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摘 要：最近在湖南宝山矿区发现了煌斑岩脉，岩石样品具有典型煌斑结构，斑晶矿物主要为辉石、长石、黑云 

母及石英。SiO2 含量为 50.23%~51.29%，(Na2O+K2O)为 4.65%~5.63%，K2O/Na2O值为 1.89~7.77。根据 TAS图解 

和 SiO2­Nb/Y 图解投点，宝山煌斑岩为碱性系列钙碱性煌斑岩。煌斑岩过渡族元素配分型式为“W”形，相对富集 
Ti、Mn 和 Zn，明显亏损 Cr、Co和 Ni；微量元素表现为 Th和 LREE强烈富集并伴有 K、Sr和 Ba相对亏损的特 

征。煌斑岩中的锆石为岩浆锆石，U­Pb定年结果为(156±2) Ma，煌斑岩浆来源于受到俯冲组分改造的富集地幔。 

湖南宝山矿区煌斑岩的产出显示了燕山期深部岩浆活动的踪迹，反映燕山期区域陆内伸展的大地构造背景。 
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Abstract: The  lamprophyre  vein  from Baoshan minning area,  southern Hunan  Province,  is  a  new  discovery,  the  rock 
sample has typical lamprophyric texture, the phenocryst minerals are pyroxene, feldspar, biotite and quartz. The contents 
of SiO2  range from 50.23% to 51.29%, the values of Na2O+ K2O range from 4.65% to 5.63%, the values of K2O/ Na2O 
range from 1.89 to 7.77. According to figure of TAS and SiO2−Nb/Y, the samples belong to calc­alkaline lamprophyres 
of  alkaline  series.  Distribution  pattern  for  transitional­metal  elements  shows  enrichment  in  Ti, Mn  and  Zn,  obvious 
depletion in Cr, Co and Ni. The characteristics of trace elements show that strong enrichment in Th and LREE, relative 
depletion  in K, Sr,  Ba. The zircons  collected  from  lamprophyre  are magmatic  zircons  due  to  oscillatory  zones, U­Pb 
dating  results  display  the  crystal  average  age  of  measured  zircons  is  (156±2) Ma,  the  lamprophyre  is  derived  from 
metasomatic  enrichment  lithospheric  mantle.  The  discovery  of  lamprophyre  from  Baoshan  suggests  the  trace  of 
Yanhsanian  deep  basic  magma  activity,  corresponding  to  regional  intra­plate  extensional  tectonic  background  in 
Yanshanian stage. 
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煌斑岩(Lamprophyre)指含云母斑晶的暗色岩。煌 

