文章编号: 1004-0609(2013)08-2182-08

无 Re 镍基单晶合金的中温蠕变行为

田素贵,薛永超,曾 征,舒德龙,郭忠革,谢 君

(沈阳工业大学 材料科学与工程学院, 沈阳 110870)

摘 要:通过中温蠕变性能测试、组织形貌观察及位错组态的衍衬分析,研究无 Re 镍基单晶合金的蠕变行为与 变形机制。结果表明:在 760 ℃、750 MPa 条件下,合金具有良好的蠕变抗力及较长的蠕变寿命,蠕变期间,合 金中的 y'相仅发生粗化,未发生筏形化转变。合金在蠕变初期的变形机制是(1/2)(110)位错在基体通道的{111}八 面体滑移系中运动,蠕变位错可发生单取向滑移、双取向滑移和交滑移;随着蠕变进入后期,合金的应变增大, 其变形机制是 (110)位错在基体中运动和剪切进入 y'相,其中,基体中的位错发生扭曲,而部分剪切进入 y'相的 (110)超位错发生分解,形成 (112)肖克莱不全位错+层错的位错组态,可抑制位错的交滑移,使合金具有较好的蠕 变抗力。

关键词: 镍基单晶合金; 蠕变性能; 组织演化; 位错组态; 变形机制中图分类号: TG146.1文献标志码: A

Creep behavior of Re-free nickel-based single crystal superalloy at intermediate temperature

TIAN Su-gui, XUE Yong-chao, ZENG Zheng, SHU De-long, GUO Zhong-ge, XIE Jun

(School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract: By means of creep property measurement at intermediate temperature, microstructure observation and contrast analysis of dislocation configuration, the creep behavior and deformation mechanism of Re-free nickel-based single crystal superalloy at intermediate temperature were investigated. The results show that the alloy displays a better creep resistance and long creep life at 760 °C, 750 MPa. During creep at intermediate temperature, the coarsening of the cubical γ' phase occurs, and no rafting transformation of γ' phase is detected. The deformation mechanism of the superalloy during initial creep is the slipping of $(1/2)\langle 110 \rangle$ dislocations with single oriented, double oriented and cross-slipping features activated on the octahedral systems in the γ matrix channels. The strain of the alloy increases as the creep enters latter stage, the deformation mechanism of the superalloy is that $\langle 110 \rangle$ dislocations slipping in the γ matrix and shearing enter into the cubical γ' phase. Thereinto, the twisting of dislocations in the matrix occurs, and some $\langle 110 \rangle$ super-dislocations shearing into γ' phase may be decomposed to form the configuration of $\langle 112 \rangle$ super-Shockleys particles and the stacking faults, which may hinder the cross-slipping of dislocations, improve the creep resistance of the superalloy and make the superalloy having the better creep resistance.

Key words: nickel-based single crystal superalloy; creep property; microstructure evolution; dislocation configuration; deformation mechanism

单晶镍基合金具有良好的高温力学及抗蠕变性 能,现已替代传统的多晶材料,广泛应用于制作航空

发动机的涡轮叶片等重要部件^[1-3]。由于单晶合金在服 役期间的蠕变损伤是导致叶片部件失效的主要原因,

收稿日期: 2012-09-10; 修订日期: 2013-03-21

通信作者:田素贵,教授,博士;电话: 024-25494089;传真: 024-25496768; E-mail: tiansugui2003@163.com

基金项目: 国家自然科学基金资助项目(51271125)

故单晶合金在服役期间的蠕变损伤与变形机制得到广 大研究者所重视。随着对航空发动机叶片部件安全 性、可靠性及长寿命性能的日益提高,要求单晶合金 有更高的承温能力和蠕变寿命,因此,研制高性能单 晶合金是当前材料工作者的首要任务。

