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Phase-field-crystal modeling for microcrack propagation and
connecting of ductile materials
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Abstract: The morphology evolution of microcrack propagation and connecting in ductile single crystal materials under
the biaxial tensile deformation were simulated by the phase-field-crystal model. The effects of the factors such as the
stain, the atomic density in initial crack notch on crack propagation were analyzed. The simulation results show that the
atomic density in the crack notch has an effect on crack propagation. As the tensile strain exerting on the monocrystalline
sample by biaxial tensile, the crack propagation cannot branch at small strain, the first-branching and second-branching
occur during crack propagation when the strain is great enough. It is observed that system energy decreases over time and
the energy decreases faster during crack branching. It indicates that the decrease in elastic strain energy is larger than the
increase in surface energy during crack propagation. A string of isolate cavities near main cracks can be seen and these
cavities will become new cracks with time lasting during crack propagation. They will continue to grow up along a line
and become a new branch crack under the stress. The tips of two initial cracks on the same line would attract each other
during crack propagation, once they made the connection, the two cracks would form into one. The simulation results are
in agreement with other simulation results and experimental ones.
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Fig. 1 Two-dimensional phase diagrams of PFC model™ (L,

T and S represent liquid phase, triangular phase and stripe

phase, respectively): (a) Two-dimensional phase diagram; (b)

Magnification image of dashed box in Fig. 1(a)
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Fig. 2 Atomic density images with atomic arrangement direction paralleling to x axis: (a) &=¢,~0%; (b) &,=¢,=10%
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Fig. 3 Curves of atomic density changes in relation to position: (a) Atomic density of line AB in Fig. 2(a); (b) Magnification image
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Fig. 4 Magnification image of initial crack (e, and ¢, are

stains along x and y axis, respectively): (a) Initial crack of
square notch (Size of square notch is 20X 10 grid points); (b)

Atomic density distribution around notch in Fig. 4(a)
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Fig. 5 Propagation process of two initial cracks on one line with £&,=7% and &,=10%: (al) — (a5) py=0.79 (both) in square notch of

two initial cracks; (b1)—(b5) pg=0.79 (left) and 1.0 (right) in square notch of two initial cracks, respectively; (al), (b1) 1.0X10° ts;
(a2), (b2) 2.0X 10° ts; (a3), (b3) 2.4 X 10° ts; (ad), (b4) 4.0X 10’ ts; (a5), (b5) 6.0X 10° ts
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