斑岩的分类一直存在争议，ROCK [1−2] 将煌斑岩分成钙 

碱性煌斑岩、碱性煌斑岩、超镁铁煌斑岩、钾镁煌斑 

岩和金伯利岩。路凤香等 [3] 和李献华等 [4] 则在此基础 

上，将煌斑岩细分出 8 个亚类，但不包括金伯利岩。 

一般根据斑晶矿物可将煌斑岩划分为云母煌斑岩、闪 

石煌斑岩和辉石煌斑岩。大多数煌斑岩在化学成分上 

属钙碱系列，以富钾、镁为特征，类似于钾玄岩类； 

少数煌斑岩，如闪煌岩和沸煌岩，属碱性系列，钠和 

挥发分富集，类似于碱性玄武岩、碧玄岩和霞石岩。 
20 世纪 90 年代以来，许多研究认为煌斑岩与成 

矿作用有关， 其中特别是 ROCK [5−6] 强调煌斑岩在中温 

热液金矿成矿作用中的重要性，认为金来自这些共生 

的煌斑岩。国内众多学者也论述了煌斑岩与金、锑等 

热液矿床的时空成因联系，煌斑岩来源于地幔，是深 

断裂构造作用的产物，而在深断裂构造活动区也正好 

是形成热液矿床的有利地段。因此,两者在空间上往往 

密切共生，显示出某种亲缘关系 [7−9] 。湖南省内许多地 

区发现有煌斑岩 [10−14] ，其中锡矿山矿区煌斑岩的研究 

最为深入，锡矿山煌斑岩的 K­Ar 法同位素年龄(测试 

矿物为黑云母和钾长石)集中在 118~128  Ma，平均为 
124 Ma。 

宝山铜铅锌矿床是湘南坪宝矿带北段重要的矿床 

之一，矿区岩脉十分发育，以微粒花岗闪长斑岩为主， 

前人对酸性脉岩如花岗闪长斑岩以及呈岩筒产出的花 

岗闪长质隐爆角砾岩进行过研究，均认为宝山矿床的 

成岩成矿时代为燕山早期，年龄集中在  158~182 
Ma [15−19] 之间。而关于基性脉岩的研究未有报道，本文 

作者基于井下岩脉的观察取样，对煌斑岩地球化学特 

征及地质意义进行探讨。 

1  矿区地质概述 

宝山矿区位于坪宝复式向斜的北端，耒阳−临武 

南北向构造带的中段，南岭东西向复杂构造带中段北 

缘，是坪宝矿带中重要的矿床。宝山矿区出露地层有 

泥盆系上统佘田桥组、锡矿山组，石炭系下统孟公坳 

组、石磴子组、测水组、梓门桥组，中上统壶天群。 

其中石磴子组灰岩、测水组砂页岩为本区主要的赋矿 

层位、岩性。矿区构造主要由一系列的倒转背、向斜 

及背、向斜之间的压扭性逆冲走向断层组成。矿区主 

构造线方向为北东­南西。后期横断层 F3 将矿区划分 

为南北两区。矿区与矿床有关的褶皱主要有宝岭倒转 

倾伏背斜、宝岭北倒转向斜、牛心倒转复式背斜、财 

神庙倒转背斜、杉木岭−桂阳−中倒转向斜(见图 1)。 

图 1  宝山矿区地质图(据文献[20])：C2—P1ht−壶天群；C1z—梓门桥组；C1c—测水组；C1sh—石磴子组；C1m—孟公坳组；D3x 

—锡矿山组；SK—夕卡岩；γδπ—花岗闪长斑岩；γπ—花岗斑岩 

Fig. 1  Geological map of Baoshan deposit  (after Ref.  [20]): C2—P1ht−Hutian Gr; C1z—Zimenqiao Fm; C1c—Ceshui Fm; C1sh— 

Shidengzi Fm; C1m—Menggongqao Fm; D3x—Xikuangshan Fm; SK—Skarn; γδπ—  Granodiorite porphyry; γπ—Granite porphyry
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2  煌斑岩产状及岩石矿物学特征 

