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Effect of Ce addition on microstructure of Mg−9Li alloy 
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Abstract: The as-cast and as-extruded Mg−9Li, Mg−9Li−0.3Ce alloys were respectively prepared through a simple alloying process 
and hot extrusion. The microstructures of these alloys were investigated by optical microscope (OM), scanning electron microscope 
(SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Ce addition produces a 
strong grain refining effect in Mg−9Li alloy. The grain size of the as-extruded alloy reduces abruptly from 88.2 μm to 10.5 μm when 
the addition of Ce is 0.36%. Mg12Ce is verified and exists inside the grains or at the grain boundaries, thus possibly pins up grain 
boundaries and restrains the grain growth. 
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1 Introduction 
 

Mg−Li alloys are the lightest magnesium alloys [1] 
and have much better plasticity than the general Mg−Al 
or Mg−Zn alloys [2,3]. According to the Mg−Li phase 
diagram, with Li content between 5% and 11%, BCC- 
structured β phase of Li solid solution will co-exist with 
the HCP-structured α phase of Mg solid solution [4]. The 
α phase exhibits moderate strength [5−7]. The β phase is 
well known to exhibit good formability [8−10] but 
possesses relatively low strength and work hardening 
capacity [11,12]. Therefore, the strength of Mg−Li 
binary alloys is relatively low. Grain refinement can 
strengthen the alloy with the increase of strength and 
plasticity. Minor element addition [13], which is 
particularly suitable for mass production, is a simple and 
economical method to refine the microstructure. 
Compared with the addition of Nd, Ag [6,14] or Y [15] 
into Mg−Li alloys, Ce is a cheaper RE element and has 
shown strong potential to refine and strengthen Mg 
alloys [16−18]. Moreover, many researches [19−23] have 
indicated that Ce addition could not only refine the 
grains of Mg−Li alloys, but also strengthen both α phase 

and β phase of Mg−Li alloys through the formation of 
Mg−Ce or Al−Ce intermetallic compounds. Hence, in 
this work, Mg−9Li−0.3Ce alloy was prepared to examine 
the effect of Ce on the microstructure of as-cast and 
extruded Mg−9Li alloys. 
 
2 Experimental 
 

The materials used in this work were pure 
commercial magnesium and pure commercial lithium. 
Mg−20Ce master alloy was added into the alloys. In a 
typical procedure, pure magnesium and pure lithium 
blocks with or without addition of the master alloy were 
placed in steel crucibles (90 mm in diameter, 250 mm in 
height), respectively. Then, the crucibles were placed 
into an induction furnace, followed by pumping the 
furnace chamber to a vacuum state and inputting pure 
argon as a protective gas. Subsequently, the crucibles 
were heated to 700 °C until the charge was completely 
molten and then isothermally held for 10 min, followed 
by solidification and cooling of the melts with argon 
protection to minimize the oxidation. Finally, cast ingots 
(85 mm in diameter and 150 mm in height) were 
obtained. The compositions of the as-cast alloys were 
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measured by inductively coupled plasma atomic 
emission spectroscopy (ICP-AES). The designed 
compositions and measured results of all the alloys 
prepared in the experiment are shown in Table 1. 
 
Table 1 Chemical composition of experimental alloys (mass 
fraction, %) 

Alloy No. Nominal composition Chemical composition

1 Mg−9Li Mg−8.61Li 

2 Mg−9Li−0.3Ce Mg−9Li−0.3Ce 

 
The extrusion was carried out at 250 °C and the 

extrusion ratio was 27. Before extrusion, the cast ingot 
was heat treated at 250 °C for 3 h. The Mg−9Li−0.3Ce 
bars with a diameter of 16 mm were obtained. Here, 
Mg−9Li alloy, as a reference sample, was prepared and 
extruded using the same procedure. 

The samples used for microstructure observation 
were cut from the cast ingot or the as-extruded bar at the 
same position. Microstructure was observed by optical 
microscopy and scanning electron microscopy (SEM, 

TESCAN VEGA). Before observation, the specimens 
were polished and etched with an 4.0% etchant (volume 
fraction). The grain size was measured by the linear 
intercept method at the centre of transverse sections. The 
phase in the alloys was identified by Rigaku D/max 
2500PC using Cu Kα radiation (λ=1.5418 Ǻ) operating at 
4 (°)/min and 10°−90° of 2θ. 
 
3 Results and discussion 
 
3.1 Grain size of Mg−9Li−0.3Ce alloy 

Figures 1(a) and (b) show the optical 
microstructures of as-cast Mg−9Li alloys without or with 
Ce addition. The gray β phase and white α phase is 
observed in all samples. Notable grain refinement occurs 
with the addition of 0.36%Ce, which reduces the size of 
the α phase greatly so that it could not be distinguished 
from Fig. 1(b). The microstructures of the as-extruded 
Mg−9Li alloys without or with Ce addition are presented 
in Figs. 1(c) and (d). Equiaxed grains are observed. The 
grain size was abruptly reduced from 88.2 to 10.5 μm 
when the addition of Ce was 0.36%. It can be concluded 

 

 
Fig. 1 Optical microstructures of alloys: (a) As-cast Mg−9Li alloy; (b) As-cast Mg−9Li−0.3Ce alloy; (c) As-extruded Mg−9Li alloy; 
(d) As-extruded Mg−9Li−0.3Ce alloy 
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that the addition of Ce in Mg−9Li alloy has a great 
refinement effect on the microstructure of both as-cast 
and as-extruded Mg−9Li alloys. 
 
3.2 Characteristics of intermetallic compounds in 

Mg−9Li alloys 
The XRD patterns of the Mg−9Li and Mg−9Li− 

0.3Ce alloys are demonstrated in Fig. 2. It reveals that 
Mg−9Li alloy contains both α-Mg and β-Li. Meanwhile, 
CeMg12 appears in the as-cast Mg−9Li− 0.3Ce alloys. 

SEM images and micro-area chemical composition 
analysis results of the as-cast and as-extruded alloys are 
shown in Fig. 3 and Table 2, respectively. As can be 
observed, the second phases locate within the grain or at  

 

 
Fig. 2 XRD patterns of as-cast Mg−9Li alloy (a) and Mg−9Li−0.3Ce alloy (b) (LiOH·H2O was observed in XRD result, because Li is 
highly chemical activity and is easy to react with H2O during sample preparation, basically, its existence does not disturb observation 
of CeMg12) 
 

 
Fig. 3 SEM images of alloys: (a) As-cast Mg−9Li alloy; (b) As-cast Mg−9Li−0.3Ce alloy; (c) As-extruded Mg−9Li alloy;        
(d) As-extruded Mg−9Li−0.3Ce alloy 
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Table 2 EDS results at different positions in Fig. 3 

Position in Fig. 3 x(Mg)/% x(Ce)/% 
A 100 0 
B 100 0 
C 62.21 37.79 
D 11.28 88.72 
E 100 0 
F 100 0 
G 2.86 97.14 
H 92.73 7.27 

 
grain boundary. According to the EDS and XRD results, 
the intermetallic compound in the as-cast or as-extruded 
Mg−9Li−0.3Ce alloy is CeMg12. Some of CeMg12 
intermetallic compounds in the as-cast Mg−9Li−0.3Ce 
look like granular, and most of CeMg12 intermetallic 
compounds look coarse plate-like and locate at the grain 
boundaries. After the extrusion, the CeMg12 compound 
changes to fine granular and distributes evenly in the 
as-extruded alloy due to the extrusion stress and dynamic 
recrystallization. Firstly, the extrusion stress can break 
the CeMg12 compounds into the smaller particles. 
Secondly, the extrusion temperature is 250 °C, which is 
much higher than the recrystallization temperatures of 
the Mg−9Li−0.3Ce alloy and CeMg12 (about 70 °C and 
84 °C, respectively). 
 
3.3 Mechanism of grain refinement of Mg−9Li−0.3Ce 

alloy 
The addition of alloying elements to metallic 

materials can refine the microstructure of the matrix, 
through the growth restriction of the grains due to the 
segregation power of solute elements in the matrix 
[24,25] and/or through heterogeneous nucleation [26] of 
the intermetallic compound on the matrix alloys. 
According to Mg−Li binary phase diagram [27], the 
solidification and cooling procedure of Mg−9Li alloy is 
liquid→β-Li→β-Li+α-Mg. The β-Li phase is crystallized 
from Mg−9Li alloy melt at 591 °C, then the α-Mg phase 
is precipitated from the β-Li phase at 580 °C. The melt 
point of CeMg12 is about 621 °C according to the Mg−Ce 
binary phase diagram [27], and the casting temperature is 
700 °C, thus CeMg12 cannot act as the heterogeneous 
nucleation site of the β-Li phase during solidification. As 
shown in Fig. 3 and Table 2, there is almost no Ce to be 
dissolved into the β-Li, thus the growth restriction of the 
grain is very limited. But, the as-cast CeMg12 compound 
at the boundaries can refine the microstructure through 
pinning up the boundaries although this role is limited. 
On the other hand, during the process of the precipitation 
of the α-Mg phase from the β-Li phase, the CeMg12 
compound is possible to be the heterogeneous nucleation 
site of the α-Mg phase. As shown in Fig. 3, after the 

extrusion, the morphology of the CeMg12 compound 
evolves from coarse plate-like to fine granular and the 
CeMg12 compounds can act as the nucleation sites of 
both the α-Mg phase and the β-Li phase during the 
dynamic recrystallization. Therefore, the grain 
refinement of the as-cast or as-extruded Mg−9Li−0.3Ce 
alloy is attributed to the CeMg12 compound. 

The grain refinement effect of CeMg12 on the 
as-cast or as-extruded Mg−9Li−0.3Ce alloy needs to 
identify the crystallography orientation relationships 
[26,28] between CeMg12 and α-Mg or β-Li. The 
edge-to-edge match model developed by ZHANG et al 
[29,30] is a simple and effective method to predict and 
examine the orientation relationships between an 
intermetallic compound and a metal matrix. As for this 
model, when the crystallography mismatch of the close 
or near close packed planes between the compound and 
the metal matrix is less than 10%, some orientation 
relationships exist. According to the crystallographic 
database and X-ray powder diffraction data [31,32], three 
close packed CeMg12 planes are defined as (202), (002) 
and (211), those of Mg as )1110( , (0002) and )0110( , 
those of Li as (110), (211) and (200). Therefore, there are 
nine pairs of potential matching planes between Mg and 
CeMg12, or between Li and CeMg12. All the mismatch 
values are listed in Table 3. There are one matching 
plane pair between Li and CeMg12, and three pairs 
 
Table 3 Mismatches of potential matching planes for β-Li and 
CeMg12, α-Mg and CeMg12 

Potential matching plane Mismatch/% 
(110)Li/(202)τ 4.0 
(110)Li/(002)τ 20.1 
(110)Li/(211)τ 46.7 
(211)Li/(202)τ 80.1 
(211)Li/(002)τ 108 
(211)Li/(211)τ 154.1 
(200)Li/(202)τ 47.0 
(200)Li/(002)τ 69.8 
(200)Li/(211)τ 107.5 

τMg )202(/)1110(  5.2 

τMg )002(/)1110(  21.5 

τMg )211(/)1110(  48.5 
(0002)Mg/(202)τ 0.96 
(0002)Mg/(002)τ 14.4 
(0002)Mg/(211)τ 39.7 

τMg )202(/)0110(  7.1 

τMg )002(/)0110(   7.3 

τMg )211(/)0110(  31.0 
Note: τ denotes CeMg12 
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between Mg and CeMg12 with less than 10% mismatch, 
which shows that a crystallography orientation 
relationship exists between Mg and CeMg12, or between 
Li and CeMg12. 
 
4 Conclusions 
 

1) The microstructures of both as-cast and extruded 
alloys are fined significantly. The size of the α phase 
reduces greatly in the as-cast alloy and the grain size of 
the as-extruded alloy is reduced from 88.2 μm to 10.5 
μm when the addition of Ce is 0.36%. 

2) As for the Mg−9Li−0.3Ce alloy, β-Li, α-Mg and 
CeMg12 are identified as the three primary components. 
The morphology of CeMg12 in the as-extruded 
Mg−9Li−0.3Ce alloy evolves from coarse plate-like to 
fine granular due to the extrusion stress and dynamic 
recrystallization. CeMg12 can refine the microstructure of 
the alloy by the heterogeneous nucleation due to the 
crystallography orientation relationship. 
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Ce 元素对 Mg−9Li 合金显微组织的影响 
 

殷恒梅 1, 2，蒋 斌 1, 2，黄小勇 1, 2，曾 迎 1, 2，杨青山 1, 2，Ming-xing ZHANG3，潘复生 1, 2 
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摘  要：通过合金化和热挤压制备铸态及挤压态的 Mg−9Li 和 Mg−9Li−0.3Ce 合金，通过光学显微镜和扫描电镜

观察结合能谱分析以及 XRD 分析对这一系列合金的微观组织进行研究。结果表明：Ce 的添加对 Mg−9Li 合金有

很好的晶粒细化效果，当 Ce 的添加量达到 0.36%时，挤压态合金的尺寸从未添加的 88.2 μm 减小至 10.5 μm， 

Mg12Ce 存在于晶粒内或晶界处，因此认为 Mg12Ce 可能聚集在晶界处从而阻碍晶粒的长大。 

关键词：镁锂合金；显微组织；晶粒细化；金属间化合物 
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