  要：采用对金属蒸汽图像特征进行分类的方法来评估焊接过程的稳定性。使用高速摄像机实时获取大功率盘

形激光焊接过程中金属蒸汽和飞溅图像，定义并提取飞溅面积和个数、飞溅灰度图像平均灰度和熵、金属蒸汽质

心与焊接点的坐标比以及金属蒸汽质心的极坐标(矢径和极角)等 7 个金属蒸汽和飞溅特征。为实现降维，使用

Karhunen-Loeve 变换法将 7 维特征向量转换为 3 维特征向量，同时使用 K 近邻法将图像分成焊接质量较好与较差

两类。实验结果表明，金属蒸汽及飞溅与焊接稳定性有密切的联系，使用 K 近邻法对 Karhunen-Loeve 变换后的

图像进行分类可以获得较好的效果，实现焊接状况的评估。 

关键词：大功率盘形激光焊；金属蒸气；飞溅；特征分类；稳定性 
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