宝山矿区的煌斑岩目前在矿区深部−70~110  m 坑 

道 151线出露，侵入地层为下石炭统梓门桥组白云岩。 

岩脉走向约 320°，产状近于直立，宽约 130~150 cm。 

斑晶钾长石粒径约 1~3  cm，沿脉边缘呈定向排列，石 

英斑晶呈聚合粒状，粒度约 1 mm。黑云母斑晶粗大者 

达 2~3 cm。节理裂隙发育，沿裂隙充填有方解石细脉。 

煌斑岩呈灰黑色，典型斑状结构，斑晶占 20%， 

基质占 80%，斑晶主要为辉石、斜长石、黑云母和石 

英，石英斑晶边缘遭受溶蚀磨圆。长石有泥化反应边， 

是捕掳晶。基质主要为细粒黑云母和斜长石、辉石、 

钾长石；基质中黑云母水化普遍，解理不清晰；副矿 

物主要有磁铁矿、钛铁矿、磷灰石、锆石等。煌斑岩 

遭受不同程度的蚀变，常见的蚀变类型有绿泥石化、 

碳酸盐化、绢云母化、高岭土化等。根据其斑晶和基 

质矿物成分将其定名为辉石煌斑岩。 

3  样品制备与测试分析 

选择新鲜岩石样品，通过人工重砂法从样品中分 

选出锆石，样品靶的制备参考了 SHRIMP定年锆石样 

品的制备方法 [21] ，锆石 CL 图像在西北大学扫描电镜 

室完成。 

锆石  U­Pb 年龄分析用西北大学地质学系大陆动 

力学国家重点实验室 Agilent 7500a型 ICP­MS仪器与 
193nm的 ArF准分子激光器完成。具体分析测试及数 

据处理方法见文献[22−26]。 

本次工作对 7 件煌斑岩样品进行了主量、微量和 

稀土元素的分析测试。主量元素、微量和稀土元素分 

析样品在武汉地质实验研究所完成。主量元素使用 X 
荧光光谱仪(1800)加湿法分析，稀土元素分析采用质 

谱仪(ThermoelementalX7)，微量元素采用等离子发射 

光谱仪(ICAP6300)和示波极谱仪(JP−2)。常量及微量 

元素图解绘制程序据文献[27]。 

4  测试结果分析 

4.1  煌斑岩岩石化学特征 

本次研究分析了 7个样品(见表 1)， 其中一个样品 
16­2，因碳酸盐脉发育，烧失量过高，不参与岩石命 

名投影图和微量元素配分型式作图，但稀土元素分析 

结果可用。 

表 1  宝山煌斑岩的主量元素含量 

Table 1  Major element analyses    of    the Baoshan lamprophyre 

主量元素 样品 14­2  样品 14­3  样品 16­2b  样品 16­3  样品 14­1  样品 16­2  样品 16­4 

w(SiO2)/%  50.33  51.23  50.42  50.72  51.29  35.27  50.44 

w(TiO2)/%  1.13  1.10  1.23  1.23  1.16  1.16  1.17 

w(Al2O3)/%  14.96  14.65  16.20  15.91  15.25  14.34  15.61 

w(Fe2O3)/%  3.01  2.94  3.44  2.81  3.30  9.24  2.84 

w(FeO)/%  4.40  4.35  4.20  3.97  4.15  0.32  4.00 

w(MnO)/%  0.17  0.17  0.15  0.22  0.17  0.64  0.21 

w(MgO)/%  4.97  5.07  4.38  4.46  4.51  0.32  4.03 

w(CaO)/%  8.40  8.92  5.96  6.44  7.15  18.65  6.84 

w(Na2O)/%  1.83  1.95  1.05  0.53  0.89  0.06  0.63 

w(K2O)/%  3.76  3.68  4.07  4.12  3.77  0.12  4.13 

w(P2O5)/%  0.52  0.51  0.58  0.58  0.50  0.55  0.51 

w(CO2)/%  3.13  2.58  4.05  4.05  3.45  14.32  4.54 

w(H2O + )/%  3.13  2.56  3.96  4.73  4.16  4.91  4.54 

烧失量/%  5.80  4.66  7.91  8.39  7.23  19.14  9.47 

总量/%  99.74  99.71  99.69  99.77  99.75  99.90  99.49 

w(Na2O+K2O)/%  5.59  5.63  5.12  4.65  4.66  0.18  4.76 

K2O/Na2O  2.05  1.89  3.88  7.77  4.24  2.00  6.56 

σ43  3.68  3.45  2.95  2.31  2.23  −0.01  2.48
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从表 1可以看出， 除了样品 16­2碳酸盐细脉发育 

之外，本区煌斑岩  w(SiO2)为  50.23%~51.29%， 
w(Na2O+K2O)为  4.65%~5.63%，K2O/Na2O  为  1.89~ 
7.77，表明本区煌斑岩为一种富碱、高钾、中等 Ti含 

量的基性脉岩。里特曼组合指数 σ为 2.23~3.68，属于 

亚碱性岩系；在  w(Na2O+K2O)—w(SiO2)图上(见图 
2(a))， 所有样品落在 ROCK(1987) [1] 圈定的钙碱性煌斑 

岩范围内；在 w(SiO2)—Nb/Y判别图上(见图 2(b))， 样 

品均落入碱性玄武岩范围，结合路凤香 [3] 提出的分类 

方案,本区煌斑岩为碱性玄武岩系列钾质钙碱性煌斑 

岩，与邻区锡矿山矿区煌斑岩类型相同 [10−11] 。 

依据常量元素数据计算了标准矿物组成，主要矿 

物有石英(6.35%~22.94%)、长石、辉石等，其中石英 

含量较多，与镜下观察到的石英斑晶现象相吻合，本 

区煌斑岩为 SiO2 过饱和煌斑岩。 标准矿物中钾长石含 

量最高 (22.38%~25.72%)，辉石以紫苏辉石为主 
(15.8%~18.07%)。 

4.2  过渡元素特征 

本区煌斑岩的过渡元素含量(见表  2)与  ROCK [30] 

图  2  煌斑岩的  w(Na2O+K2O)—w(SiO2)图(a) [1] 和  w(SiO2)—Nb/Y 图(b) [28] ：UML—超镁铁煌斑岩；LL—钾镁煌斑岩；CAL 

—钙碱性煌斑岩 

Fig.  2  Diagram  of  w(Na2O+K2O)—w(SiO2)  (a) [1]  and  Diagram  of  Nb/Y—w(SiO2) [28] : UML—Ultra­mafic  lamprophyre;  LL— 

