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Abstract: Bimetal tube extrusion process through rotating conical dies was studied analytically and numerically. A kinematically 
admissible velocity field was developed to evaluate the internal power and the power dissipated on frictional and velocity 
discontinuity surfaces. By balancing the moment applied by the rotary die with the moments caused by the circumferential frictions 
in the container and on the mandrel, the twisting length of the material in the container was determined. By equating the total power 
with the required external power, the extrusion pressure was determined by optimizing with respect to the slippage parameter 
between the die and the outer material. It is shown that the extrusion pressure is decreased by about 20% by the die rotation. The 
bimetal tube extrusion process through rotating die was also simulated using the finite element code, ABAQUS. Analytical results 
were compared with the results given by the finite element method. These comparisons show a good agreement. 
Key words: bimetal tube; extrusion; rotating die; upper bound method; FEM 
                                                                                                             
 
 
1 Introduction 
 

Bimetals make possibility of combining properties 
of dissimilar metals. Bimetal tubes have useful 
applications in various industries where service 
conditions demand different requirements in the core of 
tube from those on its outside surface. Extrusion is a 
suitable process for manufacturing of bimetal tubes [1,2]. 
In this process, like other metal forming processes, 
estimation and minimization of the extrusion pressure is 
important. Due to the decrease in extrusion pressure, die 
life can be improved and it is possible to use a press of 
relatively low capacity. 

Using of rotating dies in metal forming processes 
was firstly introduced by GREENWOOD and 
THOMPSON [3]. Compared with traditional forming 
processes, introducing die rotation reduces primary 
forming loads and improves the homogeneity of 
deformation [4]. KEMIN et al [5] showed that rotational 
upsetting provides homogeneous deformation and 
reduction in forming load by the finite element method. 
KIM et al [6,7] showed that the forging process which is 
performed by rotation can change the harmful effect of 
friction into a beneficial effect and also it can reduce 

forming load. BROVMAN [8] obtained an analytical 
solution based on stress analysis for material flow 
through a rotating conical die excluding the 
circumferential slipping effect. KIM and PARK [9] 
studied the backward extrusion process with low die 
rotation to improve the problems of conventional 
backward extrusion process: the requirement of large 
forming machine, the difficulty in selecting the die 
material caused by high surface pressure, high cost of 
forming machine caused by improvement of noise and 
vibration, etc. They were used in upper bound technique 
and FEM simulation. The results showed that the 
backward extrusion with die rotation is a very useful 
process because this process yields the homogeneous 
deformations and lower forming load. MA et al [10,11] 
analyzed the process of forward rod extrusion through 
steadily rotating conical dies theoretically and 
experimentally. They provided required torque for 
rotating the die from an external source and also 
supposed that the angular velocity of the material inside 
the die changes with power relation with radius of each 
position in proportion to virtual apex of the conic of the 
die. They inspected the effect of slippage factor and semi 
die angle in extrusion pressure and finally determined the 
optimum die angle. 
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Regarding to the extrusion of bimetal tubes, 
ALCARAZ and SEVILLAANO [12] tried to obtain 
stress and strain contours during high temperature 
extrusion process of bimetal tubes using a FE code. A 
fracture condition during the hot extrusion of bimetal 
tubes obtained by ALCARAZ et al [13] utilizing the 
upper bound method in combination with the minimum 
energy principle. CHITKARA and ALEEM [1,14] 
studied the mechanics of extrusion of axi-symmetric 
bimetallic tubes from solid circular billets using fixed 
mandrel with application of generalized upper bound 
and slab method of analyses. They investigated the 
effect of different parameters such as extrusion ratio, 
frictional conditions, shape of the dies and that of the 
mandrels on the extrusion pressures. HAGHIGHAT and 
ASGARI [2] proposed a generalized velocity field for 
bimetal tube extrusion process through curved dies with 
no rotation. 

