文章编号: 1004-0609(2013)12-3354-06

Al₂O₃复合磨粒的制备及表征

麻鹏飞,蒋春东,吴 疆,张 萍

(四川大学 材料科学与工程学院, 成都 610064)

摘 要:为了提高 Al₂O₃超微粉在水介质中的分散稳定性,先采用硅烷偶联剂 KH570 对 Al₂O₃进行表面改性,再 对 Al₂O₃粒子锚固偶氮引发剂偶氮二异丁基脒盐酸盐(AIBA),进而引发丙烯酰胺(AM)单体聚合而制备聚丙烯酰胺 (PAM)/Al₂O₃复合粒子。利用 XPS、FT-IR、激光粒度仪、微电泳仪、分光光度计、SEM 及 XRD 等对 Al₂O₃复合 粒子结构及分散性能等进行表征。结果表明:在 40 ℃下加入水溶性偶氮引发剂,可以得到在水介质中分散稳定 性良好,以聚丙烯酰胺为壳,以 Al₂O₃ 为核的复合磨粒。与未改性的 Al₂O₃ 超微粉相比,经 AM 接枝聚合改性后 的颗粒表面团聚现象得到改善,颗粒的 D₅₀减小;接枝改性后 Al₂O₃ 的等电点 IEP 发生迁移,在 pH 值为 9 时颗粒 表面 Zeta 电位绝对值达到最大。

关键词: Al₂O₃超微粉;偶氮引发剂;分散性;表面改性;复合磨粒 中图分类号: TQ174 文献标志码: A

Preparation and characterization of Al₂O₃ composite abrasive

MA Peng-fei, JIANG Chun-dong, WU Jiang, ZHANG Ping

(College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China)

Abstract: In order to enhance the dispersion stability of ultra-fine Al_2O_3 powder in aqueous medium, Al_2O_3 particles were modified with silane coupling agent KH570 at first, then 2,2'-azobis(2-amidinopropane) dihydrochloride (AIBA) was anchored onto the modified Al_2O_3 to initiate the graft polymerization of acrylamide monomer (AM), and PAM/Al_2O_3 composite particles were obtained finally. The structure and dispersion property of Al_2O_3 composite particles were characterized by XPS, FT-IR, laser particle size analyzer, micro electrophoresis apparatus, spectrophotometer and SEM as well as XRD. The results indicate that the attained composite abrasive shows good dispersion stability in aqueous medium with PAM as shell and Al_2O_3 as core when water-soluble azo initiator is added at 40 °C. Compared with unmodified Al_2O_3 , the reunion phenomenon of grafting polymerization modified Al_2O_3 powder is improved by AM, the D_{50} of the modified particles is reduced. The isoelectric point (IEP) of the grafting modified particles is migrated, and the Zeta potential of the modified particles reaches the maximum value when the pH value is 9.

Key words: Al₂O₃ ultrafine powders; azo initiator; dispersion; surface modification; composite abrasive

随着社会进步和高精尖技术的飞速发展,电子产品表面质量要求的不断提高,表面平坦化技术也在不断发展。化学机械抛光技术(Chemical mechanical polishing, CMP)广泛应用于集成电路、计算机硬盘等先进电子产品制造中部件表面的高精度平整化^[1-2]。