Lamproite; AL—Alkaline lamprophyre; CAL—Calc­alkaline lamprophyre 

表 2  宝山煌斑岩的微量元素含量 

Table 2  Trace elements analyses of Baoshan lamprophyre 

元素 样品 629­14­2 样品 629­14­3  样品 16­2b  样品 16­5  样品 629­14­1  样品 16­2  样品 16­3  云煌岩 (1) 

w(Sc)/10 −6  26.20  24.30  26.10  27.00  16.72  26.90  20.99  16.00 

w(V)/10 −6  179.00  171.00  194.00  191.00  185.80  182.80  173.70  165.00 

w(Cr)/10 −6  55.60  52.30  59.30  52.60  58.45  44.33  55.42  360.00 

w(Co)/10 −6  22.10  21.50  18.80  19.30  20.32  25.75  20.81  37.00 

w(Ni)/10 −6  12.20  12.10  11.50  9.62  19.15  12.49  11.79  200.00 

w(Cu)/10 −6  21.60  18.90  23.40  19.10  22.27  20.13  20.98  50.00 

w(Zn)/10 −6  164.00  146.00  204.00  140.00  189.60  1012.70  221.45  120.00 

w(Rb)/10 −6  190.00  194.00  197.00  256.00  236.39  7.08  202.60  193.00 

w(Ba)/10 −6  930.00  921.00  959.00  934.00  893.70  18.10  960.60  1800.00 

w(Th)/10 −6  18.50  16.40  19.00  17.60  17.86  16.85  16.73  26.00 

w(U)/10 −6  5.61  5.23  5.93  5.45  5.62  10.76  5.96  6.00 

w(Ta)/10 −6  3.98  3.25  3.51  3.42  3.02  2.99  2.77  19.00 

w(Nb)/10 −6  44.60  39.20  44.80  43.70  41.67  48.78  50.24  1.30 

w(Sr)/10 −6  454.00  561.00  306.00  275.00  307.00  46.80  225.00  950.00 

w(Zr)/10 −6  180.00  170.00  207.00  202.00  193.40  187.20  186.30  300.00 

w(Hf)/10 −6  4.90  4.49  5.41  5.23  5.00  4.60  4.50  11.00 

(1) 据 ROCK(1990) [30] ；
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统计的全球云斜煌斑岩过渡元素含量相比较，前者具 

有较高的  Zn  含量，本区煌斑岩的  w(Sc)为  16.72× 
10 −6 ~27.00×10 −6 ,  w(Cr)为 52.30×10 −6 ~59.30×10 −6 ， 
w(Co)为  18.80×10 −6 ~25.75×10 −6 ，w(Ni)为  9.62× 
10 −6 ~19.15×10 −6 ，除 Sc 在 ROCK [30 ]统计的原生岩浆 

标准之内(w(Sc)为 15×10 −6 ~30×10 −6 ，w(Cr)为 200× 
10 −6 ~500×10 −6 ，w(Co)为  25×10 −6 ~80×10 −6 ，w(Ni) 
为 90×10 −6 ~700×10 −6 )，其他元素 Cr、Co、Ni 含量 

均较低。宝山煌斑岩的过渡族元素显示出强烈分离的 

型式(见图  3)，与  JAGOUTZ 等 [29] 估算的原始地幔相 

比，本区煌斑岩相对富集  Ti、Mn 和  Zn，明显亏损 
Cr、Co 和  Ni，这与许多幔源基性超基性岩过渡元素 

含量特征一致。 

4.3  稀土元素及微量元素特征 

煌斑岩以 LREE 强烈富集为特征，轻重稀土分馏 

较为显著，(La/Yb)N 为 18.83~23.94，LREE/HREE 为 
13.53~16.48，δEu 在 0.80~0.87 之间变化(见表 3)。在 

球粒陨石标准化 [30] 配分曲线中(见图  4(a))，所有样品 

都表现为 LREE强烈富集、 HREE亏损的右倾型特征， 

且所有的样品都具有弱的负  Eu 异常，暗示在成岩过 

程中可能存在不明显的斜长石分离结晶作用。煌斑岩 

的稀土元素特征表明本区煌斑岩岩浆可能来源于相对 

富集稀土元素的地幔。 

图 3  煌斑岩的过渡元素配分曲线 [29] 