In this study, a velocity field for flow of a bimetal 
tube during extrusion through a rotating conical die is 
developed and it is used in upper bound model. Based 
on this model, the optimum die angle and the extrusion 
pressure are derived. The FEM simulation on the 
extrusion of a bimetal tube composed of aluminium as 
outer layer and copper as inner layer is also conducted. 
 
2 Geometric descriptions of extrusion 

process 
 
The rotational bimetal tube extrusion process 

consists of an axial movement of the punch and the 
rotational movement of the die. Schematic diagram of 
this process is shown in Fig. 1. An initially hollow billet, 
made up of two separate annular tubes of two different 
ductile materials, is considered. As shown in this figure, 
a moving cylindrical shaped mandrel with radius Rm is 
attached to the punch. 

The material under deformation in the die and 

inside the container is divided to eight deformation 
zones, I−VIII as shown in Fig. 1, and they are used in 
upper bound analysis. A spherical coordinate system  
(r, θ, φ) is used to describe the velocity in zones I and II. 
The origin of spherical coordinate system is located at 
point O. The material inside the container along the 
total length L is divided into two segments. Within the 
length l, the material is twisted plastically inside the 
container and the region enclosed is denoted as zone III. 
A cylindrical coordinate system (r, θ, y) is used to 
describe the velocity field in the deformation zone III 
where the axial coordinate y is parallel to the extruding 
direction. The billet in the remaining length (L−l) is 
designated by zones V and VI. In these zones, the 
incoming material is assumed to flow horizontally as a 
rigid body with a velocity vi. In zones VII and VIII, the 
extruded material is assumed to flow horizontally as a 
rigid body with an axial velocity vf. Zones I and II are 
the deformation zones. Zone I is separated from zone 
III by a surface of velocity discontinuity S1. Zone I is 
separated from zone VII by a surface of velocity 
discontinuity S2. The mathematical equations for radial 
positions of surfaces S1 and S2 of velocity discontinuity 
are given by 

 
1f m

f sin
R R

r
α

−
= , 1i m

i sin
R R

r
α

−
=                  (1) 

 
where α is the semi-angle of conical die. 
 
2.1 Velocity fields and power terms for deformation 

zones I and II 
The first step in modelling and analyzing a metal 

forming process by use of upper bound approach is to 
select a suitable velocity field for the material which is 
deforming plastically. 

For deformation zones I and II, the same rotational 
component of velocity field, ,Uϕ

&  which was employed 
by MA et al [11] to analyze mono-metal rod extrusion 

 

 

Fig. 1 Schematic diagram of bimetal tube extrusion process through rotating conical die, geometric parameters and its deformation 
zones 
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process through rotating conical dies, is extended here 
for bimetal tube extrusion process through rotating 
conical dies. The two other velocity components, rU& and 
Uθ
& , are assumed similar to the velocity field proposed 

by EBRAHIMI et al [15] for mono-metal tube extrusion. 
So, the total velocity field for tube extrusion process 
through rotating conical dies is described by 

θcos
2

f
f ⎟

⎠
⎞

⎜
⎝
⎛−≅

r
rvUr

&                         (2) 

0=θU&                                     (3) 

3f
md1 ))(sin(

r
rrRU θωβϕ +=&                    (4) 

where ωd is the angular velocity of the die, and β1 is the 
circumferential slippage parameter defined as the 
angular velocity ratio of material at exit of conical die 
to rotating die. Slippage parameter β1 varies between 0 
and 1, where the value of 1 implies that the extruded 
tube rotates at the same angular velocity as that of the 
die. The optimal value of β1 can be determined by 
minimizing the extrusion pressure. The velocity vf is the 
speed of the extruded tube and from the volume flow 
balance, we have 
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where vi is the axial speed of the tube in the entrance of 
the die. 

When the mandrel radius goes to zero, Eqs. (2) to 
(4) reduce to the velocity field proposed by MA et al 
[11] for forward rod extrusion through rotating conical 
dies. 

