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Numerical and experimental investigation of solidification structure
in horizontal directional solidification process of Al-Cu alloy
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(Shanghai Key Laboratory of Modern Metallurgy and Materials Processing,
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)

Abstract: The temperature field and the grain structure of Al-4.5%Cu (mass fraction) alloy in horizontal directional
solidification process were predicted using a cellular automaton (CA) coupled with finite-element (FE) model. The
Rappaz model was adopted to calculate the nucleation. And the Kurz-Giovanola-Trivedi (KGT) model was used to
describe the growth kinetics of dendritic tips. The growth parameters of Al-4.5%Cu alloy were calculated using
simplified KGT formula, which was derived based on the pure diffusion condition. The results show that the position of
the columnar to equiaxed transition (CET) and the size of equiaxed grains can be simulated reasonably. However, large
deviation of the simulated result exists in the chill zone as the movement of nucleus is not considered. The simulated and
experimental results prove that the superheat greatly influences the solidification microstructures of Al-Cu alloy. Full
equiaxed grains can be obtained if superheat is lower than 20 ‘C, otherwise columnar grains will be observed. When the
superheat is above 50 °C, the positions of CET are no longer changed.
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Fig. 2 Finite-element mesh of simulated model

Heat transfer coefficient, HS/M/(W'mﬂ'K*l)

Test No. Position
Case 1 Case 2 Case 3
1 Sample/Crucible 500 500 500
2 Sample/mold Hgp Hsn" Hg"
3 Crucible/mold 500 500 500
4 Water cooled side of mold 5000 5000 5000
5 Crucible surface Insulation Furnace temperature® 300
6 Free surface of sample Insulation Insulation Insulation

1): Calculated according to measured temperature data (Fig. 3(a)).
2): Data of curve 2 in Fig. 3(b) (Pouring temperature of 760 °C).
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Fig. 3 Heat transfer coefficient at interface of sample and
copper mold (a) and furnace cooling curves at different pouring

temperatures (b)
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Fig. 4 Simulated results of three type processing schemes versus measured temperature distribution
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Fig. 5 Measured cooling curves of sample contrast to

simulated result (poured at 760 C)
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Table 2 Thermophysical properties and simulation parameters
of Al-4.5% Cu alloy

Parameter Value  Reference
Liquidus temperature, 7 /C 650
Alloy composition (mass fraction), 45
Co/% '
Liquidus slope, m/(‘C-% ') -2.717 [19]

Solute diffusion coefficient in liquid

0x107°
phase, Dy /(m*s ") 1.0x10 1

Solute dllgil:sszn Dcs(;c(e;f;c;?};t in solid L13x 10" 9]

Partition coefficient, k 0.1
Gibbs-Thompson coefficient, 7 1.0X 107 [20]
First coefficient of growth kinetics, «  9.0X 107

Second coefficient of growth kinetics,

-7
5 9.0X10
Maximum :;jlejgon density, 1% 10°
Mean undercooling, ATy/C 0.5 Measured
Standard deviation, AT,/C 0.1
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Fig. 6 Solidification of Al-4.5% Cu alloy at different pouring temperatures: (a) Predicted; (b), (c) Experimental
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