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Abstract: A constitutive law is offered for an AZ31B-H24 Mg alloy within a strain rate range of 10°-1072 s! at a temperature of
400 °C. The constitutive law, which is developed by curve fitting the tensile tests data, is expressed as a flow stress function of strain
and strain rate. Furthermore, the constitutive law is embedded into a proper FE model to simulate the tensile experiments for the
purpose of verifying reliability, where the incremental stress—strain relationships are calculated by an elastic-plastic theory in the
finite element analysis (FEA). The results show that the stress—strain characteristics and the final deformed shapes in the FEA agree
well with the experiments. In addition, the predicting analysis of constant-velocity stretch conditions and the verification of a free
bulge forming experiment show that the proposed FE model is practicable for mechanical analysis on superplastic forming problems.
A selective numerical method is offered for advanced superplastic analysis on AZ31 Mg alloys.
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1 Introduction

The most attractive characteristic of Mg is that it
exhibits the lightest density (1.738 g/cm®) among metal
materials, which is about a quarter of iron (7.87 g/cm’),
and two third of that of aluminum (2.7 g/em’) [1].
Components that are made of Mg alloys have better
characteristics with regard to high specific strength and
stiffness, good casting ability, machinability, and
dimensional stability, high recyclability, and superior
damping capacity [2]. These advantages make Mg and its
alloys increasingly play an important role in automotive,
aircraft, and 3C products [3—5].

Due to the intrinsic hexagonal close-packed (HCP)
crystallographic structure of Mg alloys, a limited
activation of slip planes at room temperature is available,
so they exhibit only limited ductility and accommodation
ability. This obviously limits the engineering
applications of Mg alloys. Mg alloys are much more
workable at elevated temperatures, as additional slip
systems become available [6]. AZ31 alloy is a
commercially available commonly used Mg alloy and
has been proven to have a good superplastic property at a
temperature range of 200—450 °C [7—10]. Other than

casting, the typical wrought forming processes that
utilize the superplastic characteristic of Mg alloys
encompass extrusion, rolling of sheet and plate, forging,
stamping and blowing processes [3]. Superplastic
forming (SPF) is a near-net-shape forming process that
permits parts with complex shapes to be formed in a
single formation operation, and it has precise accuracy
with regard to dimensions. Furthermore, the cost of
manufacturing a structure using SPF can be 50% less
than a structure assembled from numerous parts and
fasteners. However, SPF processes require an inefficient
amount of trial and error in regard to deciding the
temperature and pressure parameters to form a suitable
part [11]. The challenge is to obtain a systematic and
more efficient method that can develop optimum forming
parameters to reduce the formation time and maintain the
integrity of the formed part. Therefore, a number of
numerical analyses have been developed, but the finite
element method (FEM), due to its generality, has
emerged as the most potent technique for modelling SPF
processes.

