文章编号: 1004-0609(2013)10-2928-08

稀土氧化物 Ce₂O₃制备 Al-Ti-C-RE 的热力学分析

王连登^{1,2},魏喆良¹,杨小宝¹,朱定一²,陈 晓¹,陈永禄³,洪丽华³,李秋菊¹

(1. 福州大学 机械工程及自动化学院, 福州 350108;

2. 福州大学 材料科学与工程学院, 福州 350108;

3. 福建工程学院 材料科学与工程系, 福州 350108)

摘 要:采用 SEM、EDS 和 DSC 等方法研究稀土氧化物对采用氟盐法制备 Al-Ti-C-RE 的热力学影响。结果表明: Al 与 K₂TiF₆发生铝热放热反应生成 TiAl₃及部分游离态[Ti],在铝热反应的作用下,稀土氧化物 Ce₂O₃与 C 发生 碳热反应,生成大量的 CeC₂,该相与游离态[Ti]易反应生成 TiC 和原子态[Ce],反应生成的[Ce]为表面活性元素, 吸附在 TiAl₃相上形成 Al₂Ti₂₀Ce。DSC 分析结果表明,添加稀土氧化物 Ce₂O₃可在 1 120 ℃左右自发产生碳热反 应。因此,在铝热反应的基础上,利用稀土氧化物与石墨粉之间的碳热反应,不仅可以降低制备 Al-Ti-C-RE 细化 剂的反应温度,同时还可提高 C 与铝熔体的润湿性,促进 TiC 粒子的生成。 关键词: Al-Ti-C-RE;稀土氧化物 Ce₂O₃;热力学分析

中图分类号: TG146.2 ______ 文献标志码: A

Thermodynamics analysis of Al-Ti-C-RE prepared by rare earth oxide Ce₂O₃

WANG Lian-deng^{1, 2}, WEI Zhe-liang¹, YANG Xiao-bao¹, ZHU Ding-yi², CHEN Xiao¹, CHEN Yong-lu³, HONG Li-hua³, LI Qiu-ju¹

(1. College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;

2. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China;

3. Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, China)

Abstract: The effects of the rare earth oxide on the thermodynamics of Al-Ti-C-RE master alloy prepared by mixing the potassium titanium fluoride and carbon into aluminum melt were studied by means of SEM, EDS and DSC. The results show that the aluminothermy reaction of the Al melt and K_2TiF_6 occurs to produce the TiA1₃ and [Ti] atoms. Then, based on the aluminothermy reaction, the rare earth oxide Ce₂O₃ reacts with carbon to produce the carbothermy reaction and abundant CeC₂ phases form, which react with [Ti] atoms easily to produce the TiA1₃ phases to form the new rare earth compounds $Al_2Ti_{20}Ce$. The DSC analysis results show that the rare earth oxide Ce₂O₃ has spontaneous carbo-thermal reaction at 1 120 °C, which decreases the reacting temperature to manufacture Al-Ti-C-RE master alloys, improves the wettability between carbon and aluminum melts and promotes the formation of TiC particles.

Key words: Al-Ti-C-RE; rare earth oxide Ce2O3; thermodynamic analysis

基金项目: 福建省科技厅重点项目(2010H0002); 福州大学科技发展基金资助项目(600117); 福建省科技计划项目(2010H0002)

收稿日期: 2012-05-07; 修订日期: 2013-07-20

通信作者: 王连登, 讲师, 博士; 电话: 13506970553; E-mail: liandeng@fzu.edu.cn

A1-Ti-C 中间合金因含有 TiC 粒子,存在较少的 与 Al-Ti-B 细化剂有关的缺陷与不足,并被公认为是 最有发展前途的铝用晶粒细化剂^[1-5]。它具有含 TiC 粒 子尺寸小、在铝液中的聚集倾向低、不易被 Zr 和 Cr 等原子毒化等优点,是近年来国内外研究的热点,在 铝加工业尤其是铝板带箔加工业中具有良好的应用 前景。