CMP 技术的关键之一为研磨料的制备和抛光液的分散稳定,它们直接影响 CMP 的抛光速率、选择性以及对基片表面的损伤等各项指标^[3-4]。

Al₂O₃是目前广泛采用的磨料,由于 Al₂O₃ 在配制 浆料的过程中存在分散稳定性不好、易团聚等缺点,

收稿日期: 2013-02-07; 修订日期: 2013-05-16

通信作者: 张 萍, 副教授; 电话: 18981897995; E-mail: zhp@scu.edu.cn

因此,需要采用化学方法对其进行表面改性^[5]。改性 的方法有表面化学包覆改性法、物理改性法和机械改 性法等^[6]。目前,使用较多的是表面化学包覆改性法^[7]。 由于有机物很难直接包覆在 Al₂O₃ 粉体表面,即使包 覆上去了大部分也是物理吸附,结合不稳定。而 Al₂O₃ 粉体表面的羟基易与烷氧基基团反应,选择硅烷偶联 剂(CH2=C(CH2)COOC3H6Si(OCH2)3, KH570)作为中 间过渡层^[8],可在无机材料和有机材料的界面之间架 起"分子桥",将两种性质悬殊的材料连接在一起,所 以外层选择丙烯酰胺(CH2=CHCONH2, AM), 通过 聚合反应形成水溶性分子聚丙烯酰胺 (+CH2-CH(CONH2)+,, PAM),可提高Al2O3粒子的 亲水性^[9]。为降低聚合反应温度,提高聚合反应转化 率,对 Al₂O₃粒子表面锚固偶氮引发剂^[10]。近年来, 水溶性偶氮类引发体系得到很大的发展,并得到普遍 的应用[11],由于过氧化物类如过硫酸钾、过硫酸铵等 引发剂必须在较高温度下才能引发聚合^[12],因此,采 用活化能较低的水溶性偶氮引发剂(C₈H₂₀N₆Cl₂, AIBA), AIBA 在较低温度下就能引发聚合, 只需很低 的浓度,残渣极少,聚合恒速进行,几乎100%完成, pH 值不变, 能产生具有超高相对分子质量和优质水溶

ph 值小愛, 能广生具有超高相对分子质重和优质水裕性的聚合物^[13], 可有效地提高 Al₂O₃ 粒子表面自由基的分解速率,产生更多表面活性点^[14]。本文作者通过对 Al₂O₃ 粒子表面锚固偶氮引发剂,进而引发丙烯酰胺聚合而制备聚丙烯酰胺 PAM/ Al₂O₃ 复合粒子,改善Al₂O₃粒子在水介质中的分散稳定性,分析粒子在水介质中的分散性。

1 实验

1.1 原料

Al₂O₃ 超微粉 *D*₅₀=1.930 μm, Al₂O₃ 含量为 99.99%(质量分数,下同),浙江超微细化工有限公司 生产;硅烷偶联剂(KH570,分析纯,南京新淮科技有 限公司生产);丙烯酰胺(分析纯,99.0%,成都市科龙 化工试剂厂生产);偶氮二异丁脒盐酸盐(分析纯, 98.0%,南京都莱生物技术有限公司生产);无水乙醇 (分析纯,99.7%,成都市长征化工试剂厂生产);氮气 (99.99%,成都旭日化工有限公司生产)。

1.2 样品制备

将 10 g Al₂O₃加入三口瓶中,再加入 200 mL 无水 乙醇,超声分散 30 min;称取 5.0 g 硅烷偶联剂加入 500 mL 三口烧瓶中与 Al₂O₃的无水乙醇溶液混合均 匀。在磁力搅拌水浴锅中加热至 80 ℃,回流 5 h,离 心分离,用无水乙醇洗涤 6 次,80 ℃真空干燥 12 h。 将 5 g 经 KH570 改性的 Al₂O₃ 分散于 100 mL 蒸馏水 中,搅拌 30 min,抽真空充氮气反复 5 次,加入偶氮 引发剂 0.025 g 置于三口瓶中,升温至 40 ℃,反应 25 min 后,打开三口烧瓶一次性加入 5 g 丙烯酰胺单体, 磁力搅拌反应 4 h 后,在氮气保护下自然冷却至室温。 离心分离,用蒸馏水洗涤 6 次,以除去均聚物。80 ℃ 真空干燥 12 h,自然冷却到室温,即得到经聚丙烯酰 胺接枝聚合的 Al₂O₃ 复合磨粒。

2 结果与分析

2.1 X射线光电子能谱分析

图 1(a)和(b)所示分别为纯 A1₂O₃ 和改性 A1₂O₃ 粉 末的 XPS 谱。比较图 1(a)和(b)可知, C ls 峰强度有了 明显的增强,由于 XPS 测量范围是厚度≤10 nm 的表 面元素,这主要是丙烯酰胺的中碳的贡献。此外,改 性后 Al₂O₃ 粉体表面出现了 N 的峰, N ls 的结合能为 404.1 eV,对应于丙烯酰胺中的 N,表明丙烯酰胺已 成功接枝到 A1₂O₃表面。

