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电性源瞬变电磁短偏移探测方法 
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摘 要：为了解决大深度、高分辨探测地下矿产资源的难点问题,基于近区测深的优越性，提出一种电性源短偏 

移瞬变电磁装置(SOTEM)，并对该装置下的探测技术进行研究。通过对时间域近场响应特性以及探测深度等面 

探测能力的分析，认为 SOTEM明显优于长偏移瞬变电磁(LOTEM)。接地线源短偏移瞬变电磁法比回线源瞬变电 

磁法易于施工，且探测深度较大和探测精度相对较高,是一种值得推广的方法。 
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Exploration technique due to grounded wire source with short­offset 
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Abstract:  In order to solve the problem of detecting of underground deep ore target with high­resolution, based on the 
advantage of near field survey, a new configuration named as wire­source with short­offset TEM (SOTEM) was proposed 

for deep detection and the detecting technique was studied. After analyzing the detection ability of  this system, such as 
time­domain response, as well as detecting depth, the conclusion can be drawn that this kind of configuration has more 

merit  than  long­offset  TEM(LOTEM).  The  proposed  method  is  easier  to  operate  and  can  be  used  to  obtain  larger 
detecting depth and higher detecting accurate. It also shows that SHOTEM is a kind of method worth to be developed. 
Key words: grounded wire source; TEM; short­offset; whole field area; response 

作为目前发展最迅速的地球物理勘探方法之一， 

瞬变电磁法近年得到了较广泛的应用。在地面瞬变电 

磁实际测量中， 大多采用回线源的中心方式进行探测， 

并取得了较多的研究和应用成果 [1−3] 。 但回线源的对称 

性使场有相互抵消作用，能量在地层中衰减较快，探 

测深度较浅，且边长较大时不易敷设。另外，磁性回 

线源仅有水平电场分量，易于在低阻层中激发感应电 

流，对探测低阻层十分有利 [4] ，在煤田水文地质物探 

中已成为首选方法。但在探测高阻层时，利用大地表 

面上回线源装置形式往往不能取得好的效果。所以， 

对于寻找深部高阻目标体的油汽勘探中，回线源装置 

很少使用。接地导线源不仅具有水平分量电场，而且 

具有垂直分量电场，水平分量激发的感应电流有利于 

低阻体的探测，垂直分量在地层电性界面感应的电荷 

有利于高阻体的探测 [4] 。 在对地球物理方法技术要求 

越来越高的情况下，深入开展接地源瞬变电磁新技术 
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研究，以便解决瞬变电磁深部精细探测这一科学问题 

具有重要的意义 [5] 。 

长偏移瞬变电磁法是应用较多的电性源瞬变电磁 

法。长偏移是指场点到源点的距离大于 4~6倍探测深 

度。长偏移瞬变电磁法方法在国外研究较多 [5−11] ，在 

我国，长偏移瞬变电磁技术得到一定程度的研究和应 

用 [12−15] ，这些研究成果对推动电性源瞬变电磁法的发 

展起到重要作用。 

但由于该方法要求源点到场点之间的距离较大， 

观测区域受到一定的限制；且随着收发距离的增大， 

信号强度急剧下降，信噪比降低，在一定程度上影响 

探测深度；而且收、发之间可能跨越多个构造单元， 

其间的地质构造、地形起伏等引起电性变化，不利于 

精细探测，使得长偏移瞬变电磁法较多地应用于地质 

构造简单、地形平坦的地区。 
20 世纪 60 年代以后，前苏联学者建立了近区建 

场法 [5] 。由于它相对于远区建场方法具有更大的探测 

深度及更好的探测详细程度，引起了广泛的关注。 
WRIGHT等 [16−18] 和 ZIOLKOWSKI等 [19−20] 提出了多道 

瞬变电磁(MTEM)的概念，并成功地用MTEM这一装 

置进行油汽探测。MTEM方法采用接地导线源、发送 

随机编码、陈列式多道观测，观测方式与地震勘探相 

类似，接收的脉冲响应数据可以像地震数据一样被处 

理。实现地下数千米深目标体的探查。目前，这项技 

术引起了国内专家学者的极大关注。 ALUMBAUGH [21] 