镍基单晶合金的组织结构由立方 y'相以共格方式 镶嵌在 y 基体所组成,其中,y'相具有随温度提高屈 服强度增大的特点^[4-5],这种反常的屈服行为是使单晶 合金具有良好高温力学性能的主要原因,加之,单晶 合金中 y 基体相具有良好的塑性,其y'和 y 两相的相 互作用,可较大幅度提高合金的高温蠕变性能。特别 是难溶元素(W+Ta+Mo)在镍基单晶合金两相中有较 大的溶解度,且随难溶元素(W+Ta+Mo)的含量增加, 可较大幅度提高单晶合金的高温力学及蠕变性能^[6-8]。 由于不同成分单晶合金在不同温度区间有不同的蠕变 特征,并与合金使用性能的安全可靠性密切有关,因 此,单晶合金的蠕变行为及变形机制得到广泛研究。

在高温蠕变期间,单晶合金中的立方 y'相发生明 显的组织演化^[9-12],使合金中的 y'相逐渐转变成与应 力轴垂直的筏形组织,并在 y'/y 两相界面形成位错网, 其中,基体中运动位错可通过位错网实现攀移越过筏 状 y'相^[13-14],在高温蠕变后期,合金的变形机制是位 错剪切进入 y'相。由于航空发动机由启动到稳定运行 经历了由中温/高应力到高温/低应力的过程,且不同 成分合金在不同温度区间具有不同的蠕变性能和变形 机制^[15]。尽管单晶合金在高温/低应力条件下的蠕变行 为已有文献报道^[16-17],但单晶合金在中温、高应力条 件下的蠕变行为,则鲜见文献报道。

据此,本文作者设计并制备出一种 Ni-Al-Mo-W-Ta-Cr-Co 系两相单晶合金,通过对单晶合金进行中温 蠕变性能测试及组织形态观察,研究一种无 Re 镍基 单晶合金在中温蠕变期间的组织演化与变形机制,试 图为合金的开发与应用提供理论依据。

1 实验

采用选晶法在高温度梯度真空定向凝固炉中,将 成分 Ni-6.0Cr-11Co-9W-xMo-6.0Al-7.0Ta(质量分数, %)的母合金制取[001]取向的单晶镍基合金试棒,样品 的生长方向与[001]取向的偏差在 7°以内,并对合金进 行高温热处理,选用的热处理工艺如下:(1 280 ℃, 2 h), AC+(1 325 ℃, 4 h), AC+(1 080 ℃, 4 h), AC+(870 ℃, 24 h), AC。 工艺中的 AC 为空冷。经完全热处理后,单晶合 金试棒沿[001]晶向的(100)晶面加工成宽为 4.5 mm, 厚为 2.5 mm,标距长度为 18 mm 的片状蠕变试样, 片状试样的宽面法线与[100]晶向平行。蠕变试样经机 械研磨及抛光后,置入GWT504型高温蠕变试验机中, 在 760 ℃、750 MPa 条件下进行蠕变性能测试,绘制 蠕变曲线。在 SEM/TEM 下对蠕变前/后的合金进行组 织形貌观察与位错组态分析,考察合金在蠕变期间的 组织演化规律与变形特征。

2 结果与分析

2.1 蠕变特征与组织演化

单晶合金在 760 ℃、750 MPa 条件下测定的蠕变 曲线如图 1 所示。由图 1 可看出,合金在蠕变初期具 有较大的应变速率和较小的蠕变应变,随着蠕变的进 行,应变速率随之降低,蠕变初始阶段持续约 8 h进 入稳态阶段。之后,合金的应变速率保持恒定,测定 出合金在稳态蠕变期间的应变速率为 2.4×10⁻⁵ h⁻¹, 稳态蠕变持续的时间约为 155 h。随后,进入蠕变加速 阶段。之后,随蠕变进行,合金的应变速率逐渐增加, 直至 244 h 发生蠕变断裂。

图 1 单晶合金在 760 ℃、750 MPa 条件下的蠕变曲线 Fig. 1 Creep curves of single crystal alloy at 760 ℃ and 750 MPa

单晶合金经完全热处理后的组织形貌如图 2 所示。样品观察面的法线方向为[001]取向,可以看出, 完全热处理态单晶合金的组织结构为边缘尺寸约为 0.4~0.5 μm、且均匀分布的立方 γ ′相以共格方式嵌镶 在 γ 基体中,并沿 ⟨100⟩ 取向规则排列,其 γ 基体通道 的宽度约为 0.1 μm。