2.2 FT-IR 分析

用 KBr 压片,对纯 Al₂O₃ 粉体和表面改性的 Al₂O₃ 粉体分别进行红外光谱检测,结果如图 2 所示。

从图 2 可以看出,改性前后,3 437.21 cm⁻¹ 附近 都存在-OH伸缩振动峰;在1 000~500 cm⁻¹之间为 Al-O 键的振动吸收带。经 KH570 改性的 Al₂O₃在 1 643.85 cm⁻¹ 处出现了 KH570 酯基中 C=O 吸收峰, 在 2 921.63 和 2 857.99 cm⁻¹ 处出现了甲基伸缩振动 峰。同时,在1400.09 cm⁻¹出现了新的吸收峰。图 2(b) 表明红外光谱中新出现的吸收峰是由 KH570 对应的 官能团特征峰形成的,说明 KH570 已通过化学键偶联 到 Al₂O₃表面。据文献[15]报道,在酰胺的特征吸收带 中, NH2一吸收带位于1 620 cm⁻¹ 附近, 在图 2(b)的 1 618.20 cm⁻¹处出现了 NH₂吸收带, 且在1 679.90 cm⁻¹ 处出现酰胺的羟基吸收峰,丙烯酰胺单体中的 C==C 伸缩振动峰在1640 cm⁻¹左右,而聚丙烯酰胺中无此 峰,只有1680 cm⁻¹左右的羰基吸收峰,说明丙烯酰 胺单体通过反应形成了聚丙烯酰胺。同时在 1 500~ 1000 cm⁻¹之间还有数个新的吸收峰,分别在1450.86 和 1 356.71 cm⁻¹ 处出现了与 C==O 相连的 C-N 或 C--C 键伸缩振动峰。分析表明,丙烯酰胺单体通过 KH570的"分子桥"作用在无机粒子表面引发聚合,

图 1 纯 Al₂O₃ 粉体和改性 Al₂O₃ 粉体的 XPS 谱

Fig. 1 XPS spectra of raw Al₂O₃ powders(a) and surface-modified Al₂O₃ powders(b)

Fig. 2 FT-IR spectra of raw Al₂O₃ powders(a) and Al₂O₃ powders modified with KH570 and grafting AM, respectively(b)

已经接枝聚合到硅烷化 Al₂O₃表面上。

2.3 SEM 形貌分析

用美国 FEI 环境扫描电子显微镜分别观察纯 Al₂O₃和改性 Al₂O₃粉体在水中的分散情况,结果如图 3 所示。由图 3 可见,改性 Al₂O₃的分散性比纯 Al₂O₃ 的有了大幅度提高。纯 Al₂O₃ 颗粒之间相互吸附,团 聚严重,块状大颗粒和细颗粒形成较大团聚体;而改 性 Al₂O₃ 细颗粒明显增多,颗粒表面团聚得到明显改 善。这是由于 Al₂O₃ 表面上接枝了经 KH570 改性的聚 丙烯酰胺,一方面接枝丙烯酰胺单体后降低了 Al₂O₃ 粒子的表面能,另一方面接枝在 Al₂O₃ 表面上的聚丙 烯酰胺链在水中伸展开来,在 Al₂O₃ 表面能够形成一 定厚度的位阻层,达到立体屏障(位阻斥力)的效果, 在位阻斥力的作用下,阻止了 Al₂O₃ 粒子的表面团聚。

2.4 粒径分析

将纯 Al₂O₃ 粉体和改性的 Al₂O₃ 粉体分别配制成 稀溶液,超声分散后,用激光粒度分析仪测定改性前 后 Al₂O₃ 粉体的粒径大小及分布,结果如图 4 和表 1 所示。从图 4 和表 1 可以看出:纯 Al₂O₃ 粉体经过表 面改性后,中位粒径 D₅₀ 明显减小,这是粉体的表面 团聚现象得到改善、水介质中的分散性提高所致。

