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Abstract: Bimetal tube extrusion process through rotating conical dies was studied analytically and numerically. A kinematically
admissible velocity field was developed to evaluate the internal power and the power dissipated on frictional and velocity
discontinuity surfaces. By balancing the moment applied by the rotary die with the moments caused by the circumferential frictions
in the container and on the mandrel, the twisting length of the material in the container was determined. By equating the total power
with the required external power, the extrusion pressure was determined by optimizing with respect to the slippage parameter
between the die and the outer material. It is shown that the extrusion pressure is decreased by about 20% by the die rotation. The
bimetal tube extrusion process through rotating die was also simulated using the finite element code, ABAQUS. Analytical results
were compared with the results given by the finite element method. These comparisons show a good agreement.
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1 Introduction

Bimetals make possibility of combining properties
of dissimilar metals. Bimetal tubes have useful
applications in various industries where service
conditions demand different requirements in the core of
tube from those on its outside surface. Extrusion is a
suitable process for manufacturing of bimetal tubes [1,2].
In this process, like other metal forming processes,
estimation and minimization of the extrusion pressure is
important. Due to the decrease in extrusion pressure, die
life can be improved and it is possible to use a press of
relatively low capacity.

Using of rotating dies in metal forming processes
was firstly introduced by GREENWOOD and
THOMPSON [3]. Compared with traditional forming
processes, introducing die rotation reduces primary
forming loads and improves the homogeneity of
deformation [4]. KEMIN et al [5] showed that rotational
upsetting provides homogeneous deformation and
reduction in forming load by the finite element method.
KIM et al [6,7] showed that the forging process which is
performed by rotation can change the harmful effect of
friction into a beneficial effect and also it can reduce

forming load. BROVMAN [8] obtained an analytical
solution based on stress analysis for material flow
through a rotating conical die excluding the
circumferential slipping effect. KIM and PARK [9]
studied the backward extrusion process with low die
rotation to improve the problems of conventional
backward extrusion process: the requirement of large
forming machine, the difficulty in selecting the die
material caused by high surface pressure, high cost of
forming machine caused by improvement of noise and
vibration, etc. They were used in upper bound technique
and FEM simulation. The results showed that the
backward extrusion with die rotation is a very useful
process because this process yields the homogeneous
deformations and lower forming load. MA et al [10,11]
analyzed the process of forward rod extrusion through
steadily rotating conical dies theoretically and
experimentally. They provided required torque for
rotating the die from an external source and also
supposed that the angular velocity of the material inside
the die changes with power relation with radius of each
position in proportion to virtual apex of the conic of the
die. They inspected the effect of slippage factor and semi
die angle in extrusion pressure and finally determined the
optimum die angle.
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Regarding to the extrusion of bimetal tubes,
ALCARAZ and SEVILLAANO [12] tried to obtain
stress and strain contours during high temperature
extrusion process of bimetal tubes using a FE code. A
fracture condition during the hot extrusion of bimetal
tubes obtained by ALCARAZ et al [13] utilizing the
upper bound method in combination with the minimum
energy principle. CHITKARA and ALEEM [1,14]
studied the mechanics of extrusion of axi-symmetric
bimetallic tubes from solid circular billets using fixed
mandrel with application of generalized upper bound
and slab method of analyses. They investigated the
effect of different parameters such as extrusion ratio,
frictional conditions, shape of the dies and that of the
mandrels on the extrusion pressures. HAGHIGHAT and
ASGARI [2] proposed a generalized velocity field for
bimetal tube extrusion process through curved dies with
no rotation.

In this study, a velocity field for flow of a bimetal
tube during extrusion through a rotating conical die is
developed and it is used in upper bound model. Based
on this model, the optimum die angle and the extrusion
pressure are derived. The FEM simulation on the
extrusion of a bimetal tube composed of aluminium as
outer layer and copper as inner layer is also conducted.

2 Geometric descriptions of extrusion
process

The rotational bimetal tube extrusion process
consists of an axial movement of the punch and the
rotational movement of the die. Schematic diagram of
this process is shown in Fig. 1. An initially hollow billet,
made up of two separate annular tubes of two different
ductile materials, is considered. As shown in this figure,
a moving cylindrical shaped mandrel with radius Ry, is
attached to the punch.