该合金在 760 ℃、750 MPa 蠕变 244 h 断裂后, 在样品不同区域的形貌如图 3 所示。由于样品的不同 区域处于不同的应力状态,故在不同区域具有不同的 变形特征及组织形貌,因此,根据不同区域的组织形 貌可分析合金的变形程度。合金蠕变断裂后,试样观 察区域的示意图,如图 3(a)所示,*A* 为无应力区域, 其形貌特征如图 3(b)所示,表明在该区域,部分γ'相 的边角发生钝化,成为类球形状,如图中箭头所示, 而大部分γ'相仍保持立方体形态,其尺寸与完全热处 理态合金的 γ'相相当。*B* 区域的形貌如图 3(c)所示, 该区域承受拉伸张应力,由于该区域远离断口,立方

图 3 经 760 ℃、750 MPa 蠕变 244 h 断裂后合金不同区域的形貌

Fig. 3 Morphologies in different regions of alloy crept at 760 $^{\circ}$ C and 750 MPa for 244 h up to fracture: (a) Schematic diagram of marking observed locations in specimen; (b), (c), (d), (e), (f) Morphologies corresponding to *A*, *B*, *C*, *D* and *E* regions of specimen, respectively

y'相畸变程度较小,但立方 y'相的尺寸略有长大,其 y'/y 两相界面呈现扭曲形态清晰可见,且沿水平方向 的 y 基体通道尺寸略有增加;随观察点逐渐接近断口 (区域 C 和 D),立方 y'相的尺寸逐渐增大,沿水平方 向的 y 基体通道宽度增加, y'、 y 两相的扭曲程度逐渐 增大,其形貌分别如图 3(d)和(e)所示,尤其是区域 D 中一些立方 y'相发生相互吞并异常长大特征,如图中 箭头标注所示。近断口区域 E 的形貌如图 3(f)所示, 可以看出,立方 y'相的尺寸逐渐增大,并沿应力轴方 向伸长,立方 y'相的扭曲程度增加,且沿水平方向的 y 基体通道宽度明显增加,特别是一些类立方 y'/y 两 相的组织严重扭曲,其沿水平方向的基体通道呈现倾 斜约 30°的特征,如图中箭头所示。

以上组织观察表明,在蠕变样品的不同区域具有 不同的组织形貌,在无应力区, y'相尺寸无明显变化, 立方 y'相仅发生球形化转变。在施加拉应力区域,随 观测点与断口距离减小,立方 y'相的尺寸逐渐增大, y 基体通道宽度增加,且两相扭曲程度加剧,直至在近 断口区域使原沿水平方向的基体通道呈现倾斜约 30° 的特征,并发生蠕变断裂。

2.2 蠕变期间的变形特征

单晶合金在 760 ℃、750 MPa 蠕变不同时间的微 观组织形貌如图 4 所示,其膜面的法线方向为[100]取 向,施加应力的方向如图中箭头标注所示。单晶合金 的组织结构由立方 y'相以共格方式嵌镶在 y 基体所组 成,与 y'相相比, y 基体有较弱的强度,故当合金在 高温施加应力的瞬间,首先是形变位错在基体通道中 发生滑移和交滑移, 随蠕变时间的延长, 在基体通道 中的位错数量增加,产生形变硬化作用,致使应变速 率降低,直至进入稳态蠕变阶段。蠕变150 h 后,在 合金基体的局部区域形成高密度位错,其形态如图 4(a) 所示,由于沿与施加应力轴呈 45°方向具有最大剪应 力,因此,在基体中滑移的(1/2)(110)位错迹线方向与 最大剪应力方向同向,如图中箭头标注所示。在蠕变 后期,随蠕变进行,基体中的位错密度增加,产生应 力集中,当应力集中值大于 y'相的屈服强度时,位错 可剪切进入 y'相,此时仍有位错在 y基体相中滑移。 合金蠕变 244 h 断裂后,在合金基体局部区域仍存在 位错的单取向和双取向滑移,其形貌如图 4(b)所示, 由于合金形变量较大, 故致使基体中的位错转变成不 规则形态,其中,位错发生双取向滑移的迹线方向, 如图中交叉箭头标注所示,各迹线方向仍与应力轴呈 45°角倾斜,但另一些位错线已呈现扭折形态。当 (1/2)(110) 位错在基体中滑移至类立方 y'相受阻时, 可

