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Abstract: To predicate the high temperature flow behavior of Al/Mg based nanocomposite, constitutive models such as general flow, 
Arrhenius hyperbolic, Johnson−Cook(JC) and modified Zerilli−Armstrong (ZA) models, and artificial neural network(ANN) models 
were developed using stress−strain data collected from hot compression tests carried at different strain rates (0.01−1.0 s−1) and 
temperatures (523, 623 and 723 K). The validity of the models developed was tested using statistical parameters such as root mean 
square error (RMSE), regression coefficient (R2), mean relative error (MRE) and scattered index (Is). A comparison between ANN 
and different constitutive models shows that the ANN model has a higher accuracy in estimating the flow stress during hot 
deformation of AA5083/2%TiC nanocomposite. 
Key words: hot compression; Johnson−Cook (JC) model; Modified Zerilli−Armstrong (ZA) model; Arrhenius (AR) hyperbolic 
model; flow stress; nanocomposite  
                                                                                                             
 
 
1 Introduction 
 

Macroscopic and microscopic behaviors of metallic 
system during thermo-mechanical processing are 
important to understand the flow and fracture 
mechanisms during hot deformation. The size, shape and 
service properties of finished parts are governed by flow 
path during thermo-mechanical processing [1]. 
Constitutive equations relate with non-linear relationship 
that exists among process parameters such as effective 
stress, effective strain rate and temperature at different 
levels. These equations that are unique and specific for 
each material under each processing condition are 
developed through the use of data obtained under 
simplified experimental conditions which can be 
extended to complex situations by well-known 
hypotheses [2]. The uniaxial hot compression testing is 
usually employed to provide the necessary data to extract 
the constitutive equations. Investigations have been 
carried out in the past and various models to predict the 
constitutive behaviour in a broad range of metals and 
alloys [3−6]. 

A constitutive model involves a number of material 
constants which are evaluated using a set of experimental 
data. So, the model developed with all estimated material 
constants should represent the flow behaviour of the 

material with adequate accuracy and reliability in a broad 
range of temperature, strain rate and strain [3]. Different 
models have been proposed by many researchers; 
however, general flow equation, Arrhenius (AR) 
hyperbolic, Johnson−Cook (JC) and Zerilli−Armstrong 
(ZA) models were used for materials with fairly 
reasonable accuracy [7−10]. Attempts were made to 
modify the original models by incorporating adiabatic 
temperature rise, strain rate sensitivity, temperature 
sensitivity, strain and strain rate softening, and coupled 
effects of above parameters [11] for accurate prediction 
of high temperature and high strain rate flow behaviors. 
As compared with JC model which necessitates a 
minimal amount of material constants, ZA model 
requires more material constants which consider coupled 
effects of temperature, strain and strain rate, thereby 
predicting the response of hot deformation in close 
proximity to that of experimental values. A modified ZA 
model was developed by SAMANTARAY et al [6] and 
comparative study was made to evaluate the prediction 
accuracy of strain rate compensated by Arrhenius 
equation and JC model with modified ZA model. 

The constitutive models developed make use of 
curve fitting techniques for the determination of material 
constants from the experimental values which are less 
accurate and time consuming. As the flow behaviour of 
material during hot deformation is affected by hardening 
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and softening mechanism, the empirical model 
developed by experimental values becomes difficult for 
the performance of theoretical analysis. Means of 
regression and dependence of strain condition for flow 
behavior result in a low accuracy of constitutive models. 
To overcome the above problems, artificial neural 
network models (ANN) were used to predict flow stress 
during hot deformation as they can be used to model 
complex physical phenomenon without invoking 
mathematical model. ANN model has the capability of 
performing highly accurate non-linear fit, retaining 
memory of data and can also adjust the state of network 
on the basis of original network to adopt new data-sets 
through training. 