The material under deformation in the die and
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inside the container is divided to eight deformation
zones, [-VIII as shown in Fig. 1, and they are used in
upper bound analysis. A spherical coordinate system
(r, 0, ) is used to describe the velocity in zones I and II.
The origin of spherical coordinate system is located at
point O. The material inside the container along the
total length L is divided into two segments. Within the
length I, the material is twisted plastically inside the
container and the region enclosed is denoted as zone III.
A cylindrical coordinate system (r, 8, y) is used to
describe the velocity field in the deformation zone III
where the axial coordinate y is parallel to the extruding
direction. The billet in the remaining length (L—/) is
designated by zones V and VI. In these zones, the
incoming material is assumed to flow horizontally as a
rigid body with a velocity v;. In zones VII and VIII, the
extruded material is assumed to flow horizontally as a
rigid body with an axial velocity vr. Zones I and II are
the deformation zones. Zone I is separated from zone
IIT by a surface of velocity discontinuity S;. Zone I is
separated from zone VII by a surface of velocity
discontinuity S,. The mathematical equations for radial
positions of surfaces S; and S, of velocity discontinuity
are given by

)

sina sina

where a is the semi-angle of conical die.

2.1 Velocity fields and power terms for deformation

zones | and |1

The first step in modelling and analyzing a metal
forming process by use of upper bound approach is to
select a suitable velocity field for the material which is
deforming plastically.

For deformation zones I and II, the same rotational
component of velocity field, U,, which was employed
by MA et al [11] to analyze mono-metal rod extrusion
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Fig. 1 Schematic diagram of bimetal tube extrusion process through rotating conical die, geometric parameters and its deformation
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process through rotating conical dies, is extended here
for bimetal tube extrusion process through rotating
conical dies. The two other velocity components, U ~and
Ue» are assumed similar to the velocity field proposed
by EBRAHIMI et al [15] for mono-metal tube extrusion.
So, the total velocity field for tube extrusion process
through rotating conical dies is described by

2
U, = —v{r—fj cosd 2)
r
Uy =0 3)
U, = fog(Ry+rsin )Ly’ 4)
.

where @y is the angular velocity of the die, and /5, is the
circumferential slippage parameter defined as the
angular velocity ratio of material at exit of conical die
to rotating die. Slippage parameter S, varies between 0
and 1, where the value of 1 implies that the extruded
tube rotates at the same angular velocity as that of the
die. The optimal value of B, can be determined by
minimizing the extrusion pressure. The velocity vy is the
speed of the extruded tube and from the volume flow
balance, we have

Ry —Rn

Vi (5
Rf - R},

Ve =
where v; is the axial speed of the tube in the entrance of
the die.

When the mandrel radius goes to zero, Egs. (2) to
(4) reduce to the velocity field proposed by MA et al
[11] for forward rod extrusion through rotating conical
dies.

The strain rates in spherical coordinates are
defined as

. oU , cosf
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where ¢&; (with /=) is a shear strain rate component.

With the strain rate tensor and the velocity field,
the standard upper bound method can be implemented.
This method involves calculating the internal power of
deformation over the deformation zones volume, the
shear power losses over two surfaces of velocity
discontinuity and the frictional power losses between
the material and the tooling.

The internal power dissipated in the deformation
zone is given by

26
ij/z ey dV (7

For deformation zone I that is surrounded by two
velocity discontinuity surfaces of S; and S, interface
surface as well as the die surface, the differential
volume is

dV =2n(R,, +rsin )rdrd@ ®)

Substituting the strain rate tensor from Eq. (6),
and the differential volume from Eq. (8) into Eq. (7),
the internal power of deformation in zone I becomes

20, el .2 1 .2 1 .2
5271:IJ. — &t —Ept+—E,, T+
B 7(2 2700 g

Elg+é5,+E0) 7 (Ry +7sin0)rdOdr 9)

Wn:

where o5 is the mean flow stress of sleeve material and
it is determined by

ode 2
j- £ = Rll R221 ( 1 0)
le Ry
The internal power of deformation in zone II that
is surrounded by two velocity discontinuity surfaces, S;
and S,, interface surface as well as the mandrel surface,
is calculated as

1
J. I (_ rr ‘96’6‘+2‘92 +

érg+ gy +E0) 2 (Ry +rsin@)rd0dr (11)

i

where o, is the mean flow stress of core material and it

is given by
R — Ry,

&
J‘ ode
_do
R3 — Ry

and y is the angular position of the interface surface
between core and sleeve material in the deformation
zone and is given by

(12)

, €=1In

Ry, —R
siny = 2™ gin o (13)

1i
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The general equation for the power losses along a
shear surface of velocity discontinuity in an upper
bound model is

