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Abstract: In the application of regression analysis method to model dam deformation, the ill-condition problem occurred in 
coefficient matrix always prevents an accurate modeling mainly due to the multicollinearity of the variables. Independent component 
regression (ICR) was proposed to model the dam deformation and identify the physical origins of the deformation. Simulation 
experiment shows that ICR can successfully resolve the problem of ill-condition and produce a reliable deformation model. After that, 
the method is applied to model the deformation of the Wuqiangxi Dam in Hunan province, China. The result shows that ICR can not 
only accurately model the deformation of the dam, but also help to identify the physical factors that affect the deformation through 
the extracted independent components. 
Key words: dam deformation analysis; independent component regression; principal component regression; ill-condition problem; 
interpreting of dam deformation 
                                                                                                             
 
 
1 Introduction 
 

Large dams are generally monitored for both 
boundary conditions control and structural response. 

Analysis of the monitoring data plays an important role 
in the assessment of the safety of a dam [1−4]. Two 
methods, statistical analysis and structural identification, 
are mainly applied in the analysis of dam deformation  
[5]. The statistical model has the advantages of 
simplicity for formulation, fast execution and suitability 
to any kind of correlation between the governing and 
dependent parameters. Regression analysis is a widely 
used method in the statistical modeling of dam 
deformation. However, there is a possible problem of 
ill-condition in the coefficient matrix, the 
multicollinearity of the variables used in regression may 
result in an inaccurate or even wrong model [6]. 
Stepwise regression is a conventional method to build 
the dam deformation model, but some environmental 
factors of deformation may be neglected. Principal 
components regression (PCR) was used to model the 
monitoring data of a dam by LI et al [7], and partial 
least-squares regression (PLSR) was applied to modeling 

the deformation of an earth dam by DENG et al [8]. Both 
PCR and PLSR, based on the theory of multivariate 
statistical projection, are proposed to solve the problem 
due to the multicollinearity of the variables. The main 
drawback of those statistical models above is that they 
make little contribution to the physical interpreter of dam 
deformation. So, independent component regression 
(ICR) model is proposed to solve these problems. 

Independent component analysis (ICA) is a method 
of blind source separation. It transforms the observed 
mixed signals into a series of signals, the components of 
which are mutually independent in statistical sense. 
POPESCU [9] used the second order blind identification 
(SOBI) algorithm, a method of blind source separation 
(BSS), to find out the contributions of external loads to 
the displacements of the dam without a priori knowledge 
on the generator phenomena or the propagation 
environment. ICR is a method combining independent 
component analysis and linear regression. It has been 
effectively applied into some fields such as chemistry, 
medicine and structural engineering [10−12]. 

In this work, ICR was applied firstly in the field of 
deformation analysis to building a horizontal 
displacement model of the dam, and the independent  
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components in regression model were used to identify 
the physical factors contributed to the displacement of 
dam. 
 
2 Independent component regression 
 
2.1 Independent component analysis 

ICA is a useful method for blind source separation. 
Its basic logistics is shown in Fig. 1. It is supposed that 
there are M observations X, X(t)=[X1(t), …, XM(t)]T, 
from N independent components Si(t), i=1, 2, …, N.  
X(t)=AS(t); M≥N                             (1) 
 

 

Fig. 1 Basic logistics of ICA 
 

Unknowing any other priori information about 
matrix A or source signals, ICA aims to obtain a 
separating matrix W to separate the original signals S(t) 
in Eq. (1) based on some optimization criteria and 
learning methods. Generally, the process of calculating 
W can be divided into two steps: 1) Whiten the observed 
signals X(t) by a whitening matrix B, to let Z=BX and 
E(ZZT)=I (I is a unit matrix); 2) Calculate the rotation 
matrix by the specific independence optimize rule, let 
Y(t)=UZ, where Y(t) is the best approximation vector of 
S(t). 
 
2.2 FastICA algorithms 

ICA algorithms can be divided into two main 
categories, and both of them are based on the 
nongaussianity and independence of the source signals. 
FastICA [13,14] is a fast optimization iterative algorithm 
with a good stability. It is based on the negentropy that is 
a common quantitative measure of the nongaussianity of 
a random variable. The stronger the nongaussianity of a 
random variable is, the greater the negentropy is. The 
detailed steps are as below: 

1) Center and whiten the observed data; 
2) Choose an initial weight vector of unit norm 

(random) w; 
3) Update w through 

 
w(k+1)=E[xg(wT(k)x)]−E[g′(wT(k)x)]w; 
 

4) Normalizate w by 
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5) Go back to step 3) if not converged. 