LIN et al [12] predicted the flow behaviour of 
42CrMo steel using ANN models during hot 
compression with results having good relation with 
experimental values. REDDY et al [13] developed a 
back-propagation neural network model to predict the 
flow stress of Ti−6Al−4V alloy and pointed out that the 
network can be successfully trained across different 
phase regions. They developed the constitutive 
relationship model for Ti40 alloy and reported that the 
predicted flow stress by artificial neural network model 
was in good agreement with experimental results. A 
three-layer feed forward artificial neural network with a 
back-propagation learning algorithm was established to 
explore and predict the flow behavior of 28CrMnMoV 
steel during hot compression [14]. LIU et al [15] 
compared the prediction method of flow stress using the 
Zener−Holloman parameter and hyperbolic sine stress 
function with ANN model for T1 (W18Cr4V) high-speed 
steel. CHEN et al [16] compared the prediction method 
of flow stress using the Zerilli–Armstrong model and 
ANN model for pure molybdenum. Though ANN model 
results cannot be directly utilized for developing finite 
element simulation and analysis during hot deformation, 
the FEM simulation can be coupled with ANN model for 
finding the effects of input parameters on process 
outcome. HANS et al [17] developed forming data using 
FEM simulation which were subsequently used for 
training back propogation (BP) ANN model for 
accurately predicting the metal forming processes. The 
values predicted were validated using experimental 
results. 

In the present work, isothermally hot compression 
tests were carried out on AA5083/2%TiC nanocomposite 
samples under temperatures of 523−723 K and strain 
rates of 0.01−1.0 s−1, respectively. The experimental flow 
stress and corresponding input parameters such as strain, 
strain rate and temperature were used to develop 
different constitutive models, such as general flow, 
Arrhenius hyperbolic, JC and modified ZA models. 
Further, statistical parameters such as mean absolute 

relative error, correlation coefficient, root mean square 
error and scattered index were evaluated for each model. 

ANN model developed for the prediction of flow 
stress was compared with various constitutive models 
using the estimated statistical parameters. 
 
2 Experimental 
 

The AA5083/2%TiC nanocomposite was produced 
through the P/M route followed by extrusion. The 
AA5083 powders with average particle size of 30 μm 
(0.2% Cr, 0.1% Cu, 0.4% Fe, 0.4% Si, 4.5% Mg, 0.4% 
Mn, 0.15% Ti, 0.25% Zn, balance Al) were blended with 
2% (volume fraction) of TiC nano particles (with an 
average particle size of 37.5 nm) for 2 h without process 
control agent at 300 r/min using an Insmarts system 
laboratory scale planetary ball mill. Then, blended 
powders were milled continuously for 5 h. In order to 
avoid a significant temperature rise, ball milling was 
stopped periodically for every 15 min and resumed for 
15 min. Sulphur-free Toulene was used as the process 
control agent to avoid the formation of inter-metallic 
compound. The milled powder mixture was cold 
compacted at a pressure of 350 MPa to form billets of 30 
mm in diameter and 30 mm in height. The compacted 
billets were coated with graphite spray and sintered at 
773 K for 3 h using argon gas as inert atmosphere to 
avoid excessive grain growth. Sintered billets were 
soaked at 723 K for 4 h before extrusion and hot 
extrusion to produce rods of 12 mm in diameter. 
Extrusion was carried out without atmosphere control 
and samples were cooled in air at room temperature. 
During extrusion anti-seize aerosol was applied which 
acted as a lubricant and as well as a protective layer to 
prevent oxidation. 

Cylindrical compressive specimens of 10 mm in 
diameter and 10 mm in height were obtained from 
hot-extruded material. Specimens were coated with 
graphite spray lubricant to ensure homogeneous 
deformation. For examining the behavior of the material, 
the hot compression tests were carried out up to 40% of 
engineering strain and then samples were quenched in 
water. The load—stroke data were converted into true 
stress— true strain curves using standard equations. 
Constitutive and ANN models discussed in subsequent 
sections were developed with the true stress and true 
strain at different temperatures, strain rates and strains 
obtained from the above experiments. 
 
3 Results and discussion 
 
3.1 Flow behaviour of AA5083/2%TiC 

Figure 1(a) shows the back scattered image of the 
nanocomposite sample. It shows the presence of micro  
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Fig. 1 Back scattered image (a), XRD patters (b) and EDS 
analysis of as-extruded Al5083/2%TiC nanocomposite (c) (Red 
arrow indicates micro pores, and orange arrow indicates nano- 
reinforcements) 
 
pores and distribution of nanoparticle clusters. 

Figure 1(b) shows the XRD patterns of alloy and 
nanocomposite samples. Figure 1(c) shows the EDS 
analysis. It confirms the presence of Al, Mg, Ti and C in 
the composite. 

