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Dynamic recrystallization behaviors of twin-roll cast AZ31 magnesium
alloy during high temperature tensile deformation
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Abstract: Tensile tests were conducted for a twin-roll cast AZ31 alloy under constant temperatures (250—400 C) and

s, aimed to study the effects of temperature and strain rate on dynamic

constant strain rates of 10> and 1072
recrystallization at different strains, to explore the effects of the second phase particles on dynamic recrystallization, and
to analyze the mechanisms of dynamic recrystallization. The results show that the grain size of the recrystallized grains
increases with temperature under the same strain. The continuous dynamic recrystallization dominates at the intermediate
temperature range (200—300 °C), while the discontinuous dynamic recrystallization dominates at high temperatures (over
300 C) . The fractured Mg;,Al;, particles and the (Al, Mn) phase particles pinning at grain boundary can improve the
nucleation rate of dynamic recrystallization. When the strain rate increases from 10> s to 102 s ' at 350 C, the grain
size gradually decreases, and the twin recrystallizaiton occurs.
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Table 1  Chemical compositions of twin-roll cast AZ31
magnesium alloy (mass fraction, %)

Al Mn Zn Ni Cu Fe Si

3.06 030 1.05 0.00088 0.0026 0.0026 0.038
Rolling surface
___kl 254 \TTT__
12 {5
3.5
=

Rolling direction

B SRR LA R KRR
Fig. 1 Specimen geometry for high-temperature mechanical

test (Unit: mm)
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Table 2 Tensile tests parameters

Temperature/ 'C Strain Strain rate/s '
250 0.2, 0.4, fracture 107
300 0.2, 0.4, fracture 107
350 0.2,0.4, 0.6, 0.8, fracture 102,107
400 0.2, 0.4, fracture 107
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Fig. 2 Optical micrographs of twin-roll cast AZ31 magnesium alloy

B3 5L AZ31 BEA A 350 CRUAM AN NAR 1 AR LA KPR A 77 1))

Fig. 3 Microstructures of twin-roll cast AZ31 magnesium alloy at 350 ‘Cand different strains (horizontal tensile direction): (a) 350
‘C, 107257, &=0.2; (b) 350 °C, 105", &=0.2; (c) 350 °C, 105", &=0.4; (d) 350 °C, 107°s™", &=0.4; () 350 'C, 105", &=0.8; (f)
350 °C, 105, e=0.8; (g) 350 °C, 10 2s ", fracture; (h) 350 °C, 105", fracture
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Fig. 4 Grain size of twin-roll cast AZ31 magnesium alloy

during tensile test at 350 ‘C and strain rate of 102s ' and
107357

Fig. 5 Microstructures of different samples at strain rate of 10 >s ", strain of 0.2 and different temperatures: (a) 250 “C; (b) 300 C;

(¢) 350 °C; (d) 400 ‘C
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Fig. 6 Grain size during tensile test at strain rate of 10 %s ',

strain of 0.2 and different temperatures
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Fig. 7 TEM images and EDS analysis of second-phase particles: (a), (a’) Flake Mg;;Al,, particles; (b), (b’) Rod (Al,Mn) particles
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Fig. 8 Distribution and evolution of second-phase particles under different tensile test conditions: (a) 250 °C, 10°s™", &=0.4; (b)
350 °C, 107 57!, £=0.6; (c) 400 'C, 10 s ™", e=0.4; (d) 350 'C, 10 %5, &=0.2
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Fig. 9 TEM image (a) and schematic diagram (b) of CDRX
under tensile test conditions of 250 °C, 10757}, &=0.4
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Fig. 10 TEM images ((a), (b), (c)) and schematic diagram (d) of CDRX during tensile test: (a) 350 ‘C, 10 s, &=0.4; (b) 350 C,

107 57, £=0.6; (c) 400 °C, 10 s, £=0.6; (d) Schematic diagram
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Fig. 11 TEM image (a) and schematic diagram (b) of TDRX
under tensile test conditions of 350 °C, 10?5, £=0.6
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