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Abstract: The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA·h) were presented. The 
lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can 
be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a 
range of alternating current impedance testing. The cycle life model with high precision (>99%) is beneficial to shortening the 
prediction time and cutting the prediction cost. 
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1 Introduction 
 

The leaping development of electric vehicles in the 
near future will promote large-scale production of 
lithium ion batteries (LIBs) [1,2]. LIBs retired from 
electric vehicles are widely reused for their residual 
capacities as high as 80% of the designed capacities. A 
reasonable way to predict the residual life of the retired 
batteries is beneficial to classifying the batteries, 
realizing cascade utilization and reducing environment 
pollution [3]. 

Presently, the physical performance of LIBs has 
been thoroughly studied, but there are scarcely any 
reports about the prediction of their residual life. Most 
researchers have started with life modeling from 
analyzing the physical properties and validated its 
precision by entire life test [4−7]. THOMAS et al [8] 
presented a degradation model that focused on the 
degradation rate rather than the accumulated degradation. 
ZHANG and WHITE [9] used a physics-based single 
particle model to simulate the cycle life of the LIBs. 
They have divided the capacity loss into three stages: the 
formation of solid-state electrolyte film, the loss of active 
cathode material and the intercalation of the cathode. 
Therefore, the limiting factors have been determined 

before simulation based on this theoretical principle 
[10,11]. However, the battery often suffers time-varying 
capacity in real-time running, leading to the 
inconsistency of the different batteries [12]. For example, 
the environment temperature and charging/discharging 
regulations occasionally alter [13,14]. After the monomer 
battery is retired, it is a more complicated process to 
obtain battery life. In order to make the best use of the 
residual capacity, it is necessary to design an optimal 
degradation track for the battery. This is also a 
meaningful study on the longevity and the cycle life 
prediction of the batteries. 

Electrochemical impedance spectroscopy (EIS) is 
one of the most effective methods to investigate LIBs 
without destruction of the battery. It is always used to 
study the electrodes in a relatively wide frequency 
domain. The fast speed of sub-processes appears in the 
high frequency area, while the slower speed appears in 
the low frequency area. Thus, the dynamic characteristics 
would be discussed separately according to each 
sub-process. The equivalent circuit and its parameters are 
introduced to express the structure of LIB’s resistance. In 
order to verify the validity of the model, the variation 
tendency of the resistance in different states was 
investigated [15−17]. 

In this work, the entire life model for the batteries 
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was obtained and verified by the charging/discharging 
test, rate-capability test and cycle life test. Backward 
induction was applied in pursuit of the reasons that 
generated the model function. Then, the electrochemical 
impedance spectroscopy was introduced to build the 
relations between the capacity fading and resistance so as 
to verify the validation of the model. 
 
2 Experimental 
 
2.1 Charging/discharging test 

The fabricated 1.15 A·h class 18650-type cylindrical 
cells were used to measure the charge/discharge curves 
during cycling. The active materials of the cells were 
LiFePO4 for the positive electrode coated on aluminum 
foil and hard carbon for negative electrode coated on 
copper foil. 1 mol/L LiPF6 in solvent of ethylene 
carbonate (EC)/ diethyl carbonate (DMC)/ethyl methyl 
carbonate (EMC) (1:1:1, in volume) was used as 
electrolyte. The electrochemical experiments were 
performed between the lower cut-off potential of 2.0 V 
and the upper cut-off potential of 3.85 V using a LAND 
testing (CT2001C, Wuhan Jinluo Electron Co., Ltd., 
China). All of the six batteries were charged at rate of 1C 
and every two batteries were tested under the same 
discharge rate (5C, 10C or 15C). The scheme of the life 
cycle test of LIBs was shown as the following four 
patterns: 

1) After keeping static state for 10 min, the battery 
was charged at 1C until the voltage is up to 3.85 V, then 
it was charged at this potential until the current dropped 
to 0.057 mA; 

2) The battery reached static state after 10 min and 
underwent discharging test at 5C, 10C or 15C to 2.0 V, 
respectively; 

3) The procedures above were repeated until the 
discharge number（that is cycle number）at 5C is up to 
600 cycles, 10C to 80% of the designed capacity, 15C to 
80% of the designed capacity; 

4) The data were recorded and analyzed by 
computer. The two batteries tested at 5C were marked as 
1-5C-1 and 1-5C-2. For comparison, the two batteries 
tested at 10C and 15C were marked as 1-10C-1, 1-10C-2, 
1-15C-1 and 1-15C-2, respectively. 
 