Figure 2 shows the typical true stress—strain curves 
for samples compressed at different temperatures and 
strain rates. For a given strain level, as the temperature 
increases, the corresponding stress decreases. Also, for a 
given strain, the stress increases as the strain rate 
increases from 0.01 to 1 s−1 at all of the temperatures 
studied. The stress—strain curves appear to flatten out 

and show a steady but gradual decrease to a strain of 0.5. 
This indicates the sensitivity of flow stress to the 
variations of temperature and strain rate. Flow softening 
behavior was observed at all the temperatures and strain 
rates. It was observed that the flow softening tendency is 
greater at lower temperature and higher strain rate. This 
can be attributed to the rise in temperature, dynamic 
recrystallization, flow instability, deformation speed, 
microstructure and adiabatic heating [18,19]. 
 

 
Fig. 2 Flow stress— true strain curves of AA5083/2%TiC 
nanocomposite at varying strain rates and temperatures of 523 
K (a), 623 K (b) and 723 K (c) 
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3.2 General flow model 
A simple constitutive model relating hot 

deformation parameters such as strain rate and 
temperature can be expressed as follows: 
 

)exp(
RT
QA n −= σε&                           (1) 

 
where A and n are material constants; ε&  is the strain 
rate; σ is the flow stress; Q is the apparent activation 
energy of deformation; R is the gas constant; T is the 
thermodynamic temperature. Figure 3(a) shows the 
curves between ln σ and ln ε&  at different temperatures 
where the slope (n) of the line was obtained. It was 
observed that the value of n is dependent on strain rate 
and temperature. For a particular strain level of 0.5, n is 
found to be 8.48. ln σ and 1/T plot was drawn for 
different strains to find the temperature sensitivity factor 
s, as shown in Fig. 3(b). The apparent activation energy 
of the nanocomposite is found taking the average value 
of slope (s) and n using the following expression: 
 
Q=nRs                                      (2) 
 

The plots detailed above were drawn in previous 
work [20] and the activation energy (Q) was found to be 
200.84 kJ/mol for a strain of 0.5, which is higher than 
that for self-diffusion in pure aluminium (142 kJ/mol). 
The higher Q in the nanocomposite is due to the effect of 
hard TiC particles in the materials which pin the motion 
of the dislocations and grain boundaries and raise the 
deformation resistance. The above calculated activation 
energy Q was used to estimate temperature compensated 
strain rate parameter or the Zener–Hollomon parameter 
(Z) defined as 
 

)exp(
RT
QZ ε&=                               (3) 

 
The average Q at a strain of 0.5 is used. 
A simple relation of equations (1) and (3) resulted in 

the following expression: 
 
Ln Z=ln A+nln σ                              (4) 
 

The slope of the plot gives a stress exponent value 
of 8.48, which is close to that obtained in Fig. 3(c). It 
implies that under the experimental condition considered, 
the power law relationship for hot deformation is obeyed. 
Application of above empirical constants n and A into the 
general flow equation (1) results in the following 
constitutive model: 
 
ε& =120.42σ8.48exp[−200840/(8.314T)]             (5) 
 

The regression coefficients for the plot drawn 
between ln Z and ln σ shown in Fig. 3(c) are Q, n, s and 
A at different strain levels (Table 1). 

 

 
Fig. 3 Variation of flow stress with respect to strain at different 
temperatures (a), variations of flow stress with respect to 
temperature at varying strain rates (b), and variation of flow 
stress with strain compensated Zener−Hollomen parameter for 
true strain of 0.5 using general flow model (c) 
 
Table 1 Q, ε& , A, n and s of AA5083/2%TiC nanocomposite 

Strain Q/(kJ·mol−1) A n s 
0.1 205.91 34.12 8.82 0.27
0.2 204.87 42.52 7.88 0.28
0.3 204.75 53.57 8.02 0.28
0.4 200.97 105.42 8.05 0.28
0.5 200.84 120.42 8.48 0.29
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Figure 4 shows the comparison between the 
experimental and predicted data by general flow model 
at various processing conditions. 
 

 
 
Fig. 4 Comparison between experimental and predicted flow 
stress using general flow model under strain rates of 0.01−1 s−1 
at different temperatures: (a) 523 K; (b) 62 3K; (c) 723 K 
 
3.3 Arrhenius hyperbolic model 

Arrhenius constitutive model relating various 
process parameters and material constants with flow 
stress during hot deformation can be expressed as 
follows: 

[ ] )exp(sinh(
RT
QA n −= ασε&                     (6) 

 
where α is the stress level; n is the stress exponent 
constant related to the strain rate.    

A detail procedure for the computation of above 
material constants employing the experimentally 
measured flow stress was provided in Ref. [21]. 