但 Al-Ti-C 中间合金制备的关键是要解决碳源与 铝合金反应的润湿性,及制备过程中C的吸收率过低 等问题。目前,工业常用的 Al-Ti-B 中间合金中加入 稀土等活性元素[6-11],可显著提高细化剂的细化效果, 为此, 在制备 A1-Ti-C 中间合金工艺中常借鉴 Al-Ti-B-RE,将稀土元素作为活性元素加入到该合金 的制备中,即以稀土中间合金形式加入到铝熔体中, 此时稀土无法同时作为细化剂的工艺元素及组成元 素,虽然稀土元素可作为表面活性元素促进粒子合成 反应的进行,以提高反应过程的速率,并且可利用稀 土来增强 C 元素向铝熔体扩散渗透,提高其合金化能 力,但是目前大部分研究只是分析含稀土的中间合金 对细化剂组织中各个细化相(如相的尺寸、大小、分布 及形态等)的影响,对稀土元素在制备 Al-Ti-C-RE 的 反应过程中具体作用的研究其少。由于 Ce₂O₃ 是一种 表面活性元素[12-13],能够在铝合金熔体产生剧烈的放 热反应,有热爆及火焰燃烧现象,可促进生成反应进 程。本文作者在对采用氟盐法制备 Al-Ti-C-RE 过程 中,将稀土氧化物 Ce₂O₃ 作为反应促进剂加入到 Al-Ti-C 的制备过程,可降低制备 Al-Ti-C 中间合金的 反应温度及成本,减少制备过程的工艺复杂性,并提 高 Al-Ti-C 中间合金的组织中 Al₃Ti 相与 TiC 粒子的反 应合成效果,为此,本文作者主要研究添加稀土氧化 物在制备 Al-Ti-C-RE 过程的热力学条件及反应模型。

1 实验

试验选用的原材料为工业纯铝(99.6%),石墨粉 (99.0%),K₂TiF₆(化学纯 CP,≥98.0%),稀土氧化物 Ce₂O₃(≥97%)。采用石墨坩埚在 SG2-7.5-12 型坩埚 电阻炉进行合金的熔炼制备,分别采用 W300 型智能 测温仪和K型热电偶测量熔体的温度与控制电阻炉温 度。在熔炼前,先将石墨粉在 500 ℃下预热 2 h,将氟 钛酸钾在 300 ℃下预热 2 h,以消除部分因存在氢键而 成团结块,提高粉末的分散度;同时提高石墨粉与氟 钛酸钾表面的清洁程度,改善与铝液的反应界面,提 高石墨吸收率。将预热处理后的 K₂TiF₆、石墨粉与稀 土化合物按质量比 n(Ti):n(C):n(Ce)=5:1:1 比例进行均 匀混合,最后用铝箔包好以制备 Al5Ti1CRE 中间合 金。在坩埚中先熔化好纯铝,升温至 830 ℃时用钟罩 分 2~3 次压入包好的粉末。待充分反应结束后,保温 30 min,用 C₂Cl₆进行除气处理、扒渣、浇注。浇注后 的试样采用化学分析得到 Ti 含量为 4.3%(质量分数), C 含量为 0.76%。

采用德国奈驰的 STA449C 同步热分析仪 DSC 对 所制备的 Al-Ti-C-RE 进行高温量热分析,实验原材料 为:铝粉(纯度≥99.9%),氟钛酸钾(分析纯,≥99.0%), 石墨粉(粒度≥37 μ m,纯度≥99.9%),稀土氧化物 Ce₂O₃(分析纯,≥99.0%)。

中间合金细化剂金相试样经研磨、抛光后,用 0.5%的 HF 酸水溶液进行腐蚀,在 XJZ-600 型金相显 微镜进行观察并测定析出的 TiA1₃ 相粒子尺寸。用 XD-5A 型 X 射线衍射仪(XRD)进行细化剂合金物相 分析。用 XL30-ESEM 环境扫描电镜观察试样并利用 SEM 附件 — EDAX32 型能谱分析仪对试样中的第 二相进行半定量成分分析。

2 结果与分析

2.1 稀土氧化物制备 Al-Ti-C-RE 的显微组织

图 1 所示为在 850 ℃下添加稀土氧化物采用氟盐 法制备的 Al5TiCCe 显微组织与相关的 XRD 谱。从图 1(a)中可看出,白色的块状为稀土元素聚集而成的 Ti₂Al₂₀Ce 相,而灰色针状形式分布的相主要为 TiAl₃ 相。其中块状含稀土相的尺寸为 20~60 µm,针片状 TiAl₃相的长度为 20~150 µm。而生成的 TiC 粒子主要 分布于晶界周围,呈微聚集团簇均匀分布,尺寸为 1~2 µm。从图 1(b)可以看出,采用稀土氧化物制备的 Al-Ti-C-RE 细化剂中主要由 4 个相组成: α(Al)、TiAl₃、 TiC 及 Ti₂Al₂₀Ce 相等。在图 1(b)的 XRD 谱中没有发 现稀土化合物或其他含稀土相的存在,说明稀土氧化 物的添加可以提高制备 Al-Ti-C 细化剂的效率,促进 制备 Al-Ti-C-RE 反应的进行。

2.2 稀土氧化物 Ce₂O₃制备 Al-Ti-C-RE 的热力学分 析及 DSC 验证

当铝液温度升至 850℃时,将经过热处理的细小 均匀石墨颗粒与K₂TiF₆和稀土氧化物混合均匀后用铝 箔包裹好,用钟罩将反应剂加入到铝熔体中。由于 K₂TiF₆的熔点较低,遇到铝液最先熔化,它首先与铝 发生如式(1)的铝热还原反应生成 TiAl₃相,这点与传

图1 850 ℃时采用 Ce₂O₃制备的 Al5Ti1C1Ce 的微观组织及 其相应的 XRD 谱

Fig. 1 Microstructure (a) and corresponding XRD pattern (b) of Al5Ti1CRE master alloy prepared by rare earth oxide Ce_2O_3 at 850 °C

统的氟盐法制备 Al-Ti-C 细化剂一样^[2]。

 $3K_2TiF_6 + 13Al = 3TiAl_3 + 3KAlF_4 + K_3AlF_6$ (1)

 $\Delta G_1 = -575 \ 000 \ (J/mol)$ (2)

Ti+C(s) = TiC(s)(3)

 $\Delta G_2 = -184.10 + 12.152T \,(\text{J/mol}) \tag{4}$

 $TiAl_3 + C = TiC(s) + 3Al$ (5)

$$\Delta G_3 = -41.84 - 8.901T \,(\text{J/mol}) \tag{6}$$

随着放热反应的产生,石墨颗粒界面处的 C 原子与生成的 Ti Al₃ 相和过量的 Ti 原子也会发生式(3)与式(5)的反应生成 Ti C 粒子。但是与传统氟盐法不一样的是,由于加入稀土氧化物反应生成的稀土元素具有很高的化学活性,是一种很好的表面活性剂,它们的加入可降低铝合金熔体的表面张力,改善碳粉与 Al 液之间的润湿性,使碳粉充分熔入到铝熔体中,并与 Ti Al₃ 相直接紧密接触,促进 C 原子与 Ti Al₃ 相的按式(5)反应生成 Ti C 粒子,并且使铝熔体对 Ti C 粒子与 Ti Al₃

相的铺层系数增大,使 TiC 在熔体中不易聚集长大和 沉淀,从而可能减少该中间合金组织中的 TiC 粒子的 聚集倾向或分层现象,如图 1(a)所示。

为了清楚分析稀土氧化物在制备 Al-Ti-C-RE 体系的反应进程,首先计算该体系中主要反应的吉布斯自由能变化情况。当稀土氧化物 Ce₂O₃、石墨和 K₂TiF₆的混合粉末加入铝液中合成 Al-Ti-C-RE 细化剂时,铝液中可能存在的反应方程式如下:

$2Ce_2O_3(S)+O_2(g)=4CeO_2(s)$	(7)
$\Delta G_4 = -784\ 600 + 280.1T\ (J/mol)$	(8)
$CeO_2(s) = [Ce] + 2[O]$	(9)
$\Delta G_5 = 853 \ 600 - 250T \ (J/mol)$	(10)
$CeC_2(s) = [Ce] + 2[C]$	(11)
$\Delta G_6 = -202\ 790 + 125.277T (J/mol)$	(12)
$2C(s)+O_2(g)=2CO(g)$	(13)
$\Delta G_7 = -117 990 - 84.35T (J/mol)$	(14)
O ₂ ==2[O]	(15)
$\Delta G_8 = -117 \ 110 - 3.39T \ (J/mol)$	(16)
C(s) = [C]	(17)
$\Delta G_9 = -22\ 594 - 42.26T (\text{J.mol})$	(18)
根据(5)~(6)+2×(7)-2×(8)+2×(9)可得:	

 $CeO_2(s)+4C(s) = CeC_2(s)+2CO(g)\uparrow$ (19)

$$\Delta G_{10} = 1 \ 099 \ 818 - 621.71T \ (J/mol)^{113}$$
⁽²⁰⁾

由(4)+4×(10)可得:

 $2Ce_2O_3(s)+O_2(g)+16C(s)=4CeC_2+8CO\uparrow$ (21)

 $\Delta G_{11} = 3\ 614\ 672 - 2\ 206.74T \,(\text{J/mol}) \tag{22}$

根据(6)+2×(2)-2×(9)可得:

 $CeC_2(s)+2Ti(s)=2TiC+[Ce]$ (23)

$$\Delta G_{12} = -621 \ 178 + 226.23T \ (J/mol)^{[13]}$$
(24)

根据试验过程产生的剧烈热爆现象,可认为 Ce₂O₃和碳在高温下发生碳热反应式(21),并产生 CO 气体,使得熔体可观察到剧烈翻腾的现象,只要 *T*> 1 638 K(1 365 ℃即可),反应就可自发进行,而产生这 个反应所需要的热量来自反应式(1)、(3)、(5)三者的铝 热放热反应,特别是反应(1)中 K₂TiF₆与 Al 发生热还 原反应,放出大量的热量,在熔体局部高温微区可产 生很高的温度,从而促使反应(21)的进行。一旦反应(21) 开始,由于Δ*G*₁₂≤0,反应式(23)很容易开始产生 TiC

粒子,而生成的[Ce]比加入纯稀土时具有更高的化学 活性,是一种很强的表面活性剂,主要吸附在 TiAl, 相上形成新的稀土化合相 Ti₂Al₂₀Ce,如图 1(a)所示, 进一步降低了C与Ti原子或TiAl,相之间的表面张力, 使 TiC 粒子的生成反应进一步加强,并提高熔体的流 动性, 使产生的粒子 TiC 速率增加且分布均匀, 如图 2 所示。从图 2(b)的能谱分析图上还可看出,在白色 的 Ti₂Al₂₀Ce 相有碳元素的存在, 如图中的能谱分析数 据,此时的 C 含量为 1.47%(质量分数),这说明稀土 氧化物的加入降低了铝合金熔体与碳之间的液固界面 能,改善了碳与 Al 液之间的润湿性,使 C 粉充分熔 入到 Al 熔体中,并与 TiAl,相直接紧密接触,促进 C 原子与TiAl,相反应生成TiC粒子。此外,由于反应(21) 与(23)是很强的放热反应,并产生了 CO 气体,这样 生成 TiC 粒子就在剧烈的翻腾下充分扩散到熔体各个 部分,从而避免了传统制备工艺中出现的 TiC 粒子的 聚集现象,减少了搅拌时间与设备,使成本降低。因 此,加入稀土氧化物 Ce₂O₃ 作为制备 Al-Ti-C 中间合 金的促进剂的效果比纯稀土的效果优越,且成本更低。