The strain rates in spherical coordinates are 
defined as 
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where iiε& (with i=j) is a shear strain rate component. 
With the strain rate tensor and the velocity field, 

the standard upper bound method can be implemented. 
This method involves calculating the internal power of 
deformation over the deformation zones volume, the 
shear power losses over two surfaces of velocity 
discontinuity and the frictional power losses between 
the material and the tooling. 

The internal power dissipated in the deformation 
zone is given by 

∫=
V ijij VW
 

0
i d

2
1

3
2 εεσ

&&&                       (7) 

For deformation zone I that is surrounded by two 
velocity discontinuity surfaces of S1 and S2, interface 
surface as well as the die surface, the differential 
volume is 

 
θθ dd)sin(π2d m rrrRV +=                    (8) 

 
Substituting the strain rate tensor from Eq. (6), 

and the differential volume from Eq. (8) into Eq. (7), 
the internal power of deformation in zone I becomes  
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where σs is the mean flow stress of sleeve material and 
it is determined by  
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The internal power of deformation in zone II that 

is surrounded by two velocity discontinuity surfaces, S3 
and S4, interface surface as well as the mandrel surface, 
is calculated as 

 
i

f

  2 2 2c
i2

  0

2 1 1 12π (
2 2 23

r
rr

r
W

γ

θθ ϕϕ
σ

ε ε ε= + + +∫ ∫& & & &  
 

2 2 2 1/ 2
m) ( sin ) d dr r R r r rθ θϕ ϕε ε ε θ θ+ + +& & &      (11) 

 
where σc is the mean flow stress of core material and it 
is given by  
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and γ is the angular position of the interface surface 
between core and sleeve material in the deformation 
zone and is given by 
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The general equation for the power losses along a 
shear surface of velocity discontinuity in an upper 
bound model is 

0 d
3S

S
W v S

σ
= Δ∫&                          (14) 

where for velocity discontinuity surfaces S1 and S3, 
there are  

1 i sinv v θΔ = , 1 m i id 2π( sin ) dS R r rθ θ= +       (15) 
 
For velocity discontinuity surfaces S2 and S4, there 

are  
2 f sinv v θΔ = ,  θθ d)sin(π2d ffm2 rrRS +=    (16) 

 
Inserting Eqs. (15) and (16) into Eq. (14), the 

power values dissipated on the velocity discontinuity 
surfaces S1, S2, S3 and S4 are determined respectively as 
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The general equation for the frictional power 

losses along a surface with a constant friction factor m 
is 

f

0
f | |d
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σ
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For the conical surface of the die, frictional surface 

S5, the magnitude of the velocity difference and the 
differential surface are 
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Replacing Eqs. (23) and (24) into Eq. (22) and 
then inserting into Eq. (21) gives the frictional power 
losses along the conical surface of the die as 
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where md is the constant friction factor between the 
sleeve material and the die. 

For frictional surface S6, there are  
2 2
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The frictional power losses along frictional surface 

S6 can be determined by  
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where mm is the constant friction factor between the 
material and the mandrel. 

For frictional surface S7, there are 
 

2 2
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The frictional power losses along surface S7 can be 

given by 
2 2c
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2.2 Velocity fields and power terms for deformation 

zones III and IV 
For deformation zones III and IV, using the 

cylindrical coordinate system (r, θ, y) in Fig. 1, the 
same components of velocity field which were 
employed by MA et al [11] to analyze mono-metal rod 
extrusion process through rotating conical dies are used 
for bimetal tube extrusion process through rotating 
conical dies as 
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The strain rate for the deformed tube in container 
can be given as 

l
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Replacing Eq. (33) into Eq. (7) and noting that 

d 2π d d ,V r r y=  the internal power of deformation in 
zone III is determined as 
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The internal power of deformation in zone IV is 

determined as 
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The powers dissipated on the frictional surfaces  

S8—S10 are also can be obtained by Eq. (21). For 
frictional surface S8, there are 
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The frictional power losses along the surface S8 
can be given by 
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The velocity discontinuity on surface S9 becomes 
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The frictional power losses along surface S9 can be 

given by 
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where mc is the constant friction factor between the 
material and the container. 