Figure 5 shows the relationships among strain rate, 
temperature and flow stress for the determination of 
various parameters such as α, n and s. Since, ε&ln  is 
linear with ln[sinh(ασ)], the relationship between the 
flow stress and strain rate of AA5083/2%TiC  
nanocomposite fits a hyperbolic sine relation. 

The stress exponents n calculated from the slope of 
the   ln ε&—ln[sinh(ασ)] at different temperatures are in 
the range of 4.688−6.130. The temperature sensitive 
factor was found with curve fitting values of   
ln[sinh(ασ)] with 1/T. This varies from 4.11 to 4.47 at 
varying strain rates. The regression coefficient was found 
to be above 0.98. The activation energy for 
corresponding strain rate, temperature and strain level 
was estimated by Eq. (8). 

The activation energy of AA5083/2%TiC for a 
strain of 0.5 is found to be 185.85 kJ/mol which is 
significantly higher than the activation energy for 
self-diffusion of pure aluminium which is 142 kJ/mol. 

The correlation coefficient (R2) for the linear 
regression of ln Z and ln[sinh(ασ)] was found to be 0.984 
(Fig. 6). The stress exponent n of 5.05 calculated from 
the slope of the plot is in consistent and within the range 
estimated in Fig.5(c), thereby indicating the effectiveness 
of the Arrhenius hyperbolic equation for the analysis of 
hot deformation behavior of AA5083/2%TiC 
nanocomposite. 

By determining A, Q, n and α, the flow stress can be 
estimated from the constitutive equation represented by 
 

[ ] )185850exp()01733.0sinh(1046.6 05.513

RT
σε ×=&  

 
The activation energy Q, α, n and A for different 

strain levels are given in Table 2. 
 
Table 2 Q, α, a, A and n values calculated for Arrhenius 
hyperbolic model 

Strain Q/(kJ·mol−1) α/MPa−1 A n 

0.1 209.07 0.0156 4.31123×1015 5.582

0.2 197.0277 0.0153 3.36628×1014 5.166

0.3 197.6381 0.0156 8.96931×1014 5.518

0.4 187.7599 0.0172 1.90372×1014 5.355

0.5 185.8544 0.0173 6.46494×1013 5.051
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Fig. 5 Plots of lnε&—lnσ (a), ln ε&—σ(b), lnε&—ln(sinασ) (c) and ln(sinhασ)—T−1 (d) 
 

 

Fig. 6 Variation of flow stress with Zener−Hollomen parameter 
at true strain of 0.5(Arrhenius model) 
 

Figure 7 shows the relationships between the 
experimental and predicted data by Arrhenius hyperbolic  
model at various processing conditions. 
 
3.4 Johnson−Cook model 

The original Johnson−Cook model can be expressed 
as 
 

)1)(ln1)(( ** mn TCBA −++= εεσ &               (7) 

 
where A is the yield stress at reference temperature and 
reference strain rate, here reference temperature (Tr) is 
the minimum temperature of the experimental 
temperature (i.e. 523 K) and reference strain rate ( 0ε& ) is 
selected as 1 s−1; B is the coefficient of strain hardening; 
C is the coefficient of strain rate hardening; ε& *= ε& / 0ε& , 
is the dimensionless strain rate; T* is the homologous 
temperature, T*=(T−Tr)/(Tm−Tr), where T is the 
thermodynamic temperature of deformation and Tm is the 
melting temperature of test material; m is the thermal 
softening exponent. 

The material constant A is found by calculating 
0.2% yield stress of the material at reference temperature 
and strain rate of 1.0 s−1. 

The homologous temperature T* is obtained using 
the following expression as 
 

)/()( rmr
* TTTTT −−=                         (8) 

 
At temperature of 523 K and strain rate of 1.0 s−1 

respectively, Eq. (7) is reduced to 
 

)( nBA εσ +=                                (9) 
 

Taking logarithm on both sides of the above 
expression, it can be obtained 
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Fig. 7 Relationships between experimental and predicted flow 
stress using Arrhenius hyperbolic model under strain rates of 
0.01 s−1−1 s−1 at different temperatures: (a) 523 K; (b) 623 K; 
(c) 723 K 
 

εσ lnln)ln( nBA +=−                        (10) 
 

The value of B and strain hardening exponent n can 
be found by plotting a graph of ln(σ−A) vs lnε. 

