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Abstract: An empirical test on long memory between price and trading volume of China metals futures market was given with 
MF-DCCA method. The empirical results show that long memory feature with a certain period exists in price−volume correlation 
and a further proof was given by analyzing the source of multifractal feature. The empirical results suggest that it is of important 
practical significance to bring the fractal market theory and other nonlinear theory into the analysis and explanation of the behavior in 
metal futures market. 
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1 Introduction 
 

Price and trading volume have always been the 
important indexes for the evaluation of futures markets. 
The changes of prices have reflected the market’s 
response to new information, while trading volume has 
manifested the different recognition over new 
information of investors. A large number of theories and 
empirical studies have shown that price−volume 
correlation plays a critical role in helping people to 
understand the fluctuations of the market and it is helpful 
for the in-depth understanding of the price transmission 
mechanism of the market. Therefore, this has always 
been a hot topic in the financial field. 

Currently, research of price−volume relationship 
mainly covers features such as positive relationship, 
linear and nonlinear relationship, short-term and 
long-term correlation. Study on long-term correlation 
(namely long memory) in price-volume relation is 
complicated, in which series is nonstationary and 
nonlinear. Present research examines long memory in 
time series by studying variables relative to price and 

volume respectively through statistical analysis [1−3]. 
Recent years, with the development of fractal theory, 
autoregressive fractionally integrated moving average 
(ARFIMA) model, rescaled range (R/S) analysis, 
modified R/S approach and multifractal detrended 
fluctuation analysis (MFDFA) approach are newly used 
in researching long memory of time series. PANAS [4] 
applied ARFIMA model, R/S approach, modified R/S 
approach to investigate the price behavior of six base 
metals in the London Metal Exchange and empirical 
results in the case of aluminum support the long memory 
hypothesis. ALVAREZ et al [5] and SERLETIS [6] 
provided empirical evidence of long memory in crude oil 
prices with persistent structure by means of R/S 
approach. TABAK et al [7] found that the oil price 
volatilities were significantly long range correlated 
although the degree of correlations seemed to be weaker 
and weaker using R/S approach. POWER and TURVEY 
[8] investigated the nature of long memory in the 
volatility of 14 energy and agricultural commodity 
futures price series using an improved Hurst estimator. 
The results showed the evidence of long memory for all 
14 commodities and of a non-stationary Hurst coefficient  

                       
Foundation item: Project (13&ZD024) supported by the Major Program of the National Social Science Fund of China; Project (71073177) supported by the 

National Natural Science Foundation of China; Project (CX2012B107) supported by the Graduate Student Innovation Project of Hunan 
Province, China; Project (13YJAZH149) supported by the Social Science Fund of Ministry of Education of China; Project (2011ZK2043) 
supported by the Key Program of the Soft Science Research Project of Hunan Province, China; Project (12JJ4077) supported by Natural 
Science Foundation of Hunan Province of China 

Corresponding author: Yao-qi GUO; Tel: +86-13787798224; E-mail: guoyaoqi912@qq.com 
DOI: 10.1016/S1003-6326(13)62845-9 



Hui CHENG, et al/Trans. Nonferrous Met. Soc. China 23(2013) 3145−3152 

 

3146 

estimator for 9 of 14 commodities. WANG et al [9] 
investigated the long memory of WTI crude oil volatility 
series employing MFDFA, and found that for small time 
scales, the auto-correlations of volatilities are 
multifractal while for large time scales, the 
auto-correlations are nearly monofractal. JIA et al [10] 
examined the multifractal properties of the realized 
volatility (RV) and realized bipower variation (RBV) 
series in the Shanghai Stock Exchange Composite Index 
(SSECI). They indicated that the long term correlation 
was sensitive to the sampling frequency. QIU et al [11] 
introduced an instantaneous and an average 
instantaneous cross-correlation function to detect the 
temporal cross-correlations between individual stocks 
based on the daily data of the United States and the 
Chinese stock markets. Empirical results showed that 
long memory was observed for the average instantaneous 
cross-correlations, and persisted up to a month 
magnitude of timescale for the United States stock 
market and half a month magnitude of timescale for the 
Chinese stock market. FLEMING and KIRBY [12] used 
fractionally-integrated time-series models to investigate 
the joint dynamics of equity trading volume and 
volatility. Their results indicated that volume and 
volatility both display long memory, and a strong 
correlation between the innovations to volume and 
volatility, which suggested that trading volume can be 
used to obtain more precise estimates of daily volatility 
for cases in which high-frequency returns were 
unavailable. 