W :%L|Av|d$ (14)

where for velocity discontinuity surfaces S; and Sj,
there are

Av, =v;sin@, dS, =2a(R,, +7 sin O)r, dd (15)

For velocity discontinuity surfaces S, and S;, there
are

Av, =vesin@, dS, =2n(R,, +7;:sin O)r; dO (16)

Inserting Egs. (15) and (16) into Eq. (14), the
power values dissipated on the velocity discontinuity
surfaces Sy, Sy, S3 and S, are determined respectively as

‘ 1.
Wy =n2sy, {rf (&~ sin(2a)) + 21 Ry, (1~ cos a)}

: 3
(17

Wy =125y, {rfz (@ —%sin(Za)) +21R_ (1-cos a)}

SRNE}
(18)

WS3 = n%vi [”12 (a —%sin(Za)) +2rR,, (1-cos a)}
(19)

WS4 = n%vf {rfz (a —%sin(2a)) +21rR, (1-cos a)}

(20)

The general equation for the frictional power

losses along a surface with a constant friction factor m
is

. o,
W, :m—oj | AvidS Q1)
f \/g s
For the conical surface of the die, frictional surface

S5, the magnitude of the velocity difference and the
differential surface are

Avy = JAV? + Av,, dS; =2m(R, +rsina)dr (22)

where
Avr :Ur|6:a:Vfrf2¥ (23)
r
Av, = (R, +rsina)wy —U¢|9=a =
3
(R, +rsin a)a)d(l—ﬁl% 24)
r

Replacing Egs. (23) and (24) into Eq. (22) and
then inserting into Eq. (21) gives the frictional power
losses along the conical surface of the die as

2
. my 0o 5 ) COsa
Wes = ZRI Vilp —— | +
i r

1/2

2
3
[(Rm +rsina)am,(l —@)J (R, +rsina)dr
r

(25)
where my is the constant friction factor between the
sleeve material and the die.

For frictional surface Sg, there are

Ave = AV + V2, dSg =2nR, dr (26)

where
. r2
Av, =|v; —U, = v —v (27)
| |9:0 f 2
and
. rf3
AV, = Uyl o= froakn 5 (28)

The frictional power losses along frictional surface
Ss can be determined by

Wf6 =my, %ZﬂRm .

2\? 32
7, I"f I”f
[o v S| +| BogRy =~ | dr (29)
T r r
where m,, is the constant friction factor between the
material and the mandrel.

For frictional surface 57, there are

Avy = = v + (B R0y, dS; =2mR dr  (30)

The frictional power losses along surface S;can be
given by

O

"3

Wy =m 27t”me\/(Vi )’ +(BRu@y) 31

2.2 Velocity fields and power terms for deformation
zones Il and IV

For deformation zones III and IV, using the
cylindrical coordinate system (r, €, y) in Fig. 1, the
same components of velocity field which were
employed by MA et al [11] to analyze mono-metal rod
extrusion process through rotating conical dies are used
for bimetal tube extrusion process through rotating
conical dies as

Uyzvn, U, =0, Uezﬁza)dr%

where £, = ,Bl(r—f 3 (32)

The strain rate for the deformed tube in container
can be given as
1 r

Ey0 =Eﬁzwd7 (33)
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Replacing Eq. (33) into Eq. (7) and noting that
dV =2nrdrdy, the internal power of deformation in
zone I1I is determined as

Ry
2007 5 o (R - R (34)
\/g 3 2% 1i 2i

The internal power of deformation in zone IV is
determined as

o, %)(2nr)drdy -

20,
33

The powers dissipated on the frictional surfaces
Ss—S)o are also can be obtained by Eq. (21). For
frictional surface Sg, there are

r=R,~ Brog Ry,

The frictional power losses along the surface Sg
can be given by

< By (R21 ) (35)

Avg =U,9

%, dSg =27R, dy  (36)

. !
WfS :mmﬁanmI ﬂdeledy:
3 0 /
mpy, \/_ nﬁza)dR / 37)

The velocity discontinuity on surface Sy becomes

Avy = |AV + AV} = \/vf +(ByoyR;; %)2 (38)

The frictional power losses along surface Sy can be
given by

. o ! Vo
W, =mc—sJ‘ \/vf+ R, =)* 2nR,;dy =
9 \/g 0 (BrogRy l) 11

m, 25 2R By A (39)

N

where

! S ’
2\ Loy Ry; 2\ BrogRy;

Ry + V2 + R.)?
In BrogRy; Vi (BrogRyi) (40)

Vi

where m. is the constant friction factor between the
material and the container.
Finally, for frictional surface S, there is

o A
—2Z 2R v (L—-1) (41)

e

Wiig =m,

where L is the length of tube in the container and o, is
flow stress of sleeve material before any deformation.