Finally, for frictional surface S10, there is 
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where L is the length of tube in the container and σys is 
flow stress of sleeve material before any deformation. 

In the present work, the bonding condition 
between the core and the sleeve is assumed to be sticky 
and there is no slippage between core and sleeve 
materials and therefore the frictional power losses along 
interface surfaces are zero. 
 
2.3 Twist moments 

In addition to the power applied by the punch, a 
twist moment Md is supplied by the rotating die and this 
moment can be calculated as 
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As the balance among twisting moments must be 

maintained, the moment applied by the rotary die is 
balanced with summing up the moments caused by the 
circumferential frictions in the container and on the 
mandrel. 

The twist moment within the container is given as 
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The twist moments generate in the mandrel 

surfaces, and S6, S7 and S8 can be derived from 
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The balance of the couples gives 
 

d 6 7 8 9M M M M M′ ′ ′ ′= + + +                    (47) 
 
The twisting length l can be determined by 

satisfying above equation with a given β1. 
 
2.4 Extrusion pressure 

Based on the upper bound model, the total power 
needed for a bimetal tube extrusion process can be 
obtained by summing the internal powers and the 
powers dissipated on all frictional and velocity 
discontinuity surfaces 
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The total external power is given by 
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Therefore, the total upper bound solution for 
relative extrusion pressure is given by 

 
ave d d

2 2
c 1i m i c

*
π( )

J M
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σ ω
σ σ

−
=

−
                     (50) 

 
3 Results and discussion 
 

The analytical model discussed in the previous 
section is aimed at predicting the relative extrusion 
pressure. A MATLAB program is implemented for the 
previously derived equations. All integrals that are 
presented in the power terms are evaluated by 
numerical integration. The average pressure required 
for bimetal tube extrusion becomes a function of the 
process parameters (geometric parameters of initial and 
extruded bimetal tube, friction factor, semi-die die 
angle and angular velocity of die) and the slippage 
parameter β1 associated with the velocity field. 
Equation (50) is solved by a numerical integration 
method. The solution is optimized with respect to the 
slippage parameter. Thus, the lowest upper bound value 
of the relative extrusion pressure and the semi-die angle 
with the minimum pressure are obtained. 

To make a comparison with the developed model, 
the bimetal tube extrusion process was simulated using 
the finite element code, ABAQUS. A bimetal tube 
composed of aluminium as outer layer and copper as 
inner layer was used. The configuration of the outer and 
inner layers is shown in Fig. 2. The flow stresses for 
copper and aluminium at room temperature are 
obtained as [16] 

 
239.0

Al 2.189 εσ =   
 

113.0
Cu 2.335 εσ =                            (51) 

 

 
 

Fig. 2 Configuration of bimetal tube before extrusion (unit: 
mm) 
 

A three-dimensional model was used for FEM 
analyses. The billet model was meshed with C3D8R 
elements. Punch, mandrel, container and die are 
assumed as rigid bodies, since they are not meshed. 
However, sufficiently fine meshing is essential in 

material, which undergoes plastic deformation. The die 
model is able to rotate along its axis of symmetry and 
the punch model is loaded by specifying displacement 
in the axial direction. Also, container model is fixed by 
applying displacement constraint on its nodes. Figure 
3(a) illustrates the mesh used to analyze the 
deformation in extrusion of bimetal tube with 
configuration shown in Fig. 2, through a conical die 
with α=20° and ω=0.5 rad/s. Deformed model of the 
bimetal tube is shown in Fig. 3(b). As it is expected, the 
material is twisted not only in the die but also inside the 
container as mentioned in Section 2. 
 

  
Fig. 3 Finite element mesh (a) and deformed mesh tube (b) in 
extrusion process through rotating conical die 
 

In Fig. 4, the relative extrusion pressures for 
different angular velocities of the die, obtained from the 
upper bound solution, are compared with the FEM 
simulation results. The results show a good agreement 
between the upper bound data and the FEM results. 