Summarizing a variety of papers, there is 
considerable evidence suggesting that price and trading 
volume may possess long memory feature. However, 
studies in the current literature fail to realize that many 
characteristic variables of financial markets, such as 
price and volume, are actually spatially and/or 
temporally correlated, so that they merely discussed 
these variables individually instead of incorporating 
them simultaneously and analyzing their cross-correlated 
relationship. Therefore, the results from the previous 
researches may be biased for their ignorance of the 
complex cross-correlations between those highly 
interacted and correlated variables. Only a few 
researches considered and analyzed multifractal features 
of price−volume correlation simultaneously. HE and 
CHEN [13] applied a new methodology called 
multifractal detrended cross-correlation analysis 
(MF-DCCA) to perform an empirical study and found 
that power-law cross-correlation and multifractal features 
of price−volume correlations are significant in 
agricultural commodity futures markets. YUAN et al [14] 
also found that both Shanghai stock market and 
Shenzhen stock market showed pronounced long-range 
cross-correlations between stock price and trading 

volume by applying MF-DCCA. So, in this work 
previous results were extended by analyzing long 
memory of price−volume correlation simultaneously in 
metal futures market within the MF-DCCA 
methodological framework and a further proof was given 
by analyzing the source of multi-fractal feature.  
Empirical results will help us to further understand and 
explain the nonlinear relationship and potential dynamics 
mechanism between price and volume in China metal 
futures market. 

 
2 Methodology 
 

By combining multifractal detrended fluctuation 
analysis (MF-DFA) and DCCA approach, MF-DCCA is 
a technique employed in statistical physics to detect 
multifractal features of two cross-correlated 
nonstationary time series [15−17]. Let us briefly 
introduce the MF-DCCA method. 

Suppose that there are two time series x(i) and y(i), 
i=1, 2, …, L, where L is the length of series. Then the 
‘profile’ is determined: 
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Each profile is divided into m=int(L/s) 

non-overlapping segments of equal length s. Since the 
length L of the series is often not a multiple of the given 
time scale s, a short part at the end of the profile may 
remain unused. In order not to disregard this part of the 
series, the same procedure is repeated starting from the 
opposite end. Thereby, 2m segments are obtained 
altogether. And then for each of the 2m segments, the 
local trends are estimated by means of the kth order 
polynomial fit. 

Then the detrended covariance is given by 
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where ( )vX k%  and ( )vY k%  are the fitting polynomials 
for each segment v (v=1, 2, …, 2m). And then the qth 
order is defined as 
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When q=0, the limit of Eq. (3) can be given by 
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If the power-law cross-correlations do exist, the 

scaling or power-law relationship should be satisfied  
( )( ) ~ xyh q

qF s s                                (5) 
 
The cross-correlation exponent hxy(q) in Eq. (5) can 
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describe the power-law relationship between two 
spatially or temporally correlated time series. Especially, 
if the time series x is identical to y, MF-DCCA is 
equivalent to MF-DFA; and if q=2, the cross-correlation 
exponent hxy(q) is equivalent to the well-known 
generalized Hurst exponent. 

According to SHADKHOO and JAFARI [18], a 
similar relationship between classical multifractal scaling 
exponents τxy(q) and q can be given by 

 
( ) ( ) 1xy xyq qh qτ = −                            (6) 

 
If τxy(q) is linear with q, the cross-correlation of the 

correlated series is monofractal; otherwise, it is 
multifractal. By means of a Legendre transformation, we 
can obtain the multifractal spectrum and following 
relationship: 

 
( ) ( )xy xyh q qh qα ′= +                          (7) 

( ) ( ( )) 1xy xyf q h qα α= − +                       (8) 

 
3 Empirical analyses 
 
3.1 Data 

We apply MF-DCCA to investigating the long 
memory feature of price−volume correlation in China 
metal futures markets. The data chosen are daily closing 
prices and trading volumes of Shanghai Futures 
Exchange (SHFE) in China. That is, data about SHFE 
copper and aluminum are from 15 September, 1993 to 4 
July, 2011 and from 5 October, to 4 July, 2011. The total 
numbers of the data span L=4203 and 3055, respectively. 
 
3.2 Empirical analyses 

This paper gives an empirical analysis of nonlinear 
dependency and long-memory feature of price−volume 
correlation in SHFE copper and aluminum metal futures 
markets. According to Eqs. (1)−(8), numeric area of 
scale s is from 10 to L/4 (L represents length of time 
series), while the order of the local regression fitted 
equation is set at 1. 

Figure 1 shows cross-correlation exponent hxy(q) of 
the price−volume correlation for SHFE copper and 
aluminum. According to Fig. 1, one can clearly observe 
that cross-correlation exponent hxy(q) varies with 
different values of q, which means that different power 
law correlations do exist between price and trading 
volume for SHFE copper and aluminum and 
cross-correlation exponents hxy(q) are dependent on q 
deeply. This also means that price−volume correlation is 
multifractal. When q changes from −10 to 10, 
cross-correlation exponents hxy(q) decrease progressively 
from 1.3215 to 0.8192 for SHFE copper and from 1.2908 
to 0.5953 for SHFE aluminium. Both cross-correlation 
exponents hxy(q) differ from a constant significantly, 

which is another piece of empirical evidence that 
nonlinear dependency and multifractality exist in 
price−volume correlation for both two metals in SHFE, 
and it is inappropriate to describe metal futures markets 
with monofractal model. When q=2, cross-correlation 
exponent hxy(q) is the well-known Hurst exponent. We 
can know from Fig. 1, when q=2, cross-correlation 
exponent hxy(q)=0.9376>0.5 for SHFE copper and 
0.7900>0.5 for SHFE aluminum. This means that long 
memory and persistent properties exist in price−volume 
relationship for SHFE copper and aluminum. 
 

 
Fig. 1 Cross-correlation exponents hxy(q) in price−volume 
correlation of SHFE copper and aluminum 
 

Financial time series usually contain some trends 
brought about by economic growth or inflation, thus 
spurious correlation does exist when impacted by 
external trends. Therefore, in order to analyze the long 
memory features of price−volume correlation more 
accurately and distinguish between external trends and 
inherent long-term trend, a lg—lg plot of the q-order 
correlation coefficient function Fq(s) vs scale size s for 
the selected two metals (denary logarithm), which has 
eliminated the trends brought about by 1-order, 2-order 
and 3-order of the price-volume series for SHFE copper 
and aluminum, was worked out and shown in Figs. 2 and 
3. If we consider positive values of q, the segments v 
with large variance Fv(s) (i.e. large deviations from the 
corresponding fit) will dominate the average Fq(s) in 
Eq.(3). Thus, for positive values of q, hxy(q) describes the 
scaling behavior of the segments with large fluctuations. 
For negative values of q, the segments v with small 
variance Fv(s) will dominate the average Fq(s). Hence, 
for negative values of q, hxy(q) describes the scaling 
behavior of the segments with small fluctuations. 

According to Fig. 2, a nonlinear relation does exist 
between price−volume correlation coefficient function 
Fq(s) and the sale size s when q varies from −10 to 10. 
Besides, all the figures show that when q>0 and 1<lg s<2 
or lg s>2.6, the figures mainly feature dispersing, 
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Fig. 2 lg—lg plot of Fq(s) vs scale size s of SHFE copper after 1,2,3-order detrend: (a) 1-order; (b) 2-order; (c) 3-order 
 
shaking, and nonlinear features, but when 2<lg s<2.6, the 
figure is relatively concentrated and displays significant 
linear features. Therefore, the small fluctuation 
components in the series possess scale invariance feature 
when 2<lg s<2.6; when q<0 and 1<lg s<2.2 or lg s>2.7, 
the figures mainly show strange oscillations and deviates 
from the initial scaling behavior, but when 2.2<lg s<2.7, 
the figure is relatively concentrated and displays 
significant linear features, which proves the fact that the 
large fluctuations components in the series possess scale 
invariance feature when 2.2<lg s<2.7. Therefore, when 

2.2<lg s<2.6, ie, between 158 and 400 d, the price− 
volume correlation of SHFE copper possesses long 
memory and persistent properties and the long memory 
will almost completely disappear after 501 d. 

Similar to that of SHFE cooper, a nonlinear relation 
does exist between price−volume correlation coefficient 
function Fq(s) and the sale s when q varies from −10 to 
10. When q>0 and 2<lg s<2.5, the small fluctuation 
components in the series possess scale invariance feature; 
when q<0 and 2<lg s<2.8, the large fluctuation compo- 
nents in the series possess scale invariance feature. 
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Fig. 3 lg—lg plot of Fq(s) vs scale size s of SHFE aluminum after 1,2,3-order detrend: (a) 1-order; (b) 2-order; (c) 3-order 
 
Therefore, when 2<lg s<2.5, i.e., between 100 and 316 d, 
the price−volume correlation of SHFE aluminum 
displays long memory and persistent properties but tends 
to lose its memory after a period of about 316 d. 
 
3.3 Further analyses 

In the current literature, two major sources of 
multifractality are widely acknowledged, which can be 
found in various time series. One is the long-range 
correlation for small and large fluctuations, and the other 
is the non-Gaussian probability distribution of 
increments [19,20]. Therefore, the long memory of the 
series can be further proved by figuring out the resources 

of the multifractal features of the series. Usually, two 
procedures can be applied to identifying the 
contributions of two sources, which are shuffling and 
phase randomization. In order to investigate the 
dynamical causes of multifractality in the markets, both 
of the two methods are used. The shuffling procedure 
will destroy any long-range correlations, but the 
distributions remain exactly the same; while the 
surrogate data created by phase randomization will 
weaken the non-Gaussian distribution but still preserve 
the linear properties of the time series. If the 
multifractality derives from non-Gaussian distribution, 
the cross-correlation exponent hxy(q) obtained by the 
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surrogate data should be a constant of 0.5; if the temporal 
correlation is the only reason for the multifractal  
features, after the series is shuffled, hxy(q) should be 
independent of q; nevertheless, if both of the two sources 
are the reasons, the multifractality should remain but its 
strength should be weaker. 

For Shanghai copper futures market, from the 
results of the shuffled and surrogate cases in Fig. 4 and 
Table 1, it can be found that compared with original 
series, the variation amplitudes of cross-correlation 
exponents hxy(q) are successfully weakened by means of 
shuffled and surrogate procedure, which decrease 
progressively from 0.7196 to 0.4801 for surrogate series 
and from 1.2475 to 0.8092 for shuffled series, the 
differences change from 0.5023 to 0.2395 and 0.4383. 
This means long-range correlation and non-Gaussian 
probability distribution of the data are the possible main 
explanation to market multifractality formation in 
Shanghai copper futures market. Another piece of 
evidence is the alteration of multifractal spectrum. 
Compared with surrogate case, the spectrum width 
becomes significantly narrower after shuffled procedure. 

The shuffling procedure has destroyed long memory in 
the series, but the distribution remains exactly the same, 
so we can believe that the main sources about 
multifractality existing in price−volume correlation is 
long memory, that is, it can be proved that there exists 
long memory feature in the price−volume correlation of 
SHFE copper. 

Table 1 and Fig. 5 show that, compared with the 
original series, the variation amplitudes of cross- 
correlation exponents hxy(q) of SHFE aluminum are 
successfully weakened by the means of shuffled and 
surrogate procedure, which is similar to the case of 
SHFE copper. The width of the multifractal spectra is 
also significantly narrowed down, which proves that the 
multifractal features of the shuffled and surrogated series 
have significantly been weakened. This proves the fact 
that the fat-tailed distributions and long memory are the 
sources of the existence of multifractal features in the 
price−volume correlation of SHFE aluminum. That is, it 
can also be proved that there exists the long memory 
feature in the price−volume correlation of SHFE 
aluminum. 

 

 
Fig. 4 Multifractal features of original, shuffled and phase-randomization cases of SHFE copper 
 
Table 1 Cross-correlation exponent hxy(q) for original, shuffled and phase-randomization cases 

SHFE copper SHFE aluminum 
Order q 

Original Shuffled Surrogate Original Shuffled Surrogate 

−10 1.3215 0.7196 1.2475 1.2908 0.7394 1.2319 
−8 1.2975 0.7053 1.2301 1.2693 0.7166 1.2100 
−6 1.2592 0.6856 1.2052 1.2362 0.6845 1.1769 
−4 1.1894 0.6573 1.1696 1.1816 0.6405 1.1233 
−2 1.0524 0.6163 1.1246 1.0986 0.5889 1.0309 
0 0.9372 0.5743 1.0311 0.9722 0.5405 0.9331 
2 0.9376 0.5451 0.9201 0.7900 0.5009 0.9029 
4 0.8958 0.5232 0.8757 0.7064 0.4691 0.8705 
6 0.8614 0.5056 0.8465 0.6559 0.4439 0.8475 
8 0.8370 0.4914 0.8251 0.6231 0.4242 0.8315 

10 0.8192 0.4801 0.8092 0.6009 0.4089 0.8198 
Difference 0.5023 0.2395 0.4383 0.6899 0.3305 0.4121  
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Fig. 5 Multifractal features of original, shuffled and phase- 
randomization cases of SHFE aluminum 
 
4 Discussion 
 

Firstly, as shown in the empirical analysis, 
multifractal features can be clearly found in China metal 
futures markets by MF-DCCA approach. The results 
imply that China metal futures market is not a so-called 
‘efficient market’, efficient market hypothesis (EMH), 
which is a foundation for economists to research and 
analyze the market phenomena and behaviors, and 
cannot be used to explain and analyze the economic 
phenomena perfectly and deeply. In June 2011, United 
Nations Conference on Trade and Development also 
explicitly pointed out that EMH had been suitable for 
analyzing commodities futures markets, such as oil or 
metal futures markets. Therefore, it is of important 
theoretical and practical significance to bring the fractal 
market theory and other nonlinear theory into the 
analysis and explanation of the behavior in metal futures 
market. 

Secondly, there is an obvious nonlinear dependency 
relationship in price−volume correlation in China metal 
futures market, so a researcher or a technical analyst 
should complement his/her understandings on market 
dynamics by obtaining more comprehensive knowledge 

from the integrated point of view rather than from 
separated price or volume variable. The results, which 
studied on only one variable without a simultaneous 
discussion of another variable, may be biased for their 
ignorance of the complex cross-correlations between 
those highly interacted and correlated variables [21]. 

Thirdly, when q=2, both of the two Hurst exponents 
are greater than 0.5. This also means that long range 
correlation and persistent properties exist in price− 
volume correlation for both two metals. Furthermore, we 
confirm that long range correlation and non-Gaussian 
probability distribution are the main sources of the 
existence of multifractal features of price−volume 
relationship in China metal futures market. So, this 
suggests that the presence models, based on the 
assumption ‘independent identically distributed’, must 
eliminate long memory effect from original series, if 
time span is longer than the length of memory. 
Otherwise, models may not come to rational results. On 
the other hand, the presence of long range correlation 
also means that the effects of events and information 
may not die out quickly, but have a long term effect on 
futures markets. Thereby, under some time span, we can 
predict price volatility and market behavior based on the 
more historical information. 
 
5 Conclusions 

 
The long memory feature of price−volume 

correlations in China metal futures market was 
empirically tested by applying MF-DCCA approach. 
Empirical results show that long memory feature with a 
certain period exists in price− volume correlation, which 
suggests that it is significance to bring the fractal market 
theory and other nonlinear theory into the analysis and 
explanation of the behavior in the theory and practice. 
And we should understand the market behavior by a 
simultaneous discussion of both two variables, price and 
trade volume in metal futures market. 
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摘  要：采用 MF-DCCA 方法，对我国金属期货市场量价相关性的多重分形特征和长记忆性特征进行实证检验。

结果表明我国金属期货量价关系存在着具有一定时间期限的长记忆性特征。通过分析量价相关性存在多重分形特

征的原因，进一步证明我国金属期货市场量价相关性存在长记忆特征。多重分形特征和长记忆性的存在意味着将

分形市场理论以及其它的非线性理论和方法引入到对我国金属期货市场行为的分析，具有重要的现实意义。 

关键词：金属期货；量价相关性；长记忆性；MF-DCCA 方法；多重分形；分形特征；多重分形谱 
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