提出了短偏移距的方法，并用此方法对高阻目标体进 

行探测；CUEVAS等 [22−23] 研究了短偏移情况下瞬变电 

磁法对深部高阻层的探测， 认为近区探测具有可行性。 
ZIOLKOWSKI [24] 申报了接地源短偏移变电磁法发明 

专利，电性源瞬变电磁法的装备和软件开发得到越来 

越多的投入，何继善 [25] 提出了电磁法近区探测的可行 

性。 上述新的研究成果促进了瞬变电磁的应用和发展。 

对于深部目标探测来说，接地导线源瞬变电磁法 

可以在近场观测并获得较大的探测深度是非常有意义 

的研究。本文作者提出了电性源瞬变电磁短偏移 
(SOTEM)深部探测装置。与  LOTEM  定义不同， 
SOTEM 是指场点到源点距离与探测深度接近或者略 

小于探测深度的观测装置，开展该装置下的技术研究 

对于深部探矿具有重要意义。 

长偏移瞬变电磁法与可控源音频大地电磁法 
(CSAMT)工作方式基本相似，可以实现深部探测。但 

是，短偏移瞬变电磁法的探测能力及探测深度等问题 

目前研究较少，还需要通过理论分析、数据对比、实 

例验证等手段进行充分论证。 

1  短偏移装置简介 

图 1 所示为本文作者提出的电性源短偏移探测装 

置示意图。包括立体示意图和平面示意图。其特点是 

场源相对固定，可使用较大的场源，可在场源两侧多 

点观测，工作效率较高。使用该方法，可以实现对地 

下矿体快速三维立体、大深度、高精度探测。 

图 1  电性源短偏移装置示意图：(a) 三维图；(b) 平面图 

Fig.  1  Schematic  diagram  of  SHOTEM  system:  (a)  3­D 

scheme; (b) Plane survey diagram 

工作方式与一般情况下的激发极化法扫面基本类 

似。布置好发射线源 AB后，采用短偏移(收发距接近 

探测深度或者小于探测深度)的方式，在 AB两侧一定 

位置范围内进行面积性旁线测量勘探，观测网度要求 

与瞬变电磁法的规范相同。使用的仪器可以是  V8、 
GDP32等，可以用探头接收磁场信号，也可以用电极 

接收电场信号，施工方法与 LOTEM 的相同，只是采 

用短偏移形式，观测区域在电性源的近场区域和中场 

区域内。在旁线扫面测量时，可以采取逐点移动、单 

点测量的方式，也可以多道同时测量的排列形式，并 

实现空间多次覆盖，资料处理采用全场域技术进行 

解释。
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2  近场响应特性分析 

在深部探测中，接地源电磁法主要有可控源音频 

大地电磁法(CSAMT)和瞬变电磁法(TEM)。在近区情 

况下，由于偶极子近似，均匀半空间 CSAMT 方法的 
6个分量响应在直角坐标中可表示为 [25−26] 
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式中：Ex、Ey 和 Ez 分别为 x、y和 z方向的电场强度； 
Hx、Hy 和 Hz 分别为 x、y和 z方向的磁场强度；I为发 