2.5 Zeta 电位分析

粒子表面所带的电荷种类和粒子表面的电荷密度 可由其 Zeta 电位值上得到反映,通常可将其用作评判 超细粉体在水介质中的分散稳定性。纯 Al₂O₃和接枝 改性 Al₂O₃ 的 Zeta 电位曲线如图 5 所示。由图 5 可以 看到,包覆后的 Al₂O₃ 颗粒经聚丙烯酰胺接枝后电动 性质发生了变化。纯 Al₂O₃ 的等电点(IEP)在 pH=8.0 附近,在 pH=3 附近其最大电位绝对值为 19.62 mV; 而改性 Al₂O₃ 的 IEP 从碱性移动到了酸性,其 IEP 位于 pH=5.7 附近,最大电位绝对值为 33.03 mV(pH≈9)。 Al₂O₃颗粒表面的电荷性质与聚丙烯酰胺性质有关,其 负电荷性升高, IEP 又向酸性移动,且在碱性条件下, 改性 Al₂O₃比纯 Al₂O₃表现为更高的 Zeta 电位绝对值。

图 3 纯 Al₂O₃ 粉体和改性 Al₂O₃ 粉体的 SEM 像 Fig. 3 SEM images of raw Al₂O₃ powders(a) and surfacemodified Al₂O₃ powders(b)

图 4 纯 Al₂O₃粉体和改性 Al₂O₃粉体的粒径分布

Fig. 4 Particle size distribution of raw Al_2O_3 powders and surface-modified Al_2O_3 powders

表1	改性前后	Al_2O_3	粉体的粒径
----	------	-----------	-------

 Table 1
 Particle size of Al₂O₃ powders before and after modification

Powder	$D_{10}/\mu m$	$D_{50}/\mu m$	<i>D</i> ₉₀ /μm
Raw Al ₂ O ₃	1.258	1.930	2.943
Surface-modified Al ₂ O ₃	0.571	1.026	1.733

图 5 改性前后 Al₂O₃粉体的 Zeta 电位曲线

Fig. 5 Zeta potential curves of Al_2O_3 powder before and after modification

研究表明: 在引发剂作用下,丙烯酰胺单体的 C—C 被打开,与粉体表面的偶联剂尾端接枝聚合, 形成一定的空间结构。聚丙烯酰胺有机包覆层具有一 定的空间结构和水解活性,可以通过它的酰胺基水解 而转化为含有羧基的聚合物,水解反应机理如下:

这种含有羧酸基团结构的水解体是一种很重要的 阴离子型聚电解质,故双层包覆 Al₂O₃的 Zeta 电位与 pH值的关系曲线呈现出与陶瓷粉体吸附阴离子型聚电 解质相同的特征^[16]。水解聚丙烯酰胺的羧酸基团或以 一COOH存在,或解离为一COO一,解离的一COOH 基团的分数与溶液的 pH 值密切相关。当溶液为强 酸性时,一COOH 几乎不解离;当溶液为碱性时, 一COOH全部解离。随着一COOH解离程度的增大, 聚合物表面电荷性质从中性变到很高的负电性。这就 充分证实聚丙烯酰胺已经成功地接枝到 Al₂O₃ 粉体表 面上。

2.6 分散稳定性分析

透光率的变化可以反映 Al₂O₃ 在水介质中的分散 稳定性,对改性前后 Al₂O₃粉体悬浮液的透光率进行 测定,结果如图6所示。由图6可知,随着时间延长, 纯 A12O3 粉体悬浮液的透光率快速上升, 仅 3 d, 透光 率达到 80%以上; 7 d 后,透光率就达到 90%以上, 表明纯Al₂O₃悬浮液分散稳定性差,7d几乎完全沉降。 而接枝聚丙烯酰胺后,分散液的透光率大大下降,存 放 1~3 d, 悬浮液的透光率小于 10%; 7 d 后, 透光率 小于 45%;存放 15 d 后,透光率小于 70%。结果表明: 改性后 Al₂O₃ 分散稳定性明显提高。原因如下: 1) 由 于聚丙烯酰胺水解产生—COO—,提高了粒子表面电 荷,增加了粒子之间的电荷排斥力,使粒子在热力学 上更加稳定,所以能在水中形成稳定的分散体系:2) 枝链聚丙烯酰胺为高分子长链,通过高分子链的相互 作用力在粒子表面形成外壳,其空间阻碍作用阻止了 粒子之间的团聚; 3) 枝链聚丙烯酰胺为水溶性高分 子,可提高粒子的亲水性、易润湿性,溶剂化效应使 得 Al₂O₃ 粒子的表面能大大降低,能在水介质中稳定 存在。通过静电和空间位阻的联合作用,可以阻止 Al₂O₃粒子的相互吸附,提高Al₂O₃粒子在水介质中的 分散稳定性。