图 4 合金经 760 ℃、750 MPa 蠕变不同时间后 γ 基体中的 位错形态

Fig. 4 Dislocations configuration in γ matrix of alloy crept at 750 MPa and 760 °C for different times: (a) 150 h, single orientated slipping of dislocations in matrix; (b) 244 h, cross-slipping and double orientated slipping of dislocations activated in γ matrix

由一{111}面交滑移至另一{111}面,形成具有 90°折线 特征的位错交滑移组态,如图 4(b)中短箭头所示。

经 760 ℃、750 MPa 蠕变 244 h 断裂后,单晶合 金中 y'相内的微观组织形貌如图 5 所示,施加应力方 向如图中箭头标注,表明在高应力蠕变期间,可促使 位错在基体通道中滑移和剪切 y'相,其中,位错剪切 进入 y'相的位错形态如图中上部短箭头所示,位错剪 切进入 y'相形成的双线衬度,如图左侧箭头标注所示, 位错剪切进入 y'相后可发生分解,形成不全位错加层 错的位错组态,如图中区域 F 所示,在高应力蠕变期 间,合金基体的局部存在位错缠结,示于图中的 H 区 域。表明合金在中温高应力蠕变期间,其形变特征和 位错组态较为复杂,即存在高密度位错在基体中发生 单取向、双取向滑移和交滑移,也存在位错剪切 y'相 及分解形成不全位错加层错的组态。

图 5 经 760 ℃、750 MPa 蠕变 244 h 断裂后合金的微观组织 Fig. 5 Microstructures of alloy crept at 760 ℃, 750 MPa for 244 h up to fracture

根据图 5 的组织形貌分析, 蠕变期间在高温施加 应力作用下,除发生位错在基体中滑移及剪切 y'相外, 合金中 y'相已发生粗化,并在 y'/y 两相出现界面位错; 同时, 立方 y'相的形态发生变化,其特征是原规则立 方 y'相的边角钝化,转变成串状结构,如图 5 中区域 F 所示,表明合金在蠕变期间已发生了元素的定向扩 散。其中,在高温界面能降低是促使 y'相发生粗化及 边角钝化的驱动力,而立方 y'相沿垂直于应力轴方向 形成串状结构与蠕变期间施加应力的方向有关。

在拉应力蠕变期间, 立方 y'相各晶面的受力分析 认为立方 y'相沿平行于应力轴方向的晶面承受剪切应 力, 如图中 σ₁ 箭头所示, 而沿垂直于应力轴的晶面承 受横向水平切应力, 如图中 σ₂ 箭头所示。在水平切应 力(σ₂)作用下,立方 y'相中与应力轴垂直的界面发生晶 格收缩,可排斥较大半径的 Al、Ta 原子,在施加拉应 力(σ₁)作用下,立方 y'相中平行于应力轴的界面发生晶 格扩张,可诱捕较大半径的 Al、Ta 原子,使 y'相沿与 应力轴垂直的方向定向生长^[18],当两相邻立方 y'相扩 散连接相遇时,则原立方 y'相转变成串状形态。尽管 合金在 760 ℃、750 MPa 蠕变 244 h,但由于温度较低, 元素扩散速率较慢,故合金中仅有少量 y'相转变成串 状,而未形成完全筏状组织。

2.3 位错组态的衍衬分析

在 760 ℃、750 MPa 蠕变断裂后,单晶合金中 y' 相内的位错组态如图 6 所示,在类立方 y'相中存在层 错,其层错两侧为两不全位错(C、D),剪切进入立方