At reference temperature, the homologous 
temperature term which represents thermal softening 
effect on the flow stress will be vanished. Eq. (7) can be 
written as follows: 
 

)ln1)(( *εεσ &CBA n ++=                      (11) 

 
By taking logarithm on both sides and plotting a 

graph between )/(ln nBA εσ +  and *lnε& , material 
constant C can be evaluated. 

Finally, the temperature sensitivity, m, can be found 
at reference temperatures by plotting a graph between 

)/()1ln( nBA εσ +−  and 
.
*lnT . 

For AA5083−2%TiC nanocomposite the material 
constants are listed in Table 3. 
 
Table 3 Parameters of Johnson−Cook model 
C0/MPa C1 C2 C3 C4 C5 n 

156 13.7494 0.0077 −0.0009 0.1051 0.0002 −0.5365
 

The JC model can be expressed using the material 
constant as follows: 
 

)1)(ln0731.01)(9068.0158( 5145.0**7418.1 T−++= εεσ &  
                                      (12) 

Figure 8 shows the comparison of experimental and 
JC model predicted flow stress for different strains, strain 
rates and deformation. 
 
3.5 Modified Zerilli−Armstrong model 

The ZA model [22] was used for different FCC and 
BCC materials at different strain states and temperatures 
between ambient condition and up to 0.6Tm. 
 

For BCC, 
*

5
*

4
*

310 )]ln[exp( εεεσ && cTcTccc n ++−+=        (13) 
For FCC, 

)]ln[exp( *
4

*
320 εεσ &TcTccc n +−+=           (14) 

 
where c0, c1, c2, c3, c4, c5 and n are the material constants. 

SAMANTARAY et al [6] formulated a modified ZA 
model incorporating isotropic hardening, temperature 
softening, strain rate softening, and the coupled effects of 
strain, strain rate and temperatures. 
 

]ln)()(exp[ **
54

*
3210 εεεσ &TccTcccc n +++−+=   (15) 

 
For computing the material constants used in    

Eq. (15), reference temperature and reference strain rate 
were taken as 523 K and 1.0 s−1, respectively. 

Applying reference strain rate, Eq. (15) can be 
written as follows: 

ncc εσ 10 +=                                (16) 
 

Taking natural logarithm on both sides, Eq. (16) can 
be written in the form of linear equation: 
 
y=b+ax                                    (17)  
where slope (a) and intercept (b) in the above expression 
can be found as reported elsewhere [6]. 
 
b=ln(c0+c1εn)                                (18) 
a=−(c2+c3ε)                                 (19) 
 

By rearranging the above equation, it can be written 
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Fig. 8 Comparison between experimental and predicted flow 
stress using original JC model under strain rates of 0.01−1 s−1 at 
different temperatures: (a) 523 K; (b) 623 K; (c) 723 K 
 
as 
 

εlnln)ln(exp 10 nccb +=−                    (20) 
 

By plotting a graph between )ln(exp 0cb−  and ln ε, 
material constants such as c1 and n can be calculated. 

By plotting a graph between a and ε, the material 
constants, c2 and c3 can be estimated. 

As formulated elsewhere [6], the material constants 
c4 and c5 can be estimated by plotting a graph between 
lnσ and *lnε& , and following a procedure similar to  the 
evaluation of c1, c2 ,c3 and n. 

In the present case, all the material constants are 
found and the values are listed in Table 4. Using the 
material constants estimated in the above procedure, the 
final modified ZA model can be expressed as follows: 
 

+−−+= − *5365.0 )0009.00077.0([exp(74.13156 Tεεσ  

)]ln)0002.01051.0( ** ε&T+                (21) 
 

Figure 9 shows the comparison between the 
experimental and predicted data by modified ZA model 
under various processing conditions. 
 