2.2 Electrochemical impedance spectroscopy test 

A new retired battery was charged at 1C and 
discharged at 5C until the discharge number is up to 600 
cycles. The electrochemical impedance spectroscopy 
(EIS) test was proceeded when the battery was tested 
every 40 or 50 cycles The frequency range of the EIS test 
was from 100 kHz to 10 mHz and the electrochemical 

multi-channel test system (Solartron 1470E, Sdartron 
Mettology Co., Ltd., USA) was chosen for this test. 
 
3 Results and discussion 
 
3.1 Cycle life degradation simulation 

Figure 1 presents the curves of the original capacity 
fading and the corresponding simulation models at 
different discharge rates of 5C, 10C and 15C. As time 
proceeds, the rate of capacity loss changes. The capacity 
loss during cycle test exhibits the irreversible component. 
That is, the capacity loss cannot be recovered through 
charging the battery. For this reason, the shape of the 
capacity retention versus cycle number is similar to that 
of the discharge capacity versus cycle number. It can be 
seen that the original discharge curves of the six batteries 
keep a similar pattern. The three-stage pattern about 
capacity retention is clearly seen in Fig. 1(a). The 
discharge capacity rises in the initial stage for the 
positive and negative electrodes are not completely 
activated. The discharge capacity decreases with the 
cycle number increasing, indicating that the irreversible 
expansion occurs at the positive electrode and the severe 
oxidation occurs at the negative electrode. The speed of 
the capacity fading is initially low in the second stage, 
 

  
Fig. 1 Original capacity fading curves (a) and corresponding 
simulation models (b) at different discharge rates of 5C, 10C 
and 15C 
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but deteriorates quickly after a few hundreds of cycles in 
the third stage. It must be noted that the actual capacity 
output declines gradually and the speed of capacity 
attenuation becomes quick with the increase of discharge 
rate (from 5C to 15C). It is because some electro- 
chemical reactions cannot occur at higher discharge rates, 
leading to the decrease of discharge capacity. However, 
there is no significant difference in discharge capacity for 
the two cells tested under the same discharge rates. 
Therefore, it is necessary to take the average operation to 
build the relationship between the capacity retention and 
the cycle number. The relationship is shown in Fig. 1(a). 
The average discharge capacity and simulated discharge 
capacity as a function of cycle number are shown in Fig. 
1(b). The battery model acceptably replicates the 
performance of the real battery with a reasonable degree 
of accuracy at high discharge rates (15C). However, the 
battery model becomes less accurate at lower rates of 
discharge (5C, 10C), possibly because of the side 
reactions which occur at low rates and change the 
discharge capacity. 

The capacities of the LIBs above emerge some 
degree of attenuation over a period of store or use. So it 
is necessary to design an optimal degradation track 
before use. The reliability assessment of the lithium-ion 
battery is realized based on the prediction track without 
actual testing data. Figure 2 shows the curves of the 
entire life prediction of the batteries. The degradation 
tracks can be fitted by the second Gaussian function. 
Equation (1) with different parameters (Table 1) is used 
to show the numerical relationships between the capacity 
 

 
Fig. 2 Cycle life prediction of capacity fading at different 
discharge rates of 5C, 10C and 15C 

retention and the cycle number, and characterize the 
capacity degradation model of LIBs under different 
discharge conditions. 
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   (1) 

 
where CN represents the discharge capacity in the N 
cycles; a1, b1, c1, a2, b2, c2 are the simulated constants of 
the model, respectively. When the end of life is defined 
to be 80% of the designed capacity, the maximum cycle 
number of the cells at different rates of 5C, 10C and 15C 
are estimated to be 850, 458 and 295 cycles, respectively. 
In order to reuse the batteries, it is significant to predict 
battery’s residual life at the shortest cost (as few 
charge-discharge cycle times as possible). According to 
the prediction curves, the prediction reliability and 
accuracy of the models depend on the quantity of the 
tested data. 
 