图 6 在 760 ℃、750 MPa 条件下合金蠕变断裂后 y'相内的位错组态

Fig. 6 Dislocations configuration within γ' phase of alloy crept at 760 °C and 750 MPa up to fracture: (a) $g=00\ \overline{2}$; (b) $g=1\ \overline{3}\ \overline{1}$; (c) $g=\overline{1}\ \overline{3}1$; (d) $g=\overline{1}3\overline{1}$

y'相内的超位错(E),在立方 y'/y两相之间存在界面位错,表明合金中立方 y'/y两相具有半共格界面。

该位错组态在不同衍射条件下的衬度变化如图 6(a)~(d)所示。由图 6 可以看出,当衍射矢量 $g = 00\overline{2}$ 时, 层错及位错 E 显示衬度, 不全位错 C、D 消失衬 度(见图 6(a)): 当衍射矢量为 $g=1\overline{3}\overline{1}$ 时,不全位错 C、D显示衬度,层错消失衬度(见图 6(b));当衍射矢 量g = 00 2 和 $g = \overline{1}$ 31 时,不全位错 C 消失衬度(见 图 6(a)和(c))。根据 b·g = 0 及 b·g = ±(2/3)位错不可见 判据,可以确定,位错 C 是柏氏矢量为 $b_{C} = (1/3)[2 \overline{1} \overline{1}]$ 的超肖克莱不全位错。当衍射矢量 g=1 3 $\overline{1}$ 、 $g=\overline{1}$ 31 以及 $g = \overline{13} \overline{1}$ 时,位错D显示衬度,且存在于y'/y两 相界面,如图 6(b)、(c)和(d)所示,当衍射矢量 $g = 00\overline{2}$ 和 g = 022(照片略去)时,位错 D 消失衬度,如图 6(a) 所示,根据位错、层错不可见判据可以确定,在 y'/y两 相界面处,不全位错 D 的柏氏矢量为 b_{D} = (1/6)[12 1] 的肖克莱不全位错,由于位错 C、D 的线矢量为 μ_{C} = 2 $\overline{20}$ 和 $\mu_{\rm D}$ = 02 $\overline{2}$, 根据 $\mu_{\rm C} \times \mu_{\rm D}$, 可以确定不全位错 C和D在(111)面滑移。分析认为,不全位错C、D为 基体中运动的(1/2)[10 1]位错沿 y/y '两相界面切入 y' 相发生分解所致,其中,(1/2)[10 1]位错沿界面切入 y'相形成两肖克莱不全位错的分解反应式为

 $\begin{array}{cccc} (a/2)[10 \ \overline{1}] \longrightarrow (a/3)[2 \ \overline{1} \ \overline{1}]_{C} + (SISF) + \\ (a/6)[\ \overline{1}2 \ \overline{1}]_{D(int)} \end{array}$

式中: SISF 代表超点阵内禀层错。当衍射矢量为 $g = 00\ \overline{2}, g = 1\ \overline{3}\ \overline{1}$ 以及 $g = \overline{1}\ \overline{3}1$ 时,切入 γ' 相内而位于 照片左侧的位错 E 显示衬度,如图 6(a)、(b)和(c)所示, 当衍射矢量为 $g = \overline{13}\ \overline{1}$ 和g = 111(图片略去)时,位错E 消失衬度,如图 6(d)所示,根据位错衬度不可见判 $据,确定出位错 E 是柏氏矢量为<math>b_{\rm E} = [10\ \overline{1}]$ 的螺型超 位错。由于位错 E 的线矢量为 $\mu_{\rm E} = 1\ \overline{2}1$,故位错 E 的 滑移面为 $b_{\rm E} \times \mu_{\rm E} = (111)$ 。

3 讨论

3.1 位错运动的阻力

合金中 y'是具有 Ll₂ 有序结构的强化相,对位错 运动有强烈的阻碍作用。在蠕变初期,宏观应变所对 应的组织结构是位错在不同基体通道的八面体滑移系 中运动,由于基体中各通道受力状态不同,位错在不 同基体通道中的密度及运动特征不同。在平行于应力 轴的基体通道中,承受较大的剪切应力,故使位错在 该通道中滑移距离较长,可以滑移穿越几个立方 y'相 的距离,如图 4(a)所示。而在与应力轴垂直的基体通 道中,由于施加的有效切应力值较小,致使其位错在 该通道中滑移的距离较小,因而,该通道中具有较低 的位错密度^[19]。当位错运动进入两立方 γ'相之间的基 体通道时,所需的应力必须克服局部的 Orowan 阻力, 在拉应力蠕变期间,基体中各晶面克服 Orowan 阻力 使位错在{111}面沿 (110) 方向滑移或弓出的临界切应 力(Δ**τ**_{or})可表示为^[10]

$$\Delta \boldsymbol{\tau}_{\rm or} = \frac{\alpha G \boldsymbol{b}}{L} \tag{1}$$