A material model that can precisely characterize a
material’s behavior is a prerequisite and key challenge
for a reliable mechanical FEA. The SPF process for
AZ31 mg alloys is a deformation process which takes
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place at elevated temperatures, and the flow stress is
closely dependent on parameters related to strain, strain
rate, temperature, activation energy, the strain hardening
coefficient, and the strain rate sensitivity index. These
parameters finally reflect the trend upon a material’s
constitutive stress—stain relationship. There are two
viewpoints that are used to describe the constitutive law
of AZ31 Mg alloys at elevated temperatures. One is
based on a microstructure deformation mechanism. This
method builds up the evolution rules of parameters
which affect the constitutive law based on
mathematically modelling the texture changes in grain
size, void ratios, crystal lattice, dynamic recrystallization
and slip and twinning systems. Then, the constitutive law
is assembled with these rules. The other is based on
describing the macroscopic mechanical behavior of
deformation i.e., the flow stress curve. This method
directly establishes the evolution rules for parameters
that affect stress—strain relationships based on a
regression analysis of experimental data [12]. Among
them, the method based on the microstructure’s
viewpoint has to determine the texture change
mechanisms that affect the parameters of the constitutive
law; then, tests must be designed to quantify and develop
the evolution rules, which are finally assembled to form
the constitutive law. In this field, LIU et al [12],
ABU-FARHA and KHRAISHEH [13], ZHANG et al
[14], WALDE and RIEDEL [15], and CHOI et al [16]
built some constitutive models for AZ31 Mg alloys, and
each has an applicable range of temperature and strain
rate under either tensile or compressive conditions.
However, the involved microstructure mechanisms that
lead to material deformation may be multiple and may
also complicatedly interact with each other. Whether the
constitutive law that considers the primary texture
mechanisms is reliable or not has to be verified by
comparing the stress—strain relationships between the
building model and the experimental results. On the
other hand, the constitutive law developed based on the
macroscopic viewpoint mostly uses the uniaxial
stress—strain data of tensile or compressive tests. In this
method, tests are designed to quantify the influence of
parameters on stress—strain relationships, and then the
results are transformed into mathematical evolution rules
through regressive analyses. This method is
comparatively convenient and controllable since the
evolution rules of parameters directly feed-back their
effects on the flow stress trends. In this manner, WANG
et al [17], ZHANG et al [18], TAKUDA et al [19,20],
and NGUYEN et al [21] developed several flow stress
equations as the constitutive law of AZ31 Mg alloys, and
each also has its own applicable requirements. Among
these, Refs. [12,13,17-20] only compared the
consistency of stress—strain relationships between their

models and their experimental results; however, they
didn’t embed their models into any FE simulation to
verify their reliability. NGUYEN et al [21] used the least
squares curve fitting method to establish a constitutive
model of an AZ31B Mg alloy, but his model failed to
characterize the softening behavior of the material.

Before a constitutive law of superplastic materials
such as AZ31 Mg alloy is applied to a mechanical
simulation of manufacturing processes, it is necessary to
perform the FEA, which simulates the original uniaxial
test for the purpose of verifying reliability. In this work,
a constitutive law for an AZ31B-H24 Mg alloy was
developed through the use of curve fitting the uniaxial
tensile test data that was performed by ABU-FARHA
and KHRAISHEH [8]. The built constitutive law was
embedded in an FE model to formulate the stress—strain
relationships of the AZ31B-H24 Mg alloy. During the
FEA, the mechanical plastic flow evolution was
formulated using an elastic-plastic model, which
calculated the elastic behavior using Hooke’s law and the
subsequent work hardening behavior by combining the
associated von-Mises flow rule with the isotropic
hardening rule. The aim of this work is to develop a
reliable constitutive law of an AZ31B-H24 Mg alloy and
to construct an adequate FE model for the purpose of
verifying a specific stress—strain progress of a material.
Moreover, some additional constant-strain-rate and
constant-velocity stretching cases that were not carried
out by the uniaxial tensile experiments as well as a free
bulge forming experiment were also simulated to prove
the practicability of the proposed constitutive law.

2 Geometry of uniaxial tensile test samples

The presented FE model was verified with the
tensile test experiments conducted by ABU-FARHA et al
[8,22] on an AZ31B-H24 Mg alloy. High temperature
uniaxial tensile tests were carried out using the
INSTRON 5582 universal testing machine, which was
equipped with an electrical resistance heating chamber
(furnace) that provides a maximum temperature of 610
°C and with a 5 kN capacity load cell that was used for
load measurements. The material used in the experiments
was commercially available AZ31B-H24 Mg alloy
sheets, with a thickness of 3.22 mm and an average
initial grain size of about 5 um. The sheets were used to
prepare the tensile test samples into the shape of a dog
bone, whose middle gauge region had an approximate
cross section of 6.35 mmx3.22 mm and a length of 19.05
mm. The constant-strain-rate uniaxial tensile tests were
conducted within a forming temperature range of
325-500 °C, in 25 °C increments, where the true strain
rate varied between 2x10° and 10 s'. However, only
the datum for 400 °C, as an optimum superplastic
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formation temperature for the AZ31 Mg alloy [13], is
adopted to form the constitutive law in this study. A
constant-strain-rate test considers the total length of a
tensile sample during the test, and it controls the
stretching velocity to deform a sample under a constant
strain rate status. Hence, the stretching velocity is a
function of testing time, the sample’s initial length and
the controlled strain rate. This velocity function can be
calculated first and set up into the testing machine’s auto
control system. The stress—strain relationships of the
nine experimental constant-strain-rate tests are shown in
Fig. 1, which indicates that the ductility increases with
lower strain rates, and the corresponding final deformed
samples are depicted in Fig. 2.

True stress/MPa

.0.00002 P
0 0.5 1.0 1.5 2.0
True strain

Fig. 1 Stress—strain characteristics of tensile tests for
AZ31B-H24 magnesium alloy under various constant-strain-
rate conditions at 400 °C (Reproduced with permission from
Ref. [22]. 2007 American Institute of Physics)

Fig. 2 Photograph of ultimately deformed tensile test samples
for AZ31B-H24 magnesium alloy under various constant-
strain-rate conditions at 400 °C (Reproduced with permission
from Ref. [8]. 2007 ASM International)

3 Constitutive law

Figure 1 represents the experimental data at a
temperature of 400 °C. If the effect of temperature is not

included, the major macroscopic factors that affect the
flow stress are strain and strain rate. As shown in this
figure, the stress increased with larger strain rates at the
same strain, and the ultimate fracture strain decreased
with a larger strain rate, in which the characteristic
became more brittle; moreover, a different degree of
strain hardening or softening behavior was exhibited in
every stress—strain curve. In this work, we analyzed the
stress—strain relationships in Fig. 1 based on curve fitting
methods to develop the constitutive law, which was
expressed as a flow stress function of strain and strain
rate. The applicable range of the strain rate within the
constitutive law was varied between 10° and 10 % s and
then the developed constitutive law was verified by
following the FEA on the tensile experiments, which
were mentioned in Section 2. As a result, the developed
constitutive law of flow stress equations is expressed as
the following o-transformed polynomials:

Ino =In[(c,0)|; 1+ A&® + Ce"? (1)

where o, ¢ and & are variables of true stress, true strain
and true strain rate, respectively; In o represents the
natural logarithm of o; constant (o ,)[; denotes the
value of initial yielding stress for each corresponding
strain rate condition in Fig. 1. Parameters A(¢), B(g),
C(¢) obtained by curve fitting methods are all functions
of the strain rate and can be expressed as follows:

A(€) =ay+ a,elné +azexp(€)

=717.24-149.131n & —718.10exp(é) )
b +bé? 1.825+852942.66£7
B(é)="1—2-= > (3)
1+ by 1+162660.80&
C&) =+ +- 24 4 214,50 +120.576%° +
Ing &"
122.82 3.857x107°
T 15 (4)
Inég &

where Ing is the natural logarithm of &, and exp(¢)
denotes the exponential function to the power of & .

4 Incremental stress—strain relationships

The materials studied in this work were
AZ31B-H24 Mg alloy plates manufactured using a
rolling process, which exhibited an initial anisotropy
between the RD (rolling direction) and the TD
(transverse direction) at room temperature. However, it
has also been observed that this anisotropic characteristic
decreases constantly with rising temperature and
becomes unobservable at 250 °C [8,23]. Since the
proposed constitutive law of the AZ31B-H24 Mg alloy
would be verified by FE simulation on tensile tests at a
temperature of 400 °C in this study, we assumed the
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material to be homogeneous and isotropic for the
subsequent numerical analyses. Hence, the mechanical
theory chosen to calculate the incremental stress—strain
relationships was an elastic—plastic model, for which the
elastic behavior was formulated using Hooke’s law, and
the work hardening plastic stress—strain relationships
were calculated by combining the flow rule associated
with the von Mises quadratic yield criterion with the
isotropic hardening rule. According to the theory of
plasticity, the relative equations of the elastic—plastic
model can be derived as follows [24].

The total strain increment is decomposed into two
parts,

de; = dgij + d8§ %)

where the elastic strain increment, de;";, is related to the

stress increment; doy;, by the generalized Hooke’s law as

while Cjy is the tensor of the elastic modulus. For a
linear-elastic isotropic material, Cj can be expressed
in terms of the two elastic constants: shear modulus, G,
and Poisson ratio, v:

v
Gy =2G(646 +E 8;01) (7

The plastic strain increment, dg}/’- , can be generally
expressed by a nonassociated flow rule in the form:

og
del =d1—=- 8
Y 00 ®)

y

where d4 is a positive scalar factor of proportionality,
which is nonzero only when plastic deformations occur;
g is known as the plastic potential function. The equation
g(cr,j,gg,k) =constant defines a surface of plastic
potential in a nine-dimensional stress space. When the
yield function and the plastic potential function coincide,
f=g; the plastic flow equations can be expressed as
follows:

def = d/l@i )
ij
Equation (9) is called the associated flow rule
because the plastic flow is associated with the yield
criterion. The loading surface, which defines the
boundary of the current elastic region, is the subsequence
yield surface for an elastoplastically-deformed material
under combined states of stress, and it can generally be
written as

f(oy.80.k) = F(o;,e0)+k*(,) =0 (10)

ij’
The size of the yield surface is governed by the
hardening parameter &° expressed as a function of ps
called the effective strain. Hence, the parameter &*

depends upon the plastic strain history. The function
F (0;,-,85) defines the shape of the yield surface.
Moreover, for a work hardening material, a hardening
rule to describe the rule for the evolution of the loading
surface is necessary. Since we assumed the analyzed
material to be isotropic, we took the von Mises yield
function as the plastic potential and the isotropic
hardening rule, which expanded the initial yield surface
uniformly without distortion and translation, as the
evolution of the loading surface. When the von Mises
yield criterion is used, we obtain

F(oy.6l)=J, (11)

1

with J, expressed in the following as the invariant of the
stress deviator tensor:

J2:S,‘J‘Sij/2 (12)
Then Eq. (10) becomes

1
f(oy.€5.k) =255 —k*(5,)=0 (13)

where s; denotes the stress deviator tensor defined by
subtracting the spherical state of stress from the actual
state of stress.

SijZO'ij_O'k/(éij/:S ( 1 4)

For practical use of the work-hardening theory of
plasticity, the hardening parameters in the loading
function have to be related to the experimental uniaxial
stress—strain curve. To this end, the stress variable o,
called the effective stress, and the strain variable ¢,
called the effective strain, are introduced. Since the
effective stress should reduce to stress o; in the uniaxial
test, it follows that the loading function F(o;) can be
expressed as F(o;)=C o . For the von-Mises material,
F(o;,&))=J,, then

J, =Co? (15)

and for the uniaxial test, 6.=0, and 0,=05=0. Therefore,

n=2; C=1/3, and

O =3J5 = (358,12 (16)
To replace the hardening parameter £ with ., we

substitute Eq. (16) into Eq. (13) and rewrite it as

3

f(oy.€0.k) =SS ~0.(¢,)=0 (17)

From the definition of the associated flow rule, g=f,
the derivatives of g and f'are found as

i:a_g% (18)
oo, 0oy
of .
Then from Eq. (9) d&f =dﬂa—, where dA is a
i o,
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scalar function to be determined by the consistency
condition df=0 as

Ly . 1

di = ode, =—H, de 19
h oo 1/kl ki h kI Ckl ( )

with

h=4(3G+H,)o; (20)

where the second order tensor Hj; associated with the
yield function, f, is defined as

af
Hy = 0. Cijni
o

y
i

= 6Gskl (21)

The parameter H, is a plastic modulus associated
with the rate of expansion of the loading surface, and it
can be defined as the slope of the uniaxial stress—plastic
strain curve at the current value of o..

_do,
P de,

(22)

For the F(J;, J;) material, such as the von-Mises
material, which is pressure independent when plastic
flow occurs, the effective plastic strain increment is
defined as

de, = ,/%dggdg}; (23)

The strain history for the material is the record of
the length of the effective plastic strain path:

& = [dz, JH(U) 24)

From the above equations, when the plastic flow
occurs, the incremental stress—strain relationships can be
derived as follows:

Cy(dey, — dep)

A

— ¢ _
dO'lj = Cijkldgkl =

= C,y(dey —dA
ykl( kl aO_kl)
1 of or
=Cyy(dey — —C de,
ykl( kl h 60””’ mnst oo oy )
1 of of
=C,1 (640, — C de
tjkl( skl h 60””’ mnst P) kl) st
1 0
:(Cg‘/st__ f Cmmtc f )dgst
ho mn O-kl
1
=(Cys _ZH Hi)de,

=doy _Cykldgkl (@ Jk1+czjkl)dgkl

1
=(C ijkl H Hkl)dgkl

36G2

=(Cyrg ——— ;5w )déy (25)

C;fl =Cyy + Cjk, (26)

g

with

1 36G°
Chu = _ZHinkl =——58;8u (27)

In conclusion, the complete incremental stress—
strain relationships for an elastic—plastic work-hardening
material can be expressed as follows.

For f(O'U, s

k)=0, and —
.
material is in a plastic loading state, and we have

doy; =Cjidey . Cg is given in Eq. (25) and Eq. (26).
For  f(o;,ef,k)<0 , or f(o;é&},k)=0 ,
9

ijkldgkl < 0 5

Cyjudey >0, the

the material is in an unloading or
i
neutral loading state, and we have doy; =Cj,dey.

Cy 1s given in Eq. (7).

5 FE verification on uniaxial tensile test for
constitutive law

5.1 FE model

In order to verify the reliability of the presented
constitutive law of the AZ31B-H24 Mg alloy, numerical
analyses were carried out by means of the finite element
method in this study, whose results were verified by the
uniaxial tensile experiments performed by ABU-FARHA
and KHRAISHEH [8]. The FE
performed using a commercial FE package, ABAQUS
version 6.10. The constitutive law of Eq. (1) was
embedded into a rate-dependent metal plasticity material
model of ABAQUS, in which the elastic—plastic theory
combined with the selective isotropic hardening rule
could be included to evaluate the incremental
stress—strain relationships. The constitutive stress, strain
and strain rate data calculated from Eq. (1) could be
input into a three-column table in the rate-dependent
metal plasticity material model of ABAQUS. When the
analysis begins, ABAQUS connects the data points with
piecewise linear line segments to approximate the
nonlinear stress—strain relationships of the material. The
geometry, boundary conditions, and element distribution
of the FE model used to simulate the uniaxial tensile
tests are schematized in Fig. 3. The geometry constructed
in the FE model only includes the gauge region with a
cross section of 6.35 mmx3.22 mm and a length of 19.05
mm because it is the place used to define the stress and
strain characteristics within the sample. The analyses
were conducted with a three-dimensional FE simulation
with an advantage of being able to clearly examine the
stress and deformation conditions in the model. For the
purpose of simulating the uniaxial tensile tests, the
boundary conditions are described as follows: U,=0 is

simulation was
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6.35 mm

2
v =Lyéexp(&f)

Fig. 3 Geometry, boundary conditions, and element distribution of finite element model for simulating uniaxial tensile test

applied to the ABCD plane; U,=0 is applied to the 4B
and EF line segments; U.=0 is applied to points 4 and E.
In addition, the uniaxial constant-strain-rate stretch was
simulated using a uniform x-direction stretching velocity,
vy, on the EFGH plane. As time passed during the test,
the total length of the tensile specimen became longer
and longer; then the uniaxial stretching speed had to be
quicker and quicker for the purpose of maintaining the
strain rate with a constant value. As a result, the
stretching velocity, v,, can be expressed as the following
function of testing time, sample’s initial length and the
controlled strain rate[25]:

v, = Lyéexp(é ) (28)

where Ly=0.01905 m, is the initial length of the gauge
region; & denotes the value of the controlled strain rate;
t is the testing time.

Figure 3 also shows the mesh of the FE model, in
which there was the three-dimensional second-order
solid element, C3D20, which provided better accuracy
for describing deformation compared with the first-order
element. The ABAQUS built-in C3D20 element is a
20-node quadratic brick element, which has three
degrees of freedom per node (displacements in x, y, and z
directions). The cases studied here addressed the
problem of a homogeneous and isotropic material
experiencing uniform uniaxial velocity on its uniform
cross section. According to the theory of continuum
mechanics, the axial stresses and strains existing in
elements throughout the model should be uniform; thus,
there is no need to perform a convergent analysis on the
element number of the model. However, we observed
that the initial aspect ratio of the elements should be less
than a maximum value of 4 in order to avoid a numerical

error in the FE calculation. By arranging the number of
the elements equal to 6, 2, and 1 corresponding to the x, y,
and z directions, respectively, the initial aspect ratio of
the elements in the whole model was 1.01. The Full
Newton—Raphson iterative procedure embedded in
ABAQUS was chosen to solve the iteration process and
non-linear equations of motion in this study.

5.2 FEA results

The comparison of axial stress—strain relationships
between the experimental results and numerical analyses
is presented in Fig. 4. In this figure, the stress—strain
curves of the nine experimental constant-strain-rate
stretch cases were drawn with solid lines, where thicker
represent  the
corresponding experimental and FEA results, respectively.

and thinner lines were wused to

35

Experiment: Strain rate=0,005 5
EA: Strain rabe=0.005 5
FEA; Strain raie=0,0035 5

30 b

25k~

Experiment: Strain rate—0.0025 &

FEA: Strain rate=0.0025 5

Experiment: Strain rate=0.001 5

FEA: Strain rate=0.001 s

FEA: Strain rate=<0.0007 5

Experiment: Strain rate=0.0005 5

FEA; Sarain rate=0.0005 &

FEA: Strain rate=0.00035 s

20 i Experiment; Sarain rate=0,0002 s

FEA; Strain rute=0,0002 5

Experiment: Strain re=0.0001 5

FEA: Strain rate<0.0001 5

FEA: Strain sse=0,00007 5
Experment

True stress/MPa

m
=005 5
n Fale II_IktN)J‘\_‘ 5

0.8 1.2 1.6 2.0
True strain

Fig. 4 Comparison between FEA and experimental results for
stress—strain characteristics of AZ31B-H24 magnesium alloy

under various constant-strain-rate conditions
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On the other hand, the broken lines in Fig. 4 predict other
constant-strain-rate stretch conditions that were not
carried out by the tensile tests. This figure shows that the
FEA results were in good agreement with all nine
experimental strain rate curves (&=102-2x10" s).
Furthermore, the broken lines in Fig. 4 also show that the
presented constitutive law has the ability to reasonably
predict other stress—strain characteristics of strain rates
£=7x107, 3.5x107, 7x107*, 3.5x107*, 7107, 3.5x107°
and 1x107° s, which make up for the lack of tensile
experiments and prove that the proposed constitutive law
is suited for a deformed strain rate range of 10°—107% s,
Figure 5 depicts the original undeformed as well as the
deformed FE samples for the nine experimental constant-
strain-rate cases when each analysis approximately
reached its experimental ultimate strain state. By
comparing Fig. 5 with the corresponding experimental
results in Fig. 2, the deformed shape, length, width, and
thickness of the gauge section in the experimental
samples agree well with the results of the FE simulation.
The axial true stress contour defined by different colors
and the true strain value at different stages of
deformation in the case of £=5x10" s ' are shown in
Fig. 6, which represents the deformation stages of
analysis from the beginning until the experimental
ultimate strain state is reached. In this figure, the grade
of axial true stress contour is represented by the different
colors at the lower left corner. There are four samples in
Fig. 6, and the undeformed sample on the far right
indicates the initial condition of the analysis, in which
the stress and strain values are both equal to zero and in
which the zero stress is located at a blue color contour
range of 0—1.00 MPa. The second blue sample from the
right in Fig. 6 indicates that the analysis approximates to
the initial yielding stage with a strain value of 0.006 as
well as a stress value of 1.612 MPa, which is located at a
blue color contour range of 1.00—2.00 MPa, can be
determined by the corresponding stress—strain curves of
FEA results shown in Fig. 4. Similarly, the third red and
the fourth green samples from the right in Fig. 6 reveal
that the analysis is demonstrating the corresponding
maximum ultimate stress state (0=11.659 MPa, and
¢=1.0), and the ultimate experimental strain state
(0=7.529 MPa, and &=1.70), respectively. Since the
deformation histories of other constant-strain-rate FE
analyses are similar to those depicted in Fig. 6, we only
use them for the emblematic presentation. Figure 6
reveals that the axial stresses and strains are uniformly
distributed in the model at every deformation stage. The
reason for this was mentioned in Section 5.1 in which we
described the problem type analyzed in the FEM as a
uniform uniaxial velocity acting on a uniform cross
section of a homogeneous and isotropic material. Hence,

the studied samples became uniformly longer and thinner
until the analysis approximately reached the
experimental ultimate fracture strain state. These results
satisfy the need for good agreement with the complete
stress—strain characteristics between the FEA and the
experiments. Hence, the presented constitutive law and
the FE model are confirmed to be adequate for
simulating the uniaxial tensile tests.

B Undeformed
E— =] *x 1072 57!
E— =5 % 1073 57!
e ——  =2.5 % 107 5
S — =] % 107 5!
E— ¢ =5 % 107 57!

£=2x10"g"!

nnanas e=1x104g"

£=5x107g"

§=2x 105 57!

Fig. 5 Original undeformed as well as deformed FE samples for
nine experimental constant-strain-rate cases when each analysis
approximately reached its experimental ultimate strain state

a1mc:{)

¢ H‘I.ln.':

Ouuc=1.612 MPa

Stress/Pa
(Avg: 75%)

I

oo

Bl Py LAV CH = MEN P et teb bt

IIIIIIIIZI===

Fig. 6 Stress and strain history of FEA at different stages of
deformation in the case of strain rate equal to 5x10°°

6 FE simulation on constant-velocity stretch
cases and bulge forming experiment

In addition, for the purpose of verifying the
adaptability of the constitutive law on time dependent
strain rate problems, some predicting simulations were
performed here on the uniaxial constant-velocity stretch
condition, which is often seen in uniaxial tensile tests.
Due to the fact that the total length of the tensile
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specimens became longer and longer, the strain rate
value gradually decreased during the constant-velocity
stretch process. In order to simulate this problem, the
uniform x-direction stretching velocity, v,, on the EFGH
plane in Fig. 3 had to be set with a constant value. There
were five constant velocity values (vx=2X1074, 11074,
5%x107°, 2x107°, and 1x10° m/s) chosen for the
predicting analyses, and the corresponding FEA results
for the stress—strain curves are shown in Fig. 7, which
shows that all five constant-velocity stress—strain curves
crossed the experimental constant-strain-rate curves.
When the constant-velocity analysis began, the strain
increased with a gradually decreased value of strain rate,
and this phenomenon can also be observed from the
intersecting trend between the constant-velocity curves
and the constant-strain-rate curves in Fig. 7. These
results show that the presented constitutive law is
adaptable for mechanical analysis on time-dependent
strain rate problems for AZ31 mg alloys.
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Fig. 7 Comparison between FEA of constant-velocity
conditions and experimental results of constant-strain-rate

conditions for uniaxial stress—strain characteristics

Furthermore, the FE simulation on the free bulge
forming experiment, which was conducted by
ABU-FARHA et al [26] using the same AZ31B-H24 Mg
alloy mentioned in Section 2, was also performed here to
assess the practicability of the proposed constitutive law.
A schematic diagram of the studied geometry is shown in
Fig. 8, where p is the applied argon gas pressure with an
electronically controlled pressure—time profile plotted in
Fig. 9. The radius of an open die, which is used to allow
for the free forming of a circular sheet into a
hemispherical dome, is 31.75 mm. The thickness of the
sheet is 1 mm. After the sheet was clamped onto the die,
the whole setup was heated to 400 °C, followed by
30 min of holding time to allow for thermal equilibrium,

Forming pressure P

Thickness

Deformed ;heet

Fig. 8 Schematic diagram of free bulge forming of circular
sheet into hemisphere (Modified from ABU-FARHA et al [26])
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100
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Fig. 9 Pressure—time profile for free bulge forming experiment
(Modified from ABU-FARHA et al [26])

before the pre-selected pressure scheme was applied. The
experimental bulge heights were 29.5 and 31.5 mm at the
corresponding forming time equal to 1805 and 1888 s,
respectively. The geometry and boundary conditions
constructed in the FE model for simulating this bulge
forming experiment are schematized in Fig. 10. This case
exhibits biaxial mechanical symmetry, so only a quarter
of a circle plate had to be analyzed in the FE model. The
radius of the forming quadrant ABC was 31.75 mm,
where the (gas) pressure loading with a pressure—time
profile plotted in Fig. 9 was applied to the ABC plane.
The boundary conditions are described as follows:
x-direction and y-direction symmetry conditions were

Fixed

x-symmetric z
y-symmetric x4
Fig. 10 Geometry and boundary conditions of FE model for

simulating bulge forming experiment
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applied to the corresponding ADIF and AEJF plane,
respectively; a fixed constraint was applied to the GHJI
plane to simulate the clamped circumference. Figure 11
shows the mesh of the FE model, in which there were
1152 three-dimensional  second-order tetrahedral
elements, C3D10M. The ABAQUS built-in C3D10M
element is a 10-node quadratic tetrahedral element,
which has three degrees of freedom per node
(displacements in x, y, and z directions). Since this
analytic model also exhibits mechanical symmetry, the
mesh was arranged to be symmetric to the central line of
the whole quadrant. The ABAQUS/Explicit solver was
chosen to integrate the equations of motion for this
non-linear dynamic problem. The deformation history of
FEA results are presented in Fig. 12 through the mirror
function embedded in ABAQUS to display the
symmetric deformation with respect to the ADIF and
AEJF plane, so the entire hemispheric deformation can
be shown for this biaxial symmetric FEA model. In
addition, the experimental bulge deformation at 1805 s is
also put in Fig. 12 for comparison. The bulge heights of
FEA at 1805 and 1888 s were 29.22 and 31.54 mm,
respectively, for which the corresponding errors were
only 0.95% and 0.01% compared with the experimental
results (29.5 and 31.5 mm). These results show that
the presented constitutive law and FE model have good

z g
xL?
Fig. 11 Element distribution of FE model for simulating bulge

forming experiment

(a)

FEA: =0 s

Experiment: =1805 s

FEA: =1000 s

FEA: =1805s

practicability for mechanical analysis on superplastic
forming problems for AZ31 mg alloys.

7 Conclusions

The stress—strain relationships were analyzed based
on curve fitting methods to develop a constitutive law,
which was expressed as a flow stress function of strain
and strain rate, for an AZ31B-H24 Mg alloy. The
experimental stress—strain relationships were performed
using the constant-strain-rate uniaxial tensile tests within
a strain rate range of 2x10°~107> s ' at a temperature of
400 °C. The presented constitutive law was embedded
into an FE model that simulated the tensile tests for the
purpose of verifying reliability. The analyzed
AZ31B-H24 Mg alloy at 400 °C was assumed to be
homogeneous and isotropic for the FE simulation, so the
incremental stress—strain relationships were formulated
using a 3D elastic-plastic model, which simulated the
elastic response using Hooke’s law and the work
hardening response using the flow rule associated with
the von-Mises yield criterion combined with the isotropic
hardening rule. The results showed the stress—strain
relationships of the nine experimental constant-strain-
rate stretch cases agree well with the FEA data, and the
deformed shape, width, and thickness of the FEA also
agreed well with the tensile test samples. These
verifications confirm the reliability of the presented
constitutive law and FE model, which can be used to
analyze the mechanical behavior of AZ31B-H24 Mg
alloy. Moreover, some constant-strain-rate cases which
were not carried out by the tensile tests were also
analyzed for supplements, where the results represented
good reasonability and further expanded the applicable
strain rate range of 10°—1072 s~' for the proposed

(c)

FEA: =1500 s

FEA: =1888 s

Fig. 12 Bulge forming deformation history of FEA as well as experimental result at 1805 s
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constitutive law. Finally, five uniaxial constant-velocity
stretch cases and a free bulge forming experiment were
simulated, and the results also showed good
practicability for the proposed FE model. This work
offers a selective numerical method for advanced
mechanical superplastic analysis on AZ31 Mg alloys.
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