射电流；AB 为发射偶极长度；r 为收发距离；θ 为  r 
与 AB的夹角。 

在近区情况下，只有电场水平方向与垂直方向的 
2 个分量与大地电阻率有关，但这 2 个分量又与频率 

无关，其他 4 个分量已经不能反映地层电性结构，因 

此，近区场不能进行频率测深， 只可以进行几何测深， 

这说明在激励源近区，以感应场为主，源消失则场消 

失，是几何测深的场源；远区场以辐射场为主，可以 

脱离场源独立存在， 是频率测深的场源 [26] 。 也就是说， 

频率域电磁法无法将一次场和二次场分离开来，处于 

近区的场点感应场占优势，失去了以频变为特征的探 

测能力，只保留了某些分量的几何探测能力。 

虽然时间域响应理论公式建立在频率域响应公式 

基础上，但频率域场与时间域场还存在一定的差异 

性 [4] ，由于频率域电磁测深测量的是总场，在远场(偏 

移距离比趋肤深度大得多)情况下，一次场相对较弱， 

二次场相对较强，易于识别二次场信息；而在近区情 

况下，一次场较强，二次场相对较弱，携带地质体信 

息的二次场被强大的一次场所覆盖。时域瞬变场激励 

源关断后的观测方式，分离出了二次场，在任何场区 

观测的都是激励源关断后的辐射场。由此获得了近区 

探测能力，不仅能进行短偏移距勘探，还能在奇点处 

的源点进行零偏移距勘探。 

对于 TEM近场探测可行性，可进行如下的计算。 

图 2 所示为一个放置在均匀半无限空间地面的电偶极 

子示意图，坐标原点 O(0，0)为发射 AB的中点，发射 
AB的长度为 2a，接收点坐标为(xR，yR)，偶极子微元 

的坐标为(x，0)。 

图 2  电性源迭加偶极子响应示意图 

Fig. 2  Diagrammatic explanation for calculating response for 

wire loop source 

在均匀半空间情形下，水平电偶极子源  Ids 的垂 

直磁场频域解的解析表达式 [6, 27] 如下： 
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式中：I表示发射电流；dl表示偶极子的长度；t是采 

样时间；r 是收发距离；ρ 是电阻率。沿  AB 对式(7) 
进行积分，得 
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由式(10)可以得到均匀半空间情况下电性源瞬变 

电磁响应。 

对于层状介质，式(10)变为 [5] 
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根据式(7)~(11)进行电性源瞬变电磁场响应计算。 

地电模型如下：ρ1=100 Ω∙m，ρ2=30 Ω∙m，h1=1 000 m。 

图 3所示为线源长度为 1 000 m、发送电流为 10 A时 

不同偏移距离情况下(r=700 m，1 000 m，2 000 m， 
3 000 m，4 000 m)磁场曲线的计算结果。由图 3可见， 

只要信噪比足够大，利用小极距 r 可探测大深度，就
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像图  3 所显示的那样，r=700  m 的极距就可探测到 
1  000  m 深的目标层。这是因为瞬变场没有一次场的 
“掩盖”，探测深度与偏移距离无关，主要取决于衰减 

时间。 

图 3  不同偏移距离情况下的磁场曲线 

Fig. 3  Magnetic decay curves at different offsets 

3  TEM 近场探测深度分析 

在理论分析中， 扩散深度定义为给定时间内 TEM 
涡流场极值所能达到的最大深度，SPIES [28] 给出的扩 

散深度(d)公式为 

) /( 
π 
4 

0 σµ t d =  (12) 

式中：t为时间；σ为电阻率。 

由式(12)可见，扩散深度主要与时间及地电结构 

有关， 与场源类型和偏移距离无关 [29] 。 在理论研究中， 

大多根据式(12)来计算特定地电结构情况下电磁场在 

某一时刻的扩散深度。 

对电性源短偏移装置的探测深度进行如下定量分 

析。设均匀半空间的响应值(背景场，电阻率为  500 

Ω∙m)为  V0，均匀半空间中有一个良导薄层(埋藏深度 

为 1 000 m，电阻率为 50 Ω∙m)引起的响应值(异常场) 

为 Vc，按式(7)~(11)计算不同偏移距离情况下的响应。 

图 4所示为偏移距为 1 000 m时的响应曲线，虚线为 

背景模型的响应曲线，实线为良导薄层模型的响应 

曲线。

计算两者的比值  c 0 / V V ，当  c 0 / 50% V V ≥ 时，在 

此条件下时间所对应的扩散传播深度为有效探测深 

度 [4] ，按式(12)计算深度，计算结果如表 1所列 [5] 。 

图 4  良导薄层模型响应曲线 

Fig. 4  Response curves of thin conductance layer model 

表 1  有效探测深度的计算结果 

Table  1  Calculated  results  of  effective  detecting  depth  (H= 

1 000 m, AB=1 000 m, I=10 A) 