式中: *G* 为剪切模量; *b* 为位错的柏氏矢量; *L* 为沿 〈110〉方向两立方 y'相之间的距离; α 为与受力状态 有关的常数,当沿[001]取向施加拉应力时,在(001) 晶面可施加较大的有效应力, $\alpha = 1$,而在(100)和(010) 面施加较小的有效应力, $\alpha > 1$,由于随合金中立方 y'相的体积分数及尺寸增加,可减小基体通道的尺寸 (*L*),因此,随基体通道尺寸(*L*)和施加有效应力值的减 小,位错运动的阻力增大,故可提高合金中位错运动 的临界切应力。

由于 y 相为高合金化的无序固溶体,本身具有阻碍位错运动的作用,进一步当蠕变位错在固溶体中运动时,其位错线应力场的作用,可增大相邻位错运动的阻力,其相邻位错应力场产生阻力(**τ**_{dis})的表达式为

$$\mathbf{r}_{\rm dis} = \frac{\mu \mathbf{b}}{8\pi (1-\nu)h} \tag{2}$$

式中: υ 为泊松比; h 为两相反刃位错的距离; μ 为切 变模量。表明随两刃位错之间的距离减小,位错运动 的阻力增大。由于蠕变初期, γ'/γ 两相保持共格界面, 共格界面的应力场可增加位错运动的阻力,其基体中 相邻位错应力场和共格界面应力场的共同作用,可抑 制位错剪切进入 γ'相的阻力(Δτ₂)可表示为

$$\Delta \boldsymbol{\tau}_2 = \beta \mu \varepsilon^{3/2} \left(\frac{r f_s}{\boldsymbol{b}} \right)^{1/2} \tag{3}$$

式中: β 为与位错类型有关的常数,对刃位错 $\beta=3$, 对螺位错 $\beta=1$;r为粒子半径; f_s 为强化相的体积分数; ε 为共格界面的晶格应变。

3.2 蠕变后期的抗力分析

在蠕变后期,随蠕变进行,合金基体中位错密度 增加,并产生应力集中,当应力集中值大于 y'相的屈 服强度时,位错可自基体中切入 y'相。一旦位错切入 y'相,则可降低 y'相的强度,致使合金蠕变抗力降低 直至进入蠕变第三阶段,因此,y'相的强化水平与合 2188

金的蠕变抗力密切相关。

分析认为, γ'相的强化水平主要包括固溶强化、 有序强化、γ'/γ两相共格界面强化。本研究中的蠕变 在 760 ℃、750 MPa 条件下进行,蠕变初期,合金中 立方γ'/γ两相保持共格界面,晶格应变场可阻碍位错 剪切进入γ'相,其晶格应变场延缓位错切入γ'相的阻 力(Δ**τ**₁)可表示为^[20]

$$\Delta \boldsymbol{\tau}_{1} = \left(\frac{6\gamma_{s}^{3}\boldsymbol{b}f_{\gamma'}}{\pi Tr^{2}}\right)^{1/2}$$
(4)

式中: γ_s 为单位面积的界面能; $f_{\gamma'}$ 为 γ' 相的体积分数, T为位错线张力。

随蠕变时间延长, y'相发生粗化, 致使两相之间 出现界面位错(见图 5), 表明类立方 y'/y 两相界面已转 变成半共格界面,其晶格应变强化作用减弱。因此, 当蠕变后期基体中高密度形变位错引起应力集中时, 一方面,蠕变位错运动至界面,与界面位错发生反应, 可改变位错运动方向,促使位错攀移而减缓应力集中; 另一方面,基体中的蠕变位错可在界面位错损坏处切 入 y'相内^[19],由于 y'相为有序结构,切入 y'相全位错 的柏氏矢量为 **b**=[110],与基体中全位错的柏氏矢量相 比,位移距离增加 50%,因此,位错切入 y'相可引起 较大变形。

再则,合金中 y'相在 760 ℃有较低的层错能,剪 切进入 y'相内的位错可在 {111} 面发生分解,形成两 (1/3)<112>超肖克莱不全位错+层错的位错组态,如图 5 和 6 所示,该组态可抑制位错的交滑移,加之蠕变 位错滑移至层错区,产生交互作用,可增加位错运动 的阻力,因而,位错剪切进入 y'相发生分解,形成的 不全位错+层错的组态可提高合金的蠕变抗力。

4 结论

 1) 试验用单晶镍基合金的组织结构由立方 y'相 以共格方式嵌镶在 y 基体相所组成,在 760 ℃、750 MPa 条件下,合金在稳态蠕变期间持续的时间约 155 h,蠕变寿命为 244 h;在该温度蠕变期间,合金中 y' 相仅发生粗化、或转变成串状结构,而未发生完全筏 形化转变。

2) 合金在蠕变初始阶段的变形机制是(1/2)(110) 位错在基体通道的{111}八面体滑移系中运动,在通道 中位错即可发生单取向滑移,也可发生双取向滑移和 交滑移,随蠕变进入后期,基体中的位错可发生扭曲。

3) 蠕变后期,合金的变形机制是(110)位错在基

体中滑移和剪切进入 y'相,其中,部分切入 y'相的 <110> 超位错发生分解,形成的 <112> 肖克莱不全位 错+层错的位错组态可抑制交滑移,提高合金的蠕变 抗力。

REFERENCES

- [1] 郑运荣,杨素玲,阮中慈.单晶高温合金的中温 I 阶蠕 变——涡轮叶片伸长的重要因素[J].中国有色金属学报, 2005,15(12):1881-1887.
 ZHENG Yun-rong, YANG Su-ling, RUAN Zhong-ci. Primary creep of single crystal superalloys at intermediate temperature— An important factor of turbine blade extension[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(12): 1881-1887.
- [2] 许庆彦,潘 冬,于 靖,柳百成.数值模拟技术在航空发动 机高温合金单晶叶片制造中的应用[J].航空制造技术, 2011(4): 26-31.

XU Qing-yan, PAN Dong, YU Jing, LIU Bai-cheng. Application of numerical simulation technology in superalloy single crystal blade of aeroengin[J]. Aeronautical Manufacturing Technology, 2011(4): 26–31.

- [3] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361–374.
- [4] 胡壮麒,彭 平,刘 轶,金 涛,孙晓峰,管恒荣. 镍基合金中 y'相界面的强化设计[J]. 金属学报, 2002, 38(11): 1121-1126.

HU Zhuang-qi, PENG Ping, LIU Yi, JIN Tao, SUN Xiao-feng, GUAN Heng-rong. Design of γ ' phase interface strengthening of nickel-base superalloy[J]. Acta Metallurgica Sinica, 2002, 38(11): 1121–1126.

- [5] 李 影,苏 彬. 镍基单晶高温合金的反常屈服行为与变形 机制[J]. 材料工程, 2004(3): 45-48.
 LI Ying, SU Bin. Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy[J]. Journal of Materials Engineering, 2004(3): 45-48.
- [6] MULLER L, GLATZEL U, FELLE-KNIEPMEIER M. Modelling thermal misfit stresses in nickel-base superalloy containing high volume fraction of γ' phase [J]. Acta Metallurgica et Materialia, 1992, 40: 1321–1327.
- [7] CARON P, HENDERSON P J, KHAN T, MCLEAN M. On the effects of heat treatment on the creep behaviour of a single crystal superalloy[J]. Scripta Metallurgica, 1986, 20(6): 875–880.
- [8] 胡聘聘,陈晶阳,冯 强,陈艳辉,曹腊梅,李相辉. Mo 对镍基单晶高温合金组织及持久性能的影响[J]. 中国有色金属学报,2011,21(2):332-339.
 HU Ping-ping, CHEN Jing-yang, FENG Qiang, CHEN Yan-hui,

CAO La-mei, LI Xiang-hui. Effect of Mo on microstructure and

rupture properties of nickel base single crystal superalloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2): 332–339.