Fig. 3  Distribution  pattern  for  transitional­metal  elements  of 

Baoshan lamprophyre 

表 3  宝山煌斑岩的稀土元素含量 

Table 3  REE analyses of Baoshan lamprophyre 

元素 样号 629­14­2  样号 629­14­3  样号 16­2b  样号 16­5  样号 14­1  样号 16­2  样号 16­3 

w(La)/10 −6  77.90  72.60  77.10  76.80  73.27  74.28  70.39 

w(Ce)/10 −6  145.00  137.00  141.00  143.00  139.30  125.80  125.60 

w(Pr)/10 −6  15.80  15.00  14.90  15.40  15.50  14.24  14.50 

w(Nd)/10 −6  56.40  53.00  51.80  54.50  54.37  50.67  52.32 

w(Sm)/10 −6  9.69  9.13  8.47  9.10  8.76  8.44  8.39 

w(Eu)/10 −6  2.44  2.37  2.04  2.22  2.29  2.20  2.04 

w(Gd)/10 −6  7.74  7.26  6.48  7.40  6.95  6.60  6.40 

w(Tb)/10 −6  1.11  1.07  0.96  1.07  1.03  1.05  0.96 

w(Dy)/10 −6  5.15  4.88  4.34  4.96  4.85  5.23  4.56 

w(Ho)/10 −6  0.99  0.92  0.81  0.95  0.91  0.97  0.81 

w(Er)/10 −6  2.82  2.69  2.39  2.82  2.27  2.83  2.29 

w(Tm)/10 −6  0.44  0.43  0.37  0.45  0.31  0.46  0.35 

w(Yb)/10 −6  2.75  2.53  2.31  2.70  2.24  2.83  2.25 

w(Lu)/10 −6  0.34  0.33  0.30  0.35  0.33  0.41  0.33 

w(Y)/10 −6  26.50  25.00  21.90  25.80  24.70  25.81  22.23 

ΣREE/10 −6  328.57  309.21  313.26  321.72  312.37  296.00  291.19 

LREE/10 −6  307.23  289.10  295.31  301.02  293.49  275.62  273.24 

HREE/10 −6  21.34  20.11  17.95  20.70  18.89  20.37  17.95 

LREE/HREE  14.40  14.38  16.45  14.54  15.54  13.53  15.22 

(La/Yb)N  20.32  20.58  23.94  20.40  23.43  18.83  22.45 

δEu  0.83  0.86  0.81  0.80  0.87  0.87  0.82 

δCe  0.96  0.96  0.96  0.96  0.96  0.89  0.91
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图 4  宝山矿区的稀土元素配分图解(a)和微量元素蛛网图(b)，标准化值转引自文献[31]，绘制程序引自文献[27] 

Fig. 4  Chondrie­normalized REE distribution patterns (a)  and primitive mantle­nomalized  trace  element patterns (b) of Baoshan 

lamprophyre 

在原始地幔标准化地球化学蛛网图(见图 4(b))中， 

所有样品均表现为  Th 强烈富集并伴有  Ce 弱富集和 
K、Sr、Ba 相对亏损的特征，具有钙碱性岛弧玄武岩 

分布模式 [32−33] 。另外，所有样品中 LILE 和 LREE 相 

对HFSE富集的特征可以从Ba/Nb和 La/Nb相关图(见 

图 5)中明显地看出。煌斑岩的 Ba/Nb和 La/Nb比值与 

大陆地壳平均组成相同，而高于 N­MORB、OIB的相 

应比值，暗示了大陆地壳物质(花岗质岩石，麻粒岩、 

沉积物等)在煌斑岩岩浆生成中起了重要作用 [33] 。 由于 

化学蚀变作用，样品 16­2 的 K、Rb、Sr、Ba 含量明 

显降低。 

图  5  宝山煌斑岩的  Ba/Nb—La/Nb 相关图解(底图据文献 

[33]) 

Fig.  5  Plot  of  Ba/Nb  vs  La/Nb  showing  the  lamprophyres 

from Baoshan (After Ref. [33]) 

4.4  煌斑岩锆石 U­Pb同位素特征 

本次  U­Pb 测年锆石均为具有韵律环带的锆石， 

显示为岩浆结晶形成。 锆石外形有长柱状和短柱状(见 

图 6)，锆石 CL 图像显示多数锆石有溶蚀亮化边，边 

缘不平直，用于测试的锆石 Th/U值较高(0.22~1.27， 

见表 4)，表明为岩浆成因。多数锆石具核幔结构。测 

点选择在晶体两端，所测  12 颗锆石的分析点均位于 
U­Pb 谐和线上或其附近， 206 Pb/ 238 U 加权平均年龄为 
156.0 Ma±2.0 Ma(1σ，MSWD=2.9，见图 7(a))，代表 

了锆石的结晶年龄。 

4.5  锆石 Hf同位素特征 

锆石Hf同位素测定点选在锆石U­Pb测试的同位 

点，即选取年龄谐和性好的点。样品中锆石(10 个点) 
的 176 Yb/ 177 Hf 和 176 Lu/ 177 Hf 值变化范围较大，分别为 
0.015 109~0.046 884和 0.000 549~0.001 665 (见表 5)； 

初始  176 Hf/ 177 Hf  值和  εHf(t)值分别为  0.282  360~ 
0.282 476(见表 5)和−6.99~−11.17(见表 5)， 模式年龄为 
1 092~1 243 Ma，平均为 1 167 Ma；平均地壳模式年 

龄为  1  763  Ma，与矿区北部花岗闪长斑岩一致(t 为 
165.3 Ma±3.3 Ma，εHf(t)为−5.87~−9.42) [19] ，在 εHf (t)— 
t图解(见图 7(b))投点位于球粒陨石和下地壳演化线之 

间，结合锆石的形态特征，推测锆石是岩浆上升过程 

的捕获锆石，煌斑岩的实际成岩年龄要小于 156 Ma， 

可能与锡矿山煌斑岩年龄接近。 

在表 5 中，εHf(t)表示样品偏离球粒陨石的程度； 
TDM1  表示样品单阶段演化模式年龄；TDMC 表示平均 

地壳模式年龄； 现今球粒陨石和亏损地幔的 176 Hf/ 177 Hf 
和 176  Lu/ 177 Hf 分别为 0.282  772 和 0.033  2 及 0.283  25 
和 0.038 4； ( 176 Lu/ 177 Hf)C=0.015； t为锆石的结晶年龄； 
s为标准差。
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表 4  宝山煌斑岩中锆石 U­Pb 同位素组成及年龄 

Table 4  Zircon La­ICPMS U­Pb isotopic data and ages of Baoshan lamprophyre 

组成/10 −6  207 Pb/ 206 Pb  206 Pb/ 238 U 
样号 

Pb*  Th  U  Th/U  比值  1σ  年龄/Ma  1σ  比值  1σ 
20121109L06  16.01  276  544  0.51  0.048 97  0.002 29  146.3  105.96  0.024 77  0.000 47 
20121109L07  35.98  486  1242  0.39  0.049 27  0.001 73  160.8  80.04  0.024 91  0.000 44 
20121109L09  21.91  204  809  0.25  0.047 84  0.001 84  90.6  89.73  0.024 49  0.000 44 
20121109L20  39.60  342  1465  0.23  0.049 16  0.001 69  155.7  78.34  0.023 86  0.000 41 
20121109L21  32.03  273  1132  0.24  0.051 65  0.001 87  269.8  80.74  0.025 04  0.000 44 
20121109L22  39.08  341  1409  0.24  0.049 66  0.001 72  179.3  78.89  0.024 37  0.000 42 
20121109L23  8.66  306  264  1.16  0.048 65  0.002 61  131.0  121.75  0.023 25  0.000 44 
20121109L24  22.99  128  335  0.38  0.050 94  0.003 19  238.0  138.14  0.023 83  0.000 50 
20121109L27  53.73  693  1905  0.36  0.050 14  0.001 69  201.6  76.38  0.023 91  0.000 41 
20121109L29  29.10  1043  823  1.27  0.049 47  0.001 91  170.4  87.65  0.024 8  0.000 43 
20121109L30  13.08  434  363  1.20  0.050 78  0.002 33  230.9  102.59  0.025 08  0.000 46 
20121109L31  33.90  270  1211  0.22  0.050 62  0.001 79  223.4  79.82  0.025 31  0.000 43 

206 Pb/ 238 U  207 Pb/ 235 U  208 Pb/ 232 Th 
样号 

年龄/Ma  1σ  比值  1σ  年龄/Ma  1σ  比值  1σ  年龄/Ma  1σ 
20121109L06  157.7  2.94  0.167 27  0.006 54  157.0  5.69  0.008 39  0.000 20  168.9  4.07 
20121109L07  158.6  2.75  0.169 26  0.004 21  158.8  3.66  0.008 57  0.000 16  172.4  3.22 
20121109L09  155.9  2.75  0.161 60  0.004 72  152.1  4.13  0.008 41  0.000 19  169.3  3.90 
20121109L20  152.0  2.58  0.161 79  0.003 75  152.3  3.28  0.007 92  0.000 15  159.5  3.07 
20121109L21  159.5  2.74  0.178 41  0.004 58  166.7  3.95  0.008 81  0.000 18  177.4  3.64 
20121109L22  155.2  2.64  0.166 94  0.003 95  156.8  3.43  0.008 25  0.000 16  166.0  3.23 
20121109L23  148.2  2.79  0.156 01  0.007 29  147.2  6.41  0.007 19  0.000 15  144.9  3.02 
20121109L24  151.8  3.12  0.167 41  0.009 40  157.2  8.18  0.007 84  0.000 29  157.8  5.78 
20121109L27  152.3  2.56  0.165 33  0.003 63  155.4  3.16  0.007 62  0.000 13  153.5  2.64 
20121109L29  157.9  2.72  0.169 16  0.004 83  158.7  4.20  0.007 34  0.000 12  147.7  2.49 
20121109L30  159.7  2.88  0.175 59  0.006 58  164.3  5.69  0.007 81  0.000 15  157.3  2.97 
20121109L31  161.1  2.72  0.176 62  0.004 27  165.1  3.68  0.008 87  0.000 18  178.5  3.54 