Fig. 6 Stability of Al_2O_3 powders before and after modification in natural sedimentation

2.7 XRD 谱分析

图 7 所示为改性前后 Al₂O₃粉体的 XRD 谱。由 图 7 可见:改性前后 Al₂O₃粉体的面间距 *d* 均与 JCPDS 卡片中 *a*-Al₂O₃ 的 *d* 值完全一致,其相对强度也非常 吻合。说明对 Al₂O₃ 微粉表面改性并没有对粉体本身 的物相组成和结构产生较大的影响。

图 7 改性前后 Al₂O₃ 粉体的 XRD 谱 Fig. 7 XRD patterns of Al₂O₃ powders before(a) and after(b)

结论

modification

3

1) 先采用硅烷偶联剂 KH570 对 Al₂O₃ 表面进行 改性,再采用活化能较低的 AIBA 对 Al₂O₃ 粒子表面 进行锚固,在40 ℃下就能引发聚合,只需 Al₂O₃ 总质 量的 0.5%,聚合恒速进行,几乎 100%完成,pH 不变, 能产生具有超高分子质量和优质水溶性的聚合物,提 高 Al₂O₃ 粒子表面自由基的分解速率,产生更多表面 活性点,进而引发 AM 在 KH570 改性的 Al₂O₃ 超微粉 表面进行接枝聚合改性,可得到在水介质中均匀稳定、 分散性好的复合磨粒。

2) XPS 和 FT-IR 谱分析表明,聚丙烯酰胺己经以 化学键形式接枝到 Al₂O₃ 粉体表面上。

3) 改性后的 Al₂O₃ 粉体的 D₅₀ 减小,粒径分布范 围变窄,细颗粒明显增多;存放 15 d 后,透光率小于 70%;改性后 Al₂O₃ 粉体的 IEP 位置发生了迁移;改 性并没有对粉体本身的物相组成和结构产生影响。

REFERENCES

- JAIRATH R, FARKAS J, HUANG C K. Chemical mechanical polishing: Process manufacturability[J]. J Solid State Technology, 1994, 34(7): 71–75.
- [2] 宋晓岚,李宇焜,江 楠,屈一新,邱冠周. 化学机械抛光技 术研究进展[J]. 化工进展, 2008, 27(1): 26-31. SONG Xiao-lian, LI Yu-kun, JIANG Nan, QU Yi-xin, QIU Guan-zhou. Recent development of chemical mechanical polishing[J]. Chemical Industry and Engineering Progress, 2008, 27(1): 26-31.
- [3] 卢海参, 雷 红, 张泽芳, 肖保其. 超细氧化铝表面改性及其 抛光特性[J]. 润滑与密封, 2007, 32(2): 101-104.
 LU Hai-shen, LEI Hong, ZHANG Ze-fang, XIAO Bao-qi. Surface modification of ultra-fine Al₂O₃ and polishing performances[J]. Lubrication Engineering, 2007, 32(2): 101-104.
- [4] 雷 红, 雒建斌, 张朝辉. 化学机械抛光技术的研究进展[J]. 上海大学学报: 自然科学版, 2003, 9(6): 494-502.
 LEI Hong, LUO Jian-bin, ZHANG Chao-hui. Advances in chemical mechanical polishing[J]. Journal of Shanghai University: Natural Science Edition, 2003, 9(6): 494-502.
- [5] 赵颜忠,余智萍,朱晒红,周建大,黄艳艳,王国慧,黄 东, 周科朝. 硅纳米颗粒的表面改性及生物应用[J]. 中国有色金 属学报,2010,20(7):1412-1417.

ZHAO Yan-zhong, YU Zhi-pin, ZHU Shai-hong, ZHOU Jian-da, HUANG Yan-yan, WANG Guo-hui, HUANG Dong, ZHOU Ke-chao. Surface modification and biomedical application of silica nanoparticles[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1412–1417.

 [6] 邓永丽, 樊慧庆,张 洁.表面改性处理对氧化铝/环氧树脂 复合材料力学性能的影响[J]. 硅酸盐学报, 2008, 32(9): 1251-1255.