This figure also shows that with increasing of the 
angular velocity of the die, the relative extrusion 
pressure is decreased but this reduction saturates at a 
high die angular velocity. 

 

  
Fig. 4 Comparison of analytical relative extrusion pressures 
with FEM data for different angular velocities of die at α=20°, 
md=0.4 and mc=0.2 
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In Fig. 5, the relative extrusion pressures for 
different semi-die angles obtained from the upper 
bound solution are compared with the FEM simulation 
results. The results show a good agreement between the 
upper bound data and the FEM results. As is expected, 
there is an optimum die angle in which the extrusion 
pressure is minimized. 
 

 
Fig. 5 Comparison of analytical relative extrusion pressures 
with FEM data for different semi-die angles at ω=0.1 rad/s, 
md=0.4 and mc=0.2 
 

The effect of angular velocity on the relative 
extrusion pressure for different values of die friction 
factors is shown in Fig. 6. It is observed that the 
extrusion pressure is decreased by increasing the die 
angular velocity and decreasing the die friction factor, 
but this reduction saturates at a high die angular 
velocity. From this figure, it is seen that the relative 
extrusion pressure is decreased by about 20% by the die 
rotation for die friction factor 0.8. 

The effect of die angle on the relative extrusion 
pressure for different values of die friction factors is 
shown in Fig. 7. As is expected, for a given value of die 
friction factor, there is an optimal die angle, which  
 

 
Fig. 6 Effect of angular velocity of die on relative extrusion 
pressure for different friction factor of die at mc=0.2 

 

 
Fig. 7 Effect of semi-die angle on relative extrusion pressure 
for different friction factor of die at ω=0.1 rad/s and mc=0.2. 
 
minimizes the extrusion pressure, and the optimum die 
angle increases when friction factor of die increases. 
This figure also shows that an increase in the friction 
factor of die tends to increase the extrusion pressure. 

The effect of angular velocity on the relative 
extrusion pressure for different values of the tube 
entrance speed is shown in Fig. 8. It is observed that the 
extrusion pressure is decreased by decreasing the die 
angular velocity and decreasing the entrance speed, but 
this reduction is low at high entrance speeds. 
 

 
Fig. 8 Effect of angular velocity of die on reduction of 
extrusion pressure for different extruding speed at α=20°, 
md=0.4 and mc=0.2 
 

The effect of angular velocity of the die on 
twisting length of the material inside the container for 
different die friction factors is shown in Fig. 9. It is 
observed that for a given value of die friction factor, 
twisting length of the material inside the container 
decreases when the friction factor of die increases. This 
figure also shows that an increase in the friction factor 
of die tends to increase twisting length of the material 
inside the container. 
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Fig. 9 Effect of angular velocity of die on twisting length of 
material inside container for different die friction factors at 
α=20°, y0=1 mm/s and mc=0.2 
 

4 Conclusions 
 

An upper bound model for analysis of the tube 
extrusion process through rotating conical dies was 
developed. The results showed a good agreement 
between the analytical solution and FEM simulation. The 
developed upper bound solution can be very beneficial in 
studying the influence of multiple variables on the tube 
extrusion process through rotating conical die and for a 
given process parameters. It can be used for finding the 
optimum semi die angle which minimizes the extrusion 
pressure. 
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双金属管锥形模旋转挤压过程分析和有限元模拟 
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摘  要：对双金属管锥形模旋转挤压过程进行分析和数值模拟。建立了运动许可速度场，并用来评估内能以及在

摩擦和速度断面上的损耗功。通过平衡旋转模容器与芯棒滚动摩擦而产生的力矩来确定容器中材料的捻线长度。

通过引入所需的外能来平衡总功，并优化模具与外部材料之间的有关滑移参数，得到挤压力。结果表明，采用锥

模旋转挤压可使挤压力减少 20%。采用 ABAQUS 有限元程序模拟双金属管的旋转挤压过程。模拟结果与分析结

果表现出很好的一致性。 
关键词：双金属管；挤压；转模；上限；有限元法 
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