3.2 Cycle life degradation match detection 

The working situation of a given battery before 
retired has a strong influence on the residual life. The 
fitting tracks of the capacity fading can be used to 
develop a model-base to predict lifespan under different 
operation conditions. It is necessary to select the optimal 
model from the model-base with a small amount of data, 
and control the simulation precision in a permissible 
limit. Considering the given curves in Fig. 3 as the 
standard models, another retired battery was selected and 
the vector d=(d1, d2, …, dm), (m=15−40) was used to 
represent the match data, where dm represents the 
discharge capacity in the m cycles. The concrete match 
method is as follows: 

1) The vector d was introduced to each model, and 
the position of the vector d in each model was 
determined and should be closest to the model’s fade 
trend; 

2) The optimal position that should be closest to the 
model’s fade trend was found out from the determined 
positions of each model above. 

The follows are the calculation steps of the match 
algorithm. 

1) The length of the vector was calculated. 
2) The continuous values of m variables in each 

model were calculated. That is, Ci=(pi1, pi2, …, pim), 
pij=Ci+j−1, i=1, 2, …, k1, j=1, 2, …, m. Ci represents a  

 
Table 1 Simulation parameters of cycle life prediction 

Rate a1 b1 c1 a2 b2 c2 R2 

5C 0.9462 −183.4 810.4 0.6137 853.6 671.7 0.9966 

10C 9.001×10−3 65.62 42.05 1.034 −203.1 1305 0.9977 

15C 0.1135 −0.4065 81.25 0.9078 33.21 733 0.9988 
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Fig. 3 Actual match results in 5C (a), 10C (b) and 15C (c) models 
 
series of random and continuous capacity values of m 
variables; pij represents one of the capacity value and its 
relative position is the same as dj. i and k1 represent the 
calculating number and the maximum calculate number 
of each model, respectively. 

3) The minimum value was found out between all of 
the Ci and the vector in a special norm (such as the 
second norm) under each model; Y=min(||C1−d||2, 
||C2−d||2, … , ||Ck1−d||2); Y represents the minimum 
value based on the spectral norm. 

4) The minimum value was found out from the 
obtained minimum among the three models. 

The model with the final minimum value is the 
desired model to match, and its corresponding i is the 
starting time of the cycle numbers. Therefore, the 
residual life of the battery can be presented as model life 
–i. 

In order to verify the accuracy of the algorithm, a 
series of data were selected as shown in Fig. 3. Taking 
10C for instance, the starting data obtained from actual 
measurement is 65, and the actual residual life is 307 to 
failure threshold. However, according to the above 
algorithm, the results are a little different. The starting 
data in the 10C model is 62, and the residual life is 310 
to failure threshold. The mach detention is about 99.03%. 
 
3.3 Electrochemical impedance spectroscopy analysis 

The external failure type of the battery is 
demonstrated by the capacity loss in the forms of the 
second Gaussian function. In order to test the inter 
failure type that is caused by the cells’ resistance, a cell 
is tested by electrochemical impedance spectroscopy 
(EIS). The typical EIS spectrum of the chosen cell is 
tested at the full state of charge and the equivalent circuit 
is used to fit the spectra in Fig. 4. 

Different electrochemical reactions usually occur at 
specific frequency intervals. From Fig. 4, the EIS 
spectrum can be divided into three stages: 1) The porous  

 
Fig. 4 Typical EIS spectra of tested cell after every 40 or 50 
cycles 
 
and non-uniformity characters on the surface of the 
electrodes that generate the inductive resistance at a very 
low frequency; 2) Lithium ion transport and charge 
transfer at the electrode/electrolyte interface that lead  
to a semicircle at mi-frequency; 3) The formation of 
electrolyte impedance and interface film at high 
frequency. 

The equivalent circuit is presented to complete the 
fitting processes. It is comprised of an inductor L and an 
intercept R1 at a high frequency, a capacitor C paralleled 
with a resister R2 and so-called constant phase element 
CPE at a mid-low frequency. 

It is found from Table 2 that the best fitting results 
with the lowest error (up to 10%) can be obtained for the 
battery charging/discharging after 20 cycles. The fitting 
values are effectively shown the changes as expected. 

According to Fig. 5, the resistances of R1 and R2 

decrease at early cycles, then increase gradually with the 
increase of the cycles and abruptly deteriorate when the 
battery life is retired. The value of R1 decreases with 
cycling for the stable electrode/electrolyte interface   
film (SEI film) is formed in the first stage, and the 
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Table 2 Fitting error of cell after 20 cycles 

Item L/H RL/Ω C/(μF·cm−2) Q/(Ω−1·cm−2·sn) f/Hz R1/Ω 

Before fitting 2.3×10−7 0.1004 33 57.89 0.5505 2.4×10−2 

After fitting 2.3×10−7 0.1004 3.3×10−3 58.85 0.5505 2.4 ×10−2 

Error/% 1.763 0.8367 9.74 3.537 3.301 4.266 

 
Table 3 Simulation parameters of resistance change 

Resistance a3 b3 c3 a4 b4 c4 R2
 

R1 0.1678 658.5 498.1 2.275×1013 −1578 276.3 0.9655 

R2 0.04451 437 315.6 6.219×1011 −1334 243.9 0.9835 

R1+R2 0.197 545.2 408.7 2.381×1013 −1380 243.2 0.9747 

 

 
Fig. 5 Curves of original resistance R1 (a), R2 (b), R1+R2 (c) and 
fitting results based on cycle number 

electrolyte is sufficient for lithium ion transportation. 
The value of the R2 also reduces with cycling for the 
intact structure of the electrodes is beneficial to the 
lithium ion transportation at the electrolyte/electrode 
interface and inter-electrode. After the cell experiencing 
a certain degree of degradation, the value of R1 rises 
because of the electrolyte consumption. The value of R2 
also increases. This is because the electrode of the cell 
undergoes sever polarization reaction, and the damaged 
SEI film during lithium ions insertion and extraction is 
continually repaired. 

Equation (2) with different parameters (Table 3) 
was used to show the numerical relationships with  
cycle; a3, b3, c3, a4, b4, c4 are the simulated constants of 
characterize impedance spectroscopy model. 
 

2 2
3 4

3 4
3 4

 = exp exp
N b N b

R a a
c c

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎢ ⎥− + −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

     (2) 

 
where R represents the resistance of the battery in the N 
cycles; a3,b3,a4,b4,c4 are the simulated constants of the 
model, respectively. 

From the function above, it can be seen that the 
accuracy of the model depends on the quantity of the test 
data. The resistance change meets the second Gaussian 
function. Comparing with Eq. (1), it is interesting to 
found that the cell has the same function expression 
between the capacity degradation and the resistance 
change (vs cycle number). This shows the battery 
performance depends on the capacity loss and the 
increase of resistance. Before 80 cycles, the capacity of 
the cell rises and the resistance deduces. After that, the 
capacity of the cell reduces and the resistance rises. 
Therefore, it is significant to build a model from both the 
internal and external factors of the cell in order to test the 
validity of the prediction models. 
 
4 Conclusions 
 

The cycle life of LIBs can be accurately estimated 
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based on establishment of the prediction model-base. 
The capacity decays nonlinearly as a function of 
discharge cycles. The functional form of the model 
follows Guassian path. Match detection verifies that the 
optimal precision is high to 99%. The failure form of the 
impedance that acquires from an equivalent circuit fitting 
also complies with the second Gaussian relations. 
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退役动力电池寿命预测与匹配检验 
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摘  要：研究商业用 18650 型锂离子电池(额定容量 1150 mA·h)的循环寿命衰减规律，利用外推法预测电池的剩

余寿命。结果表明，锂离子电池容量保持率与循环寿命服从二次高斯函数关系，匹配检测和一系列的交流阻抗测

试验证了所选择的模型的正确性以及精度(>99%)。建立循环寿命模型有利于缩短电池寿命测试周期，降低预测成

本。 

关键词：退役动力电池；寿命预测模型；匹配检验；电化学阻抗谱；等效电路 
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