DENG Yong-li, FAN Hui-qing, ZHANG Jie. Effect of surface modification on mechanical performances of alumina-dispersed epoxy composites[J]. Journal of the Chinese Ceramic Society, 2008, 32(9): 1251–1255.

- [7] 铁生年,李 星. 硅烷偶联剂对碳化硅粉体的表面改性[J]. 硅酸盐学报, 2011, 39(3): 409-413.
 TIE Sheng-nian, LI Xin. Surface modification of SiC powder with silane coupling agent[J]. Journal of the Chinese Ceramic Society, 2011, 39(3): 409-413.
- [8] 李爱坤,李丽娅,吴隆文,易健宏.溶胶-凝胶法制备 SiO₂包 Fe₈₅Si_{9.6}Al_{5.4}软磁复合粉末[J].中国有色金属学报,2013,23(4): 1065-1072.

LI Ai-kun, LI Li-ya, WU Long-wen, YI Jian-hong. Preparation of Fe₈₅Si_{9.6}Al_{5.4} soft magnetic composite powder with silica insulation coating by sol-gel method[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 1065–1072.

- [9] 张素霞.丙烯酰胺微乳液聚合及引发剂选择的研究[D]. 武汉: 武汉科技大学, 2007. ZHANG Su-xia. Study on microemulsion ploymerization of acrylamide and the selection of initiator[D]. Wuhan: Wuhan University of Technology, 2007.
- [10] 戚栋明,包永忠,黄志明,翁志学.纳米 SiO₂ 粒子锚固偶氮
 引发剂及接枝聚甲基丙烯酸甲酯[J].高分子学报,2004(3):
 415-418.

QI Dong-ming, BAO Yong-zhong, HUANG Zhi-ming, WEN Zhi-xue. Anchoring of azo initiator and grafting of ploy (methyl methacrylate) onto nanaometer silica[J]. Acta Polymerica Sinica, 2004(3): 415–418.

- [11] 董满江,张兆泉,刘 茜. 不同引发体系的氧化铝浆料固化 过程[J]. 无机材料学报,2008,23(2):413-416.
 DONG Man-jiang, ZHANG Zhao-quan, LIU Qian. Influence of initiator systems on gelation process of alumina slurry[J]. Journal of Inorganic Materials, 2008, 23(2):413-416.
- [12] 黄凯兵,李文佳,梁 巧,施 敏,周 洪.复合偶氮引发剂 在醋酸乙烯酯乳液聚合中的应用研究[J].应用化工,2011, 40(6):1040-1044.
 HUANG Kai-bing, LI Wen-hui, LIANG Qiao, SHI Min, ZHOU Hong. Study on the acetate emulsion polymerization by composite azo initiator[J]. Application of Vinyl Applied

Chemical Industry, 2011, 40(6): 1040-1044.

- [13] 刘建平,杨小敏,王雪芳,胡 林. 水溶性偶氮引发剂的合成 与应用进展[J]. 化学试剂, 2011, 33(4): 317-320.
 LIU Jian-ping, YANG Xiao-ming, WANG Xue-fang, HU Lin. Recent research progress on the synthesis and application of water soluble azo initiators[J]. Chemical Reagents, 2011, 33(4): 317-320.
- [14] 盛维琛. 多官能度过氧引发剂热分解和相关聚合的机理和动力学研究[D]. 杭州:浙江大学,2005.
 SHENG Wei-chen. Mechanism and dynamics research of multifunctional peroxides initiator thermal decomposition and related polymerization[D]. Hangzhou: Zhejiang University, 2005.
- [15] 荆煦瑛,陈式棣, 么恩云. 红外光谱实用指南[M]. 天津: 天 津科学技术出版社, 1992: 120-129.
 JING Xu-ying, CHEN Shi-li, ME En-yu. Infrared spectrum practical guide[M]. Tianjin: Tianjin Science and Technology Press, 1992: 120-129.
- [16] 郝立根,黎 钢,陈树东,禹雪晴,杨 超. 阴离子型聚电解 质盐溶液性质的研究进展[J]. 化学世界,2005,46(7):434-437.
 HAO Li-gen, LI Gang, CHEN Shu-dong, YU Xue-qing, YANG Chao. Development of the study on salt solution properties of anion polyelectrolyte[J]. Chemical World, 2005, 46(7): 434-437.
 (编辑 陈卫萍)