在对制备 Al-Ti-C-RE 的反应热力学条件进行分

图 2 采用 Ce₂O₃ 制备的 Al5Ti1C1Ce 的显微组织及 TiAl₃ 相的能谱分析结果

析后,为进一步了解制备细化剂中各个添加物之间的 反应规律,特别是稀土氧化物在制备 Al-Ti-C-RE 中的 作用,分别对 Al 粉、K2TiF6、C 混合粉末、Al 粉、 K₂TiF₆、C 和稀土氧化物 Ce₂O₃ 混合粉末进行高温量 热分析。图 3 所示为 Al、K₂TiF₆和 C 混合粉末的 DSC 分析结果。由图 3 中曲线可知,在 381.3、667.6 ℃的 时候检测到了两个吸热峰,在647.3 ℃左右的有一个 明显的放热峰,这个放热峰是氟钛酸钾与 Al 的放热反 应,见反应式(1);除此之外,在1200℃左右存在着 新的放热峰。为了检查放热峰产生的原因,对 DSC 试 验后的残留物进行 X 射线衍射分析, 如图 4 所示, 该 反应产物主要由 Al、Al₃Ti、TiC、KAlF₄和 K₃AlF₆组 成,但是 TiC 的峰不明显,说明 K₂TiF₆与 Al 粉产生 放热反应可以促进碳粉按照式(3)或式(5)进行反应生 成 TiC 粒子,但数量过少,这个也从另一方面说明未 添加反应促进剂的 Al-Ti-C 制备过程,需要高的反应 温度才能促使 TiC 粒子的形成,温度大约在1200 ℃

图 3 Al、K₂TiF₆和C混合粉末的DSC分析结果

Fig. 3 DSC result of Al, K₂TiF₆ and C mixture powder

图 4 Al、K₂TiF₆和 C 混合粉末的 DSC 产物的 XRD 谱 Fig. 4 XRD pattern of Al, K₂TiF₆ and C mixture powder after DSC test

2932

左右。这一分析结果与文献[14-15]所报道的一致。

图 5 所示为 Al、K₂TiF₆、C、不同含量 Ce₂O₃混 合粉末 DSC 曲线。由图 5 可知, 650~668 ℃之间的吸 热峰是铝粉由固态向液态转变过程中产生吸热形成 的,而放热峰是由于 K₂TiF₆和铝粉发生铝热还原放热 反应形成的。随着温度升高,在1050~1155℃之间 存在一个放热峰和吸热峰,为了探讨在1050~1155℃ 之间存在一个放热峰和吸热峰的原因,对以上DSC试 验后的残留物进行了 X 射线衍射分析(如图 6), 由图 6 可见,添加稀土氧化物的混合粉末反应产物除了 α(Al)、Al₃Ti、TiC、K₃AlF₆、KAlF₄等几个相之外, 还出现了 Ti₂Al₂₀Ce 相。该结果表明,在1120 ℃时的 放热峰是由于稀土氧化物与碳粉发生了碳热反应(见 反应式(21)),紧接着发生 TiC 形成反应(见反应式(23) CeC₂(s)+2Ti(s)==2TiC+[Ce]),同时释放出来的大量[Ce] 原子进一步与 TiAl,发生反应,形成新的稀土相 Al₂Ti₂₀Ce,并产生吸热作用。

因此,从添加稀土氧化物 CeO₂/Ce₂O₃的 DSC 分 析结果可知,在1 120 ℃左右,可以自发产生碳热反 应(见反应式(21)),而本研究在制备细化剂时,反应温 度为 850 ℃,根据文献[11]中有关报道,在该反应温 度下制备中间合金的过程中,K₂TiF₆与 A1 的反应过 程中放出来的大量热,可以使该区域内温度达到 900~1 200 ℃,而采用传统的方法制备 Al-Ti-C 中间合 金时,需要将制备温度提高到 1 250 ℃以上^[16],才能 在合金中获得足够多有价值的 TiC 颗粒。若反应温度 降低,生成 TiC 速率过慢,反应不充分,效果差。由 此可见,本文作者在铝热放热反应的基础上,通过采 用稀土氧化物作为反应促进剂来制备 Al-Ti-C-RE 中

图 5 Al、K₂TiF₆、C 和不同含量稀土氧化物 Ce₂O₃混合粉 末的 DSC 分析结果

Fig. 5 DSC analysis results of mixture of Al, K_2TiF_6 , C and different contents of rare earth oxide Ce_2O_3

图 6 Al、K₂TiF₆、C 和不同含量的稀土氧化物 Ce₂O₃混合 粉末经烧结后的 XRD 谱

Fig. 6 XRD patterns of mixture powder of Al, K_2TiF_6 , C and different contents of rare earth oxide Ce₂O₃ after DSC test: (a) Al5Ti1C1Ce; (b) Al5Ti1C2Ce; (c) Al5Ti1C5Ce; (d) Al5Ti1C3Ce

间合金,利用稀土氧化物与石墨粉之间的碳热反应, 不仅可以降低制备细化剂反应温度,同时还提高了 C 与铝熔体的润湿性,促进了 TiC 粒子的生成。

2.3 添加稀土氧化物制备 Al-Ti-C-RE 细化剂的形成 过程

添加稀土氧化物的反应过程中,与传统氟盐法制 备 Al-Ti-C 中间合金一样,由于 K₂TiF₆的熔点低,石 墨颗粒表面会包裹着 K₂TiF₆与 Al 熔体的熔覆层,两 者根据式(1)的铝热反应放出大量的热量,这些热量在 Al 熔体中形成大量的局部高温微区,在这些高温微区 中生成的 TiAl₃ 以及游离[C]原子和铝热反应生成的 TiAl₃释放出来的 Ti 原子反应生成的 TiC 粒子,同时, 添加的稀土氧化物 Ce₂O₃ 与铝液中的 C 原子在铝热放 热反应的作用下产生碳热反应,促使 TiC 粒子的形成, 同时也生成活性元素[Ce],这些生成的粒子在搅拌作 用和重力作用下向铝熔体中扩散。根据试验现象,稀 土氧化物与碳原子反应产生的碳热反应能够在熔体中 产生剧烈的翻腾现象与淡蓝色的火焰,这是由于碳热 反应生成的 CO 气体由于高温膨胀,在铝液中上浮过 程生产翻腾,并在铝液表面与 O2燃烧所致。这些现象 可促使反应后粒子分布均匀,降低反应温度;最后, 在中间合金液的凝固过程中,TiAl3进一步与稀土[Ce] 作用生成了 Ti2Al20Ce 新相,整个反应过程如图7所示。

综合试验结果以及形成 TiC 的热力学分析,采用 氟盐法(加入经预热处理的 K₂TiF₆、C 和稀土氧化物 (Ce₂O₃))制备 Al-Ti-C-RE 细化剂反应模型如图 8 所示。

图 7 坩埚中添加稀土氧化物的氟盐法制备 Al-Ti-C-RE 的反应示意图

Fig. 7 Schematic diagram of reaction of Al-Ti-C-RE prepared by villiaumite through adding rare earth oxide

Fig. 8 Reaction modes of preparation of Al-Ti-C-RE through adding rare earth oxide: (a) Aluminothermy reaction produced by K_2TiF_6 and Al melt; (b) TiAl₃ phase firstly reacted; (c) TiC particles, TiAl₃, Ti₂Al₂₀Ce and CO formed after reaction promoted by rare earth oxide; (d) Reacted phases well distributed by thermal flow and thermal expansion of CO gas after reaction

由图 8 可看出:当铝熔体中加入混合粉末反应剂 时,反应剂中的 K₂TiF₆首先熔化(见图 8(a));在热流 扰动和人为搅拌作用下,开始形成 TiAl₃相并均匀分 布在铝熔体中(见图 8(b));稀土氧化物 Ce₂O₃加入铝 液,改善碳粉、K₂TiF₆与铝熔体的润湿性,使K₂TiF₆ 包覆在 C 颗粒周围,并在强对流作用下形成无数微 团,在微团与铝熔体间的界面上发生反应(1)、(3)、(5)、 (21)、(23),生成 TiC、TiAl₃、Ti₂Al₂₀Ce 和 CO,产生 碳热反应与 CO 气体。另外,反应还形成液态熔渣 KAlF₄和 K₃AlF₆(见图 8(c));铝熔体热爆反应充分完 全,铝液表面趋于稳定,没有翻滚现象为止,铝熔体 中最后只有 TiC、TiAl₃和 Ti₂Al₂₀Ce3 种相,液态熔 渣 KAlF₄和 K₃AlF₆上浮覆盖在铝熔体的表面(见图 8(d))。

3 结论

1) 在采用氟盐法制备 Al-Ti-C-RE 中间合金的过程中,添加 Ce₂O₃ 可起到反应物与反应促进剂的双重作用。对 Al-Ti-C-RE 反应体系进行热力学计算的结果表明: Al 与 K₂TiF₆ 发生铝热反应,生成 TiA1₃ 及部分游离态[Ti],在铝热反应的能量供给下,Ce₂O₃ 可与 C 发生碳热反应,持续的反应热将有利于生成 TiC 粒子和[Ce],主要的反应方程式为

 $2Ce_2O_3(s)+O_2(g)+16C(s)=4CeC_2(s)+8CO\uparrow$ $CeC_2(s)+2Ti(s)=2TiC+[Ce]$

2) 通过 DSC 分析验证热力学理论计算,结果表明: Ce₂O₃与C在1 120 ℃左右即可自发进行碳热反应,有效降低 Al-Ti-C-RE 细化剂的制备温度,提高了C 与铝熔体的润湿性,促进了 TiC 粒子的生成。

REFERENCES

- LIU X F, WANG Z Q, ZHANG Z G. The relationship between microstructures and refining performances of Al-Ti-C master alloys[J]. Materials Science and Engineering A, 2002, 332(1/2): 70-74.
- [2] ZHANG Z, BIAN X, WANG Y, WANG YAN, LIU X F, WANG Z Q. TEM observations of a rapidly solidified Al-Ti-C alloy [J]. Journal of Alloys and Compounds, 2003, 349(1/2): 121–128.
- [3] HAN G, LIU X F, DING H M. Grain refinement of AZ31 magnesium alloy by new Al-Ti-C master alloys[J]. Transactions of Nonferrous Metal Society of China, 2009, 19(5): 1057–1064.

- [4] MA X G, LIU X F, DING H M. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 56–59.
- [5] LIU X F, YU L N, LIU J W, WANG Z Q, BIAN X F. A new technique to refine pure aluminum by Al-Ti-C mold [J]. Materials Science and Engineering A, 2005, 399: 267–270.
- [6] 陈亚军,许庆彦,黄天佑.稀土铝钛硼中间合金的细化能力 与长效性[J].中国有色金属学报,2007,17(8):1232-1239.
 CHEN Ya-jun, XU Qing-yan, HUANG Tian-you. Refining performance and long time efficiency Al-Ti-B-RE master alloy[J]. The Chinese Journal of Nonferrous Metals Society, 2007, 17(8): 1232-1239.
- [7] 张胜华,张 涵,朱 云.稀土在 Al-Ti-B-RE 中间合金中的 作用[J]. 中南大学学报: 自然科学版, 2005, 36(3): 386-389.
 ZHANG Sheng-hua, ZHANG Han, ZHU Yun. Effect of rare earth element on Al-Ti-B-RE master alloys[J]. Journal of Center South University: Science and Technology, 2005, 36(3): 386-389.
- [8] 孟保平,谢敬佩,张 英,梁东梅. Al-Ti-C-RE 对 AZ 系变形 镁合金的晶粒细化作用[J]. 有色金属加工,2005,34(3):11-14. MENG Bao-ping, XIE Jing-pei, ZHANG Ying, LIANG Dong-mei. Grain refinement action of Al-Ti-C-RE on AZ magnesium alloy[J]. Nonferrous Metals Processing, 2005, 34(3): 11-14.
- [9] 夏天东,丁万武,赵文军,王晓军,徐仰涛. TiAl₃对 TiC 粒子 在铝基体中分布及 α(Al)晶粒形核的影响[J].中国有色金属学 报,2009,19(11):1948-1955.

XIA Tian-dong, DING Wan-wu, ZHAO Wen-jun, WANG Xiao-jun, XU Yang-tao. Effect of TiAl₃ on distribution of TiC particles in aluminum matrix and nucleation of α (Al) grain[J]. The Chinese Journal of Nonferrous Metals Society, 2009, 19(11): 1948–1955.

- [10] 马伯江,胡宪正,蒋建清,谈荣生. AITiCRE 合金细化剂对纯 铝的细化作用[J]. 江苏冶金, 2002, 30(4): 1-4.
 MA Bai-jiang, HU Xian-zheng, JIANG Jian-qing, TAN Rong-sheng. Refining pure aluminum by AlTiCRE refiner[J]. Jiangsu Metallurgy, 2002, 30(4): 1-4.
- [11] 胡宪正,梁 超,于 金,谈荣生,曾宇乔,蒋建清.稀土对 AITiC 细化剂组织及细化效果的影响[J].中国稀土学报,2004, 22(2):247-250.
 HU Xian-zheng, LIANG Chao, YU Jin, TAN Rong-sheng, ZENG Yu-qiao, JIANG Jian-qing. Effect of rare earth on structure and refining efficiency of AlTiC refiner[J]. Journal of The Chinese Rare Earth Society, 2004, 22(2): 247-250.
 [12] 昭王氏 地亡表 是林丽 刘宫汉 韩亦作 CaO 在镜镜碟纸
- [12] 罗天骄,姚广春,吴林丽,刘宜汉,韩变华. CeO₂ 在镀镍碳纤 维增强铝合金基复合材料中的作用[J].中国有色金属学报, 2007,17(1):80-84.

LUO Tian-jiao, YAO Guang-chun, WU Lin-li, LIU Yi-han,

HAN Bian-hua. Behavior of CeO₂ addition in nickel-plated carbon fiber reinforced aluminum alloy matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1): 80–84.

- [13] 吴钱林,孙扬善,薛 烽,周 健. CeO₂对原位 TiC 弥散强化 钢组织和性能的影响[J]. 中国稀土学报, 2008, 26(1): 92-96.
 WU Qian-lin, SUN Yang-shan, XUE Feng, ZHOU Jian. Effect of CeO₂ addition on microstructure and properties of in-situ TiC strengthened steel[J]. Journal of the Chinese Rare Earth Society, 2008, 26(1): 92-96.
- [14] 刘佑铭,许伯藩,蔡 珣,李刘合,陈秋龙.稀土CeO2作为添 加剂制备原位 TiC/Al 基复合材料[J].上海交通大学学报, 2004,38(7):1122-1125.

LIU You-ming, XU Bo-pan, CAI Xun, LI Liu-he, CHEN

Qiu-long. The preparation of in situ TiC/Al composite by additive CeO₂[J]. Journal of Shanghai Jiaotong University, 2004, 38(7): 1122–1125.

[15] 韩宝军, 刘柏雄. Al-Ti-C 晶粒细化剂制备新工艺[J]. 铝加工, 2005(4): 7-9.

HAN Bao-jun, LIU Bai-xiong. A new process to fabricate Al-Ti-C grain refiner[J]. Aluminum Fabrication, 2005(4): 7–9.

[16] 张作贵,刘相法,边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J]. 金属学报,2000,36(10):1025-1029.
 ZHANG Zuo-gui, LIU Xiang-fa, BIAN Xiu-fang.

Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. Acta Metallrugica Sinica, 2000, 36(10): 1025–1029.

(编辑 李艳红)