偏移 

距离/m 
250  500  700  1 000  2 000  3 000  4 000 

探测 

深度/m 
3.6  4.1  4.2  4.2  4.1  3.9  3.7 

由表 1分析可知，当  1 ~ 7 . 0 = 
H 
r 

时，探测深度较 

大。此外，近场区探测深度明显大于远场区。 

在实际应用中，对于有效探测深度，往往要考虑 

设备的功能及接收仪器的灵敏度、测量精度、噪声强 

度和地电参数等因素。 TEM的实际探测深度定义为信 

号衰减到噪声电平时的扩散深度。在实际工作中，往 

往根据以下公式估计电性源远场区探测深度(df) [27, 30] ： 

4 / 1 
f  ) ( 28 . 0 

η 
ρAB I d =  (13) 

式中：η为仪器最小可分辨电压；ρ为地层电阻率；I0 
为发送电流；AB为发射线长度。 

对于近场区探测深度(dn)， 需要采用以下公式进行 

计算： 

5 / 1 
n  ) ( 48 . 0 

η 
ρAB Ir d =  (14) 

由式(13)和(14)可知：为了实现深部探测，除了需 

要较长的时间延迟，还需要有较强的信号以及较高的 

信噪比。在同样条件下，近场区信号明显比远场区信 

号强，信噪比高，所以，瞬变电磁可以在短偏移情况 

下实现大深度探测。 

为了进一步对比远场区和近场区的探测深度，给
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定发射电流和 AB长度，分别采用式(13)和(14)进行计 

算远场区探测深度(df)和近场区探测深度(dn)，计算结 

果如表 2 所列。从表 2 可以看出：近场探测深度大于 

远场区探测深度。 

表 2  远场区和近场区探测深度 

Table 2  Calculated detecting depths using far­zone mode and 

near­zone mode 

I/A  ρ/(Ω∙m)  AB/m  r/m  df/m  dn/m 
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300 

526.4 

501.9 

576.5 

625.2 

200 

300 10  100  500 

500 

845.9 

842.5 

913.7 

1 012.0 

40 

0

700 
20  300  1 000 

1 000 

1 574.5 

1 590.9 

1 779.3 

1 910.9 

1 000 

3 000 50  1000  4 000 

4 000 

3 783.3 

3 853.1 

4 800 

5 084.2 

4  结论 

1) 采用电性源装置探测易于实现一发多收， 及类 

地震的施工和资料处理方法，生产效率相对较高。对 

于工程勘查、煤田勘探，由于矿区干扰大，利用电性 

源瞬变电磁测深，发展大功率发射、小偏移距(发射与 

接收间距离)接收方法和技术，以提高信噪比，是一种 

发展方向。由于采用小偏移距测量，这样可使测量更 

为集中于发射源的附近，克服了以往长偏移距瞬变电 

磁法(LOTEM)信号较弱的缺点。相对于远区方法具有 

对地层断面以及对有限导体的探测能力强、附加效应 

小、探测深度大等优点。该方法不仅可以实现对地下 

分析分辨单元的多次覆盖测量，还实现了瞬变电磁的 

三维立体探测及快速扫面。可以获得更精确的地下目 

标体的位置、大小和形状的信息，对于研究精细地质 

结构有重要意义。 
2) 提出了一种快速高效、 易于实现的电性源瞬变 

电磁短偏移(作者定义为  SOTEM)深部目标体精细探 

测方法与处理技术。通过对时间域近场响应特性以及 

探测深度等方面的探测能力的分析，认为 SOTEM 明 

显优于长偏移瞬变电磁(LOTEM)；所提出的新的探测 

装置及方法系统，为电磁勘探理论发展提供了新的突 

破点。接地线源短偏移瞬变电磁法比回线源瞬变电磁 

法易于施工，且探测深度和探测精度相对较高，是一 

种值得推广的方法。 
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