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2.5D finite element numerical simulation for
electric dipole source on ridge terrain

ZHANG Ji-feng, ZHI Qing-quan, LI Xiu, FENG Bing

(School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China)

Abstract: The topography seriously affects the distribution of electromagnetic field, and the study on distortion law of
topography for the electromagnetic field can make the electromagnetic interpretation more accurate and reliable in the
actual data processing work. The electric dipole source electromagnetic field finite element algorithm of 2.5D rugged
topography was studied by using arbitrary quadrilateral mesh generation for computational domain. Firstly, the
electromagnetic coupled differential equations in wave number domain was deduced, and continuous function was
discretized based on the isoparametric element of interpolation, the wave number domain electromagnetic response is
obtained for the two dimensional geoelectric section by a nonzero element compact storage and large-scale parallel sparse
matrix solver PARDISO. The electromagnetic field space response is got by choosing appropriate wave number of the
inverse Fourier transform. The forward key problems, such as the selection of wave number, source selection and the
auxiliary field solution, were analyzed and studied, which provide a theoretical guarantee for improving the computation
precision and speed. The correctness and high efficient of the algorithm were verified. Finally, the electromagnetic
response characteristics of the trapezoidal hill and valley were analyzed.
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BHTESHL, TR EIS AT O . ik RE
TEALET N M TTHIHEANF 70 DRI B IR 3 4 22,
IEAE XS A 7 R 3 — 2RI S A A, B e n
Ey :Hy =0, A]1330E TR L R

0E, oN¢ § OE .
y y e n
+ N yE +
Z'” {8)6 k2 8x) Oz (k2 82) i Y2y
ik ¢ oH ¢ oH
K, ON; y_8NZ 5 s =
k2 ox Oz 0z Ox
ON? 8Ne A
—Zﬂ NiJg, —2 —J, Jo |+
k, Oox 82

EqmﬁM oNf o

oz ¥ o

]}w@ (A1)

2 0H, oN¢ z 0H, .
+—(= +NZH  +
Z'” {8)6 k2 8x) Oz (k2 Oz ) iy

ke2 ox Oz 82 8x

N, oan ik,2( 6N - ON{ -
:_;.“.DE{NI'ZMSJJ"" k)é [8 Msx+ oz Msz]+

X

Zz[aNf g o jsz]}dxdz (A2)

oz ¥ ox
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s e AR A IR R — 9T, N, MBI AN NY
K e NMATTHY | NS ARITEREL T, M A
YETT,

FATGIN 145 RN BIAT, A B 1 PHES
WA 5 T O~®), XTI FEERREC N W R AL
) € TR
Ny =1/41-HA-m)(-§-n-1)

Ny =1/2(1-E*)(1-7)

Ny =1/41+5)A-m)(E-n-1)
Ny =1/2(1-&)1-1%)

N5 =1/2(1+ &)1 -7%)

Ne =1/41-5A+n)(-E+n-1)
N, =1/2(1-&H(1+7)

Ng =1/41+E)A+n) (& +n-1)

(A3)

BB BN N(AL~A2), IR R XA e 2]
FARAEFR AR, TR RIIC N AT A TR T &y A
PRARH R B AU T RE, Ly 1) F AR 1]«

¢ . (A4)
Zkz}Hj = qujE]
Jj=1 Jj=1

Hrp

Let| P F(GmF(Sn)+F.(&,mF;.(&.n)
kff :J.lj.l{k_z - |J| - +

PII|NENG }dgdn (AS)
it ] 2 B EmEFLEm + F(EmEL(En)
ki :J.lj.l{k_z : |J| : *
2|J|Nf NS }dgdn (A6)
q; =
I 1 I 1 {lk_zyEx(faU)sz(faU)—Ez(faﬂ)ﬂx(faﬂ)}dgdn
R U /1
(A7)
Ji=[ [ Vs oo mlJldgdn  (A8)

S4k, k2=—2j/ , ngk;—kz, Z=1wu » )A):U"'
V=0 +ico H R THRMSHI) .

ERUGERT IS § RO RE, AR
JCAERR @ A j AT AN R 2tk T RE A -

kyy ki o kg g dqn o Qs || B
kyy kyy kg @ G qus || B
kg, kg, kss 4z 9z gss || Eg _
411 92 ~qi5 ki ki kig || Hy
421 92 ~qs  ky Ky kg H,
| =931 —9s2 sy kg1 kg, kgs || Hy
_Jl_
Js
Jy
(A9)
0
0
_0 -

SR R T (A A T F ALY R MY
AR HEFNE PP 881 T SR AP A e AR B AT R v
LN ROCER BN, AL ARSI
FICHPT Y R R

B B: ARUKEATERE
e ARSI A, BUAFAE y AR, .

4 |k2|>> 2| w5, B R4

2 1 2 7
oO’E, 0K,
ot oz

$F B SHAE x ATz J7 1) b B A 4,

s
~kyE, =J, (B1)

(k; +k. +k)E, =-J,, (B2)
2|i2|>> 2| A[i2| >>[k2| 1, B AR FE T

x H z AAARIAAL . 2% BB AR B v s ) B e
HE, Nizgt k1 ER. BRE T k8RR, iR
TE T ko Ak, B PR K BB BRI i/ T 23 ZE By il 8
kv=r/A, A Dy RN ARGE BRI 1) 4 A o — A
H W IR E ). /B 5 Prosisoot, 5
A0 TP R AR TR RO 2 T g . L
£ (x)=exp(ik,x) , 11 RCPBH k. 7€ LANF -
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[ (x) =ik, expl(ik,x)

k

e

(B3)
A B2y, AT B T R g

explik, (x + A)] - explik, (x— A)] _ sin(k,A)
2Ai exp(ik,.x) A

T ke, IR KAB A k=1A, A /NS R,

(B4)
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