 
2.3 Independent component regression 

Independent component regression (ICR) is a 

method that extracts mutually independent components 
from arguments first and then builds the regression 
model with the independent components instead of the 
observed arguments [15,16]. 

The regression model adopted is 
 
Yi=β0+β1Xi1+β2Xi2+…+βmXim+εi (i=1, 2, 3, …, n)  (2) 
 
where Y is the dependent variable; X is the observed 
arguments and β is the regression coefficient and β=[β0, 
β1, …, βm]T. The process of ICR modeling is as follows. 

1) Extract the independent components C of the 
observed arguments X by FastICA algorithms through 
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2) Build the regression model with C and Y, and 

calculate the coefficients with least squares method by 
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3) Calculate the original coefficient β with the result 

D in Eq.(4) and the separating matrix W in Eq.(3). 
The advantage of ICR is that the components are 

mutually independent, so the problem of ill-condition in 
coefficient matrix is avoided. At the same time, the 
independent components extracted by ICR can be used to 
identify the implicit factors relative to the dependent 
variable Y. 
 
3 Simulation experiment 
 
3.1 Data simulation 

To demonstrate the performance of ICR, a 
simulation test is conducted to compare it with PCR. The 
regression model in the test is assumed as 
 
Yi=β0+β1Xi1+β2Xi2+…+βnXin+εi (n=6; i=1, 2, 3, …, 400) 

(5)  
In the simulation test, two independent components 

S1 and S2 are constructed as the arguments X. S1 is a 
sinusoidal signal and S2 is a random signal. They are 
used as source signals that have physical meaning hidden 
in the observed data. The waveforms of these signals are 
shown in Fig. 2. The 6 arguments, which are linear 
transformations of the 2 signals, have been generated and 
shown in Fig. 3. The dependent variable Y is given by 
 
Y=X1+X2+X3+X4+X5+X6                       (6) 
 
where Xi is standardized. As it is shown, the dependent 
variable is actually affected by the 2 independent original 
signals. A small amount of noise is added into X and 
dependent variable Y in the regression model. 
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Fig. 2 Original analog signals 
 

3.2 Regression results and analysis 
The methods of least squares regression (LSR), 

PCR and ICR are separately used to solve the  
regression model and the results are listed in Tables 1 
and 2. Table 1 indicates that the LSR has a great 
discrepancy with the actual situation and gets wrong 
coefficients due to the problem of ill-condition in the 
coefficient matrix. PCR and ICR solve the problem of 
multicollinearity of the variable and the derived 
coefficients are more realistic. 

The principal components (Ps, s=1, 2) and 
independent components (Is, s=1, 2) extracted by PCR 
and ICR are respectively shown in Figs. 4 and 5. It is 
clear that the numbers of principal and independent 
components are both two, which are consistent with the 
simulation settings. The first two principal components 
include almost 100% information about the observables. 
In the ICA processing, PCA is done as a pretreatment for 
dimensionality reduction. So Ps and Is contain the same 
information when the dimensions are the same, and Is 
can be obtained by a linear transformation from Ps. So, 
the same result is obtained from them. 

Figure 5 illustrates that the ICR separates the hidden 
components which affects Y actually, but with a large 
uncertainty. On the other hand, Fig. 4 illustrates that the 
two components extracted by PCR have no obvious 
practical significance. 

 

 

Fig. 3 Mixed signals in regression model 
 

The correlation coefficient between the components 
extracted by PCR and ICR and Y are listed in Table 3. 
According to the principle of PCA, the two principal 
components extracted by PCR represent the information 
of observed arguments as more as possible. But not 
every component can have a good explanation about the 
dependent variable. For example, the second principal 
component P2 in the simulation experiment, the 
correlation coefficient with Y is just 0.0396, which 
cannot be used to explain the dependent variable. 
Actually, the principal components are generally short of 
the explanatory capability to the dependent variable. 

 
Table 1 Estimated model coefficients and root-mean-square (RMS) values of regression for three methods 

Coefficient β0 β1 β2 β3 β4 β5 β6 RMS (10−3)
Genuine value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 − 

LSR 1.0010 −14.6985 62.3705 −149.4208 −29.8778 48.5626 42.0112 0.5880 
PCR 1.0010 1.0467 1.0137 0.8052 0.7750 1.1942 1.0353 0.5904 
ICR 1.0010 1.0467 1.0137 0.8052 0.7750 1.1942 1.0353 0.5904  
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Table 2 Principal and independent components extracted by 
PCR and ICR 

Coefficient β0 P1 P2 I1 I2 

PCR 1.0050 2.4113 0.2360   

ICR 1.0050   1.9237 2.2189

 

 
Fig. 4 Ps extracted by PCR 
 

 
Fig. 5 Is extracted by ICR 
 
Table 3 Correlation coefficients between Ps, Is and Y 

Correlation P1 P2 I1 I2 

Y 0.9992 0.0396 −0.6551 0.7556 

 
4 Real dataset experiment 
 
4.1 Statistical model of Wuqiangxi Dam 

The Wuqiangxi Dam, built in 1994, is located in the 
main stream of Yuanshui River in Hunan province,  

China. The river is about 73 km going through the city of 
Yuanling. The dam is equipped with the automated 
monitoring system of wire alignment, inverted plumb, 
hydrostatic leveling, seepage monitoring, uplift pressure 
monitoring, and water level measuring, and so on. The 
data of horizontal displacement in the dam center, daily 
temperature and water level of upstream and downstream 
are used to model the dam deformation in this study. 

The horizontal displacement of a dam is mainly 
affected by the factors such as hydrostatic load, 
environment temperatures and time effect. So, the 
statistical model of dam deformation usually consists of 
the components of water level, temperature and time. 
According to the observed data, the statistical model is 
chosen as follows:  
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 is the component of water level, where 

H denotes the water head of upstream and downstream; 
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1
 is the component of temperature, where Ti 

means the average temperature of 0−1, 2−7, 8−30 and 
31−60 d because of the lag effect between the 
temperature of dam and the environment; c1θ+ c2lnθ is 
the component of time, where θ is calculated by the 
observation date minus the base date then divided by  
100. The data used in modeling have been normalized to 
reduce its impact to numerical calculation. 
 
4.2 Result of modeling and related analysis 

According to the procedure of ICR, an ICA about 
the data including components of water level, 
temperature and time is made in Eq. (7). Three 
independent components which include about 94.87% 
information about the observed data are chosen to build 
the regression model. At the same time, PCR and LSR 
are used to build the regression to make a comparison. 
The results of the three methods are listed in Table 4. It 
indicates that the coefficients got by LSR are 
unreasonable obviously because of the multicollinearity 
among the 1 to 4 items of water head. Simultaneously, 
the components of water level are not chosen in the 
regression model because their coefficients cannot be 
approved by significance testing. Thus it results in the 
loss of some information and affects the accuracy of the 
model. The results of the models using PCR and ICR are 
the same because the ICA in this examination is built on 
the basis of PCA, and the three independent components 
are obtained by a linear transformation from the top three 
principal components. According to the principle of PCR 
and ICR, Ps and Is are used to build the regression model 
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Table 4 Regression coefficients of three methods 

Method a0 a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 

LSR 6.5424 −48.4278 129.5761 −114.1359 33.6932 −0.5537 −2.0281 −0.8362 −1.6754 0.2838 −0.0234
PCR 6.5424 0.1467 0.1465 0.1463 0.1462 −1.2460 −1.2857 −1.3124 −1.2448 0.0530 0.1715
ICR 6.5424 0.1467 0.1465 0.1463 0.1462 −1.2460 −1.2857 −1.3124 −1.2448 0.0530 0.1715

 
first and the original coefficients are calculated by the 
separating matrix. Table 5 indicates that although the 
final results of PCR and ICR are the same, the 
coefficients of Ps or Is are different, namely that the Ps 
and Is represent different physical factors. 
 
Table 5 Coefficients of Ps and Is 

Method a0 P1/I1 P2/I2 P3/I3 

PCR 6.5424 1.6446 1.8701 −0.6276

ICR 6.5424 −4.8694 −0.6342 −0.6731

 
In the model of ICR, the sample determination 

coefficient R2=0.9738. It means the fitting is in good 
condition. The significance tests about the regression 
equation and regression coefficients are made. The 
F-criterion value of regression equation is F=7760.0 and 
t-criterion values of three independent components are 
274.1738, 35.6962 and 37.8743, respectively. All the test 
have been approved by significance testing. The fitting 
of ICR is shown in Fig. 6, and the RMS is 0.8132 mm. 
Then ICR model is used to make predictions about the 
horizontal displacement in the next few months of the 
dam, as shown in Fig. 7. The RMS is 0.6062 mm, 
manifesting them as a very stable model and a very good 
prediction. 
 
5 Deformation interpretation based on ICR 

model 
 

The results above demonstrate that the method of 
PCR and ICR can both solve the problem of ill-condition 
 

 
Fig. 6 Displacement fitting diagram 

 

Fig. 7 Displacement forecasting diagram 
 
and get the same regression model. A further analysis 
about Ps and Is extracted in the regression model is made 
to illustrate the differences between the two methods. 
The three components extracted by PCR and ICR are 
shown in Figs. 8 and 9, respectively. The statistical 
models of the dam show that the main factors affecting 
the displacement of the dam are hydrostatic load, 
environment temperatures and time. So, the displacement 
components of water level, temperatures and time in the 
model are respectively calculated, and the results are 
shown in Fig. 10. 

Comparing the curves in Figs. 8, 9 and 10, it is seen 
that the three dependent components extracted by ICR 
are basically the same with the curves in Fig. 10, but the 
principal components (Fig. 8) have no obvious similarity 
with the displacement components of each factor (Fig. 
10). The correlation analysis between Ps, Is and the 
displacement components of each factor are conducted 
and listed in Tables 6 and 7. The results show that the 
correlations between I1 and the displacement component 
of temperature, I2 and the displacement component of 
water level, and I3 and the displacement component of 
time are −0.9946, −0.9790 and −0.9823, respectively. As 
a result, I1, I2 and I3 can reflect the varying pattern of the 
factor of temperature, water level and time, respectively. 
Thus, it is concluded that the independent components 
represent the displacement components of obvious 
physical origin, while the principal components only 
show a bit connection to each factor, preventing from 
being interpreted as clear physical excitation. 
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Fig. 8 Three components extracted by PCR 
 

 

Fig. 9 Three components extracted by ICR 

 

 
Fig. 10 Displacement components of three factors 
 
Table 6 Correlation coefficients between Ps and impact factors 

Correlation Water level Temperature Time 

P1 0.8830 0.6356 0.0569 

P2 −0.4540 0.7392 0.4995 

P3 0.1089 −0.2227 0.8540 

 
Table 7 Correlation coefficients between Is and impact factors 

Correlation Water level Temperature Time 

I1 −0.1921 −0.9946 −0.1163

I2 −0.9790 −0.0157 0.0591 

I3 0.0488 −0.1022 −0.9823

 
 
6 Conclusions 
 

1) ICR can compress the dimension of observed 
arguments and make a stable regression model, avoiding 
the problem of ill-condition in coefficient matrix due to 
the multicollinearity of the variables. 

2) Compared with the principal components derived 
from the PCR, the independent components extracted by 
ICR can better represent the displacement components of 
obvious physical excitation. 
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3) ICR outperforms the PCR and similar methods, 
and has a great potential to analyze and characterize the 
deformation of a dam or similar deformation body. 
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利用独立分量回归建立大坝形变模型 
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摘  要：在利用回归分析对大坝形变进行建模时，回归方程常因为自变量间的多重共线性而产生病态问题，从而

不能建立准确的模型。提出利用独立分量回归(ICR)建立大坝形变模型，并确定大坝形变的物理响应。模拟实验表

明：ICR 可以有效地解决病态问题，建立一个可靠的回归模型。将 ICR 用于中国湖南省的五强溪大坝建模，结果

表明：ICR 不仅可以建立准确的坝体形变模型，而且通过其提取的独立分量可以确定大坝变形影响因素。 

关键词：大坝变形分析；独立分量回归；主成分回归；病态问题；大坝变形解释 
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