Pb*为全铅，σ 为均方差。 

图 6  锆石阴极发光(CL)图像(其中 44 μm圆表示铪同位素测试点，锆石上方数字代表 εHf(t)值；30 μm圆表示 U­Pb年龄分析 

点，图像下面数字为 206 Pb/ 238 U年龄；分析点号位于锆石上方；线比例尺长度为 100 μm。) 

Fig. 6  CL images of zircons from Baoshan lamprophyre (Rounded circles indicate the locations of Hf and U­Pb analyses, with εHf(t) 

values and 206 Pb/ 238 U ages. Spot numbers are labeled on the top of zircons. The line scales are 100 μm.)
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表 5 宝山煌斑岩中锆石 Hf 同位素组成 

Table 5 Zircon Hf isotopic data and ages of Baoshan lamprophyre 
176 Hf/ 177 Hf  176 Yb/ 177 Hf  176 Lu/ 177 Hf 

样品编号 
比值  2s  比值  2s  比值  2s 

629­14­03  0.282 427  0.000 014  0.039 681  0.000 118  0.001 300  0.000 004 

629­14­04  0.282 424  0.000 013  0.046 884  0.000 151  0.001 665  0.000 004 

629­14­06  0.282 361  0.000 009  0.015 109  0.000 043  0.000 549  0.000 001 

629­14­13  0.282 439  0.000 010  0.033 503  0.000 047  0.001 323  0.000 002 

629­14­14  0.282 428  0.000 011  0.035 014  0.000 189  0.001 280  0.000 006 

629­14­15  0.282 415  0.000 011  0.030 695  0.000 053  0.001 159  0.000 001 

629­14­16  0.282 389  0.000 011  0.028 152  0.000 113  0.000 987  0.000 004 

629­14­19  0.282 464  0.000 008  0.035 100  0.000 069  0.001 327  0.000 002 

629­14­21  0.282 479  0.000 011  0.027 465  0.000 261  0.000 973  0.000 009 

629­14­23  0.282 461  0.000 009  0.018 404  0.000 071  0.000 795  0.000 003 

样品编号  t/Ma  εHf(0)  fLu/Hf  ( 176 Hf/ 177 Hf)i  εHf(t)  TDM1/Ma  TDMC/Ma 

629­14­03  158  −12.21  −0.96  0.282 423  −8.89  1 176  1 767 

629­14­04  159  −12.29  −0.95  0.282 419  −8.99  1 191  1 774 

629­14­06  156  −14.53  −0.98  0.282 360  −11.17  1 243  1 909 

629­14­13  152  −11.76  −0.96  0.282 436  −8.56  1 158  1 743 

629­14­14  160  −12.17  −0.96  0.282 424  −8.81  1 173  1 764 

629­14­15  155  −12.62  −0.97  0.282 412  −9.34  1 187  1 794 

629­14­16  148  −13.55  −0.97  0.282 386  −10.39  1 219  1 854 

629­14­19  152  −10.88  −0.96  0.282 461  −7.67  1 123  1 687 

629­14­21  158  −10.36  −0.97  0.282 476  −6.99  1 092  1 649 

629­14­23  161  −11.00  −0.98  0.282 459  −7.55  1 112  1 686 

图 7  宝山煌斑岩的锆石 U­Pb 年龄(a)和宝山煌斑岩锆石铪同位素 εHf(t)—t图(b) 

Fig. 7  U­Pb ages of zircons from Baoshan lamprophyre (a) and εHf(t)—t diagram of zircon of Baoshan lamprophyre (b) 

5  煌斑岩形成构造环境和岩石成因 

Nb、Ti、Y为高场强元素，它们受到后期作用影 

响不大，故常用来判断岩浆岩的构造环境。在 Zr/Y— 
Y图(见图 8(a))和 2Nb­Zr/4­Y图(见图 8(b))中样品点投 

在大陆板内环境，本区  Nb/Y  和  Ti/Y  比值分别为 
0.44~0.64 和  255~336，均略低于锡矿山煌斑岩 [11]  ， 

在  Ti/100­Zr­3Y 图(图略)中也投入板内环境。这与岩
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石微量元素具有的岛弧玄武岩特性不一致，暗示在岩 

浆形成前发生过地壳物质的俯冲。宝山矿区处于湘桂 

坳陷带，区域上位于扬子板块和华夏板块相交接的过 

渡地区，地表为晚古生代地层覆盖区，印支运动使得 

晚古生代盖层发生褶皱，在随后的燕山期早期因古太 

平洋板块持续快速低角度俯冲作用 [34] ， 可能诱发了湘 

南深部岩石圈上地幔的热扰动 [11] 。华南中生代受到板 

块构造体制和板内体制的联合制约，这是华南地表发 

育挤压逆冲推覆构造，而深部地壳却发生重熔形成花 

岗岩的根本原因。 由于区域性伸展及断裂的深切作用， 

使得早期被俯冲物质交代的岩石圈地幔减压熔融形成 

基性岩浆，宝山矿区的煌斑岩可能是这期基性岩浆活 

动的产物。 

关于煌斑岩的成因，目前主要存在三种不同的模 

图  8  宝山煌斑岩构造判别图(Zr/Y—Zr 图(a)据  PEARCE 

等 [35] ，A、B和 C分别代表WPB、IAB和MORB。Nb­Zr­Y 

图(b)据  MESEHEDE [36] ：A1+A2—板内碱性玄武岩；A2+C 

—板内拉斑玄武岩；B—P 型  MORB；D—N 型  MORB； 

C+D—火山弧玄武岩。) 

Fig. 8  Tectonic discriminates diagrams for lamprophres from 

Baoshan:  (a)  Zn­Y­Zr  diagram  from  PEARCE  et  al [35] ;  (b) 

Nb­Zr­Y diagram from MESEHEDE [36] 

式：一是富集地幔部分熔融模式 [5,  37] ，二是基性岩浆 

陆壳混染模式 [38] 。三是幔源+陆壳混染模式 [11] 。 

宝山煌斑岩微量、稀土元素以相对均一或变化不 

大为特征，表明岩浆上升过程中地壳混染作用不大。 

本区煌斑岩的 Nb/Ta为 11.2~18.4。 平均比值为 13.86， 

略 低 于 原 始 地 幔 的 值 (17.5±2.0) ； Zr/Hf  值 为 
36.73~41.40， 平均比值为 38.89，接近原始地幔的值 
(36.27±2.0)；同时，这两个值都远大于陆壳的相应值 
(11和 33) [39] 。这些表明本区煌斑岩受到大比例的地壳 

混染的可能性不大 [40−41] 。煌斑岩的主要元素地球化学 

特征可反映其源区的性质， 本区煌斑岩为钙碱性系列。 

从图 4 可以看出，样品具有较明显的 Nb、Ta 亏损和 

较低的 Nb/La值(0.54~0.71)。Nb、Ta亏损是板块俯冲 

环境中喷发岩浆的典型特征，这些表明其是不可能直 

接由软流圈部分熔融产生的 [42] ，其源区可能因受到俯 

冲作用的影响，混合了部分地壳物质。 

6  结论 

1)  宝山煌斑岩主要矿物成分为辉石、长石和云 

母，标准矿物含石英，为 SiO2 过饱和煌斑岩，岩石化 

学成分显示组合指数(σ)为  2.23~3.68，结合  SiO2— 
Nb/Y 图解、TAS 图解和 SiO2—(Na2O+K2O)图解，可 

认为本区煌斑岩属于碱性系列钾质钙碱性煌斑岩。 
2) 本区煌斑岩稀土元素具有总量高， 无明显负铕 

异常、配分模式呈轻稀土富集的强烈右倾型特征。在 

微量元素蛛网图中，以富集高场强元素 Nb、Ta 亏损 

和 Ti 不亏损，以及 Th 强富集和 Ce 弱富集为特征， 

具有岛弧钙碱性玄武岩微量元素分配模式，反映地幔 

源区有俯冲组分特点； 煌斑岩浆可能为富含 REE和高 

场强元素的俯冲带流体交代过的富集地幔部分熔融所 

产生的岩浆。 
3)  煌斑岩中锆石特征显示为岩浆锆石，其  U­Pb 

谐和年龄为(156±2)  Ma，与矿区花岗斑岩的年龄接 

近，Hf同位素特征显示 εHf (t)值为−6.99~−11.17，锆石 

可能为岩浆上升过程中捕获的成矿期岩体中的锆石， 

煌斑岩实际成岩年龄应小于 156 Ma。 
4)  煌斑岩的构造环境判别图解显示具有板内构 

造环境特点，微量元素配分型式又具有岛弧钙碱性玄 

武岩的微量元素分配型式，表明宝山煌斑岩的地幔源 

区为受早期俯冲地壳物质交代的富集地幔。煌斑岩的 

形成是在华南陆内燕山早期大规模伸展的区域背景下 

沿深大断裂侵位形成的。
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