- [9] 常连华. 主要合金元素对镍基合金组织和性能的影响[J]. 汽 轮机技术, 2001, 43(5): 319-320.
 CHANG Lian-hua. Effects of the main alloy elements on microstructure and properties of nickel base alloys[J]. Turbine Technology, 2001, 43(5): 319-320.
- [10] POLLOCK T M, ARGON A S. Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica et Materialia, 1992, 40(1): 1–30.
- [11] 田素贵,周惠华,张静华,杨洪才,徐永波,胡壮麒.一种单 晶镍基合金蠕变初期的位错组态[J].金属学报,1998,34(2): 123-128.

TIAN Su-gui, ZHOU Hui-hua, ZHANG Jing-hua, YANG Hong-cai, XU Yong-bo, HU Zhuang-qi. Dislocation configuration in single crystal nickel-base alloy during primary creep[J]. Acta Metallurgica Sinica, 1998, 34(2): 123–128.

- [12] MURAKUMO T, KOBAYASHI T, KOIZUMI Y, HARADA H. Creep behaviour of Ni-base single-crystal superalloys with various y' volume fraction[J]. Acta Materialia, 2004, 52(12): 3737–3744.
- [13] 吴文平,郭雅芳,汪越胜. 镍基单晶高温合金的定向粗化行为及高温蠕变力学性能研究进展[J]. 力学进展, 2011, 41(2): 172-186.

WU Weng-ping, GUO Ya-fang, WANG Yue-sheng. Research progress of the directional coarsening behavior and high temperature creep mechanical properties in Ni-base superalloys[J]. Advances in Mechanics, 2011, 41(2): 172–186.

[14] ZHANG Jing-hua, HU Zhuang-qi, XU Yong-bo, WANG Zhong-guang. Dislocation structure in a single crystal nickel-base superalloy during low cycle fatigue[J]. Metallurgical Transactions A, 1992, 23(4): 1253-1258.

- [15] WU Wen-ping, GUO Ya-fang, WANG Yue-sheng, MUELLER R, GROSS D. Influence of external stress and plastic strain on morphological evolution of precipitates in Ni-based superalloys[J]. Computational Materials Science, 2009, 46(2): 431–437.
- [16] 王开国,李嘉荣,曹春晓. 单晶高温合金蠕变行为研究现状
 [J]. 材料工程, 2004(1): 3-7.
 WANG Kai-guo, LI Jia-rong, CAO Chun-xiao. Present situation of study on creep behavior of single crystal superalloys[J]. Journal of Materials Engineering, 2004(1): 3-7.
- [17] MA S, BROWN D, BOURKE M A M, DAYMOND M R, MAJUMDAR B S. Microstrain evolution during creep of a high volume fraction superalloy[J]. Materials Science and Engineering A, 2005, 399(1/2): 141–153.
- [18] 张 姝,田素贵,钱本江,苏 勇.单晶镍基合金在拉伸蠕变 期间的组织演化与分析[J].稀有金属材料与工程,2012,41(1): 28-32.
 ZHANG Shu, TIAN Su-gui, QIAN Ben-jiang, SU Yong.

Microstructure evolution and analysis of a single crystal nickel-based superalloy during tensile creep[J]. Rare Metal Materials and Engineering, 2012, 41(1): 28–32.

- [19] TIAN S G, ZHOU H H, ZHANG J H, YANG H C, XU Y B, HU Z Q. Formation and role of dislocation networks during high temperature creep of a single crystal nickel based superalloy[J]. Materials Science and Engineering A, 2000, 279 (1/2): 160–165.
- [20] 张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007: 100-102.

ZHANG Jun-shan. High temperature deformation and fracture of materials[M]. Beijing: Science Press, 2007: 100–102.

(编辑 李艳红)