In the present work, the bonding condition
between the core and the sleeve is assumed to be sticky
and there is no slippage between core and sleeve
materials and therefore the frictional power losses along
interface surfaces are zero.

2.3 Twist moments

In addition to the power applied by the punch, a
twist moment M, is supplied by the rotating die and this
moment can be calculated as

Md—md\/_ I cosys (R, +rsina)*dr,

Avs

. (42)

COS ¥ = ~
5

As the balance among twisting moments must be
maintained, the moment applied by the rotary die is
balanced with summing up the moments caused by the
circumferential frictions in the container and on the
mandrel.

The twist moment within the container is given as

Avyy
43
- (43)

' O-)’S ! 2
My=m —ZnI cosyoRdy, cosyy =
0
9

‘7

The twist moments generate in the mandrel
surfaces, and Sg, S7 and Sg can be derived from

7 Av,
M =m, j% 27:'[ cos ygR2dr, cosyg = A;W (44)
I 6
My =m e 27IJ‘Vf cosy,RAdr, cosy, = AV (45)
7 m \/g 0 7m0 7 Av7

A
M{=m 80 (46)
Av,

8

cos ngridy , COSyg =

m 27["‘
NE)
The balance of the couples gives
My=Mi+M5+Mg+M, (47)

The twisting length / can be determined by
satisfying above equation with a given f.

2.4 Extrusion pressure

Based on the upper bound model, the total power
needed for a bimetal tube extrusion process can be
obtained by summing the internal powers and the
powers dissipated on all frictional and velocity
discontinuity surfaces
JT =W + W + Wy + Wy +Ws +Ws +

1
VI7fS+VIZfﬁ+VVf7+Wf8+VI7fq+VI7fIO (48)
The total external power is given by

J* =0, (R — RE)W; + M g, (49)

ave
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Therefore, the total upper bound solution for
relative extrusion pressure is given by

O-ave

_ S Moy (50)
o, n(Rlzi —ern)ViO'C

3 Results and discussion

The analytical model discussed in the previous
section is aimed at predicting the relative extrusion
pressure. A MATLAB program is implemented for the
previously derived equations. All integrals that are
presented in the power terms are evaluated by
numerical integration. The average pressure required
for bimetal tube extrusion becomes a function of the
process parameters (geometric parameters of initial and
extruded bimetal tube, friction factor, semi-die die
angle and angular velocity of die) and the slippage
parameter f; associated with the velocity field.
Equation (50) is solved by a numerical integration
method. The solution is optimized with respect to the
slippage parameter. Thus, the lowest upper bound value
of the relative extrusion pressure and the semi-die angle
with the minimum pressure are obtained.

To make a comparison with the developed model,
the bimetal tube extrusion process was simulated using
the finite element code, ABAQUS. A bimetal tube
composed of aluminium as outer layer and copper as
inner layer was used. The configuration of the outer and
inner layers is shown in Fig. 2. The flow stresses for
copper and aluminium at room temperature are
obtained as [16]

o =189.26%%%

Oc, =335.26%18 (51)

008 [ 4 — -

Fig. 2 Configuration of bimetal tube before extrusion (unit:

mm)

A three-dimensional model was used for FEM
analyses. The billet model was meshed with C3D8R
elements. Punch, mandrel, container and die are
assumed as rigid bodies, since they are not meshed.
However, sufficiently fine meshing is essential in

material, which undergoes plastic deformation. The die
model is able to rotate along its axis of symmetry and
the punch model is loaded by specifying displacement
in the axial direction. Also, container model is fixed by
applying displacement constraint on its nodes. Figure
3(a) illustrates the mesh used to analyze the
deformation in extrusion of bimetal tube with
configuration shown in Fig. 2, through a conical die
with 0=20° and ®=0.5 rad/s. Deformed model of the
bimetal tube is shown in Fig. 3(b). As it is expected, the
material is twisted not only in the die but also inside the
container as mentioned in Section 2.

(b)

Fig. 3 Finite element mesh (a) and deformed mesh tube (b) in
extrusion process through rotating conical die

In Fig. 4, the relative extrusion pressures for
different angular velocities of the die, obtained from the
upper bound solution, are compared with the FEM
simulation results. The results show a good agreement
between the upper bound data and the FEM results.

This figure also shows that with increasing of the
angular velocity of the die, the relative extrusion
pressure is decreased but this reduction saturates at a
high die angular velocity.

g 1.60
2 — Upper bound
2 + FEM
=155k
2
2
5 150
2
=
S 145)

1.40 l s . :

0 0.2 0.4 0.6 0.8 1.0

Angular velocity of die/(rad-s™")
Fig. 4 Comparison of analytical relative extrusion pressures
with FEM data for different angular velocities of die at 0=20°,
my=0.4 and m:=0.2
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In Fig. 5, the relative extrusion pressures for
different semi-die angles obtained from the upper
bound solution are compared with the FEM simulation
results. The results show a good agreement between the
upper bound data and the FEM results. As is expected,
there is an optimum die angle in which the extrusion
pressure is minimized.

4.0

[¥5]
L]
T

»
=
T

— Upper bound
4+ FEM

Relative extrusion pressure
-2
Lh
T

1.0 1 1 1 L L | 1 1
0 5 10 15 20 25 30 35 40 45

Semi-die angle/(*)

Fig. 5 Comparison of analytical relative extrusion pressures
with FEM data for different semi-die angles at w=0.1 rad/s,
myg=0.4 and m=0.2

The effect of angular velocity on the relative
extrusion pressure for different values of die friction
factors is shown in Fig. 6. It is observed that the
extrusion pressure is decreased by increasing the die
angular velocity and decreasing the die friction factor,
but this reduction saturates at a high die angular
velocity. From this figure, it is seen that the relative
extrusion pressure is decreased by about 20% by the die
rotation for die friction factor 0.8.

The effect of die angle on the relative extrusion
pressure for different values of die friction factors is
shown in Fig. 7. As is expected, for a given value of die
friction factor, there is an optimal die angle, which

1.85
1.80
1.75
1.70 |\
1.65
1.60
1.55
1.50

1.45
1.40

10N pressure

Relative extrus

0 0.2 0.4 0.6 0.8 1.0
Angular velocity of die/(rad-s™")

Fig. 6 Effect of angular velocity of die on relative extrusion
pressure for different friction factor of die at m=0.2
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4.0

35

mg=0.8
m=0.6
my=0.4

my=0.2

Relative extrusion pressure
d
L
1

].0 1 1 1 1 1 L '
0 5 10 15 20 25 30 35
Semi-die angle/(°)

40 45

Fig. 7 Effect of semi-die angle on relative extrusion pressure
for different friction factor of die at w=0.1 rad/s and m~=0.2.

minimizes the extrusion pressure, and the optimum die
angle increases when friction factor of die increases.
This figure also shows that an increase in the friction
factor of die tends to increase the extrusion pressure.

The effect of angular velocity on the relative
extrusion pressure for different values of the tube
entrance speed is shown in Fig. 8. It is observed that the
extrusion pressure is decreased by decreasing the die
angular velocity and decreasing the entrance speed, but
this reduction is low at high entrance speeds.

1.65

1.60 Vp=5 mm/s

in
[

. v=0.5 mm/s
R : I|I V= } .0 mm/s
B0 8 ~---V"TO'1 mm/s

—
ia
=

{

1.45}F

Relative extrusion pressure

1.40

0 0.2 0.4 0.6 0.8 1.0
Angular velocity of die/(rad-s™")

Fig. 8 Effect of angular velocity of die on reduction of
extrusion pressure for different extruding speed at a=20°,
mg=0.4 and m~=0.2

The effect of angular velocity of the die on
twisting length of the material inside the container for
different die friction factors is shown in Fig. 9. It is
observed that for a given value of die friction factor,
twisting length of the material inside the container
decreases when the friction factor of die increases. This
figure also shows that an increase in the friction factor
of die tends to increase twisting length of the material
inside the container.
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tad
=
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Length of material
twisting inside container/mm

0 0.2 0.4 0.6 0.8 1.0
Angular velocity of die/(rad+s™")

Fig. 9 Effect of angular velocity of die on twisting length of
material inside container for different die friction factors at
0=20°, yy=1 mm/s and m=0.2

4 Conclusions

An upper bound model for analysis of the tube
extrusion process through rotating conical dies was
developed. The results showed a good agreement
between the analytical solution and FEM simulation. The
developed upper bound solution can be very beneficial in
studying the influence of multiple variables on the tube
extrusion process through rotating conical die and for a
given process parameters. It can be used for finding the
optimum semi die angle which minimizes the extrusion
pressure.
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