Table 4 Parameters of modified Zerilli−Armstrong model 

A/MPa B/MPa C n m 
158 0.9068 0.0731 1.7148 0.5145 

 
3.6 Neural network model 

In the present work, a multi layer perceptron (MLP) 
based feed-forward neural network back-propagation 
(BP) algorithm was used which has a good 
representation power in dealing with complex non-linear 
problems coupled with multivariable system [14]. The 
inputs to the neural network model are strain, strain rate 
and temperature keeping a single output parameter, flow 
stress. In the case of strain rate ε& , lg ε&  was chosen as a 
parameter, as it exhibits consistent relationship with flow 
stress. In this method, the numbers of input and output 
neurons are equal to the number of input and output 
parameters respectively and there is one layer including 
neurons between them. A total number of 45 experiment 
data collected from hot compression test were used for 
training and testing the neural network model. According 
to the MLP BP algorithm, the numbers of input and 
output neurons are equal to those of input and output 
parameters respectively, and there is one layer including 
neurons between them. Different architectures of MLP 
were used for the calculation of flow stress. All neurons 
of MLP are connected with the other neurons and the 
way of connection is forward. As the mentioned earlier, 
the neural network was trained using the 
Levenberg−Marquardt algorithm incorporated into the 
back propagation algorithm. The training function 
Trainlm has the advantage of the fastest convergence to 
obtain lower mean square errors than any of the other 
algorithms tested. The learning is based on gradient 
descent algorithm and hence requires the activation 
function to be differentiable. Hence, a logistic sigmoid 
function expressed as Eq. (22) was employed as the 
activation function. The transfer functions for both 
hidden and output layers were performed with Logsig 
function as the activation function for the flow stress 
prediction in this study. Because of its simplicity, the 
Logsig function has become one of the most common       
and widely used algorithms for solving many real world 
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Fig. 9 Comparison between experimental and predicted flow 
stresses by modified ZA model under strain rates of 0.01−1 s−1 
at different temperatures: (a) 523 K; (b) 623 K; (c) 723 K 
 
problems as the sigmoid functions are easily 
differentiable, hence to a certain degree it is transparent 
to interpretation and analysis. The processing units for 
computational convenience are employed in the present 
model:  

)]exp(1/[1)( xxf −+=                        (22) 
 
where x is the weighted sum of the input values. The 
other parameters of MLP architecture and training are 
listed in Table 5. 

Table 5 Training parameters used in neural network 
Name of network parameter Content 

Network type 
Feed-forward back 

propagation 
Training function Trainlm 

Adaption learning function Learngdm 
Transfer functions for hidden and 

output layers 
Logsig 

Performance function MSE 
Training epoch 20000 

Goal 0.0001 
 

The neural network toolbox available with 
MATLAB® version 7.4.0.287 was used to build, train 
and simulate the network. The numbers of units in input 
and output layers are dictated by the problem, but the 
number of hidden units which control the complexity for 
non-linear problems of the model must be determined. 
The input–output relationships will specify the objective 
of the ANN model. 

The number of hidden neurons determines the 
complexity of neural network and precision of predicted 
values. To determine the number of neurons in the 
hidden layer, several trains were repeated. After evolving 
a model with a number of neurons in a hidden layer, the 
model was tested for statistical parameters such as mean 
relative error (MRE), root mean square error (RMSE), 
correlation coefficient (R2) and scatter index (Is) using 
equations as follows: 
 

2

1
)(1RMSE ii

N

i
PE

N
−Σ=

=
                    (23) 

/))(( meanmean1

2 PPEER ii

N

i
−−Σ=

=
 

2
mean1

2
mean1

)()( PPEE i

N

ii

N

i
−Σ−Σ

==
          (24) 

 

%100100MRE
1

×
−

= ∑
=

N

i i

ii

E
PE

N
               (25) 

 
means RMSE/EI =                        (26) 

 
where E is the experimental value and P is the predicted 
value obtained from the neural network model; Emean and 
Pmean are the mean values of E and P, respectively; N is 
the total number of data employed in the investigation. 

In order to normalize the input and output values 
within 0−1, the following equation was used for input 
parameters such as temperature and flow stress: 
 

MinMax

Min
N 9.01.1

9.0
XX

XXY
−

−
=                     (27) 

 
where X is the original temperature, strain and flow 
stress; XMax  and XMin are the maximum and minimum 
of X, respectively; YN is the normalized data 
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corresponding to X. However, the normalization method 
is not appropriate to the data investigated in the present 
study because strain rate changes significantly and 
causes too small unified value of Maxε&  for the ANN to 
learn. Therefore, the logarithm method of normalization 
ε&  was adopted as follows: 
 

)lg3(9.0)lg3(1.1
)lg3(9.0)lg3(

MinMax

Min
N εε

εεε
&&

&&

+−+
+−+

=           (28) 

 
in which a constant 3 is added so that the normalized 
data remains positive. 

Once the best-trained network is found, all the 
transformed data convert to their equivalent values, 
which can be expressed as follows: 
 

MinMinMaxN 9.0)9.01.1( XXXYX +−=           (29) 
 

By employing MLP BP learning algorithm and by 
evaluating the statistical parameters given in equations 

(23)−(26), a network with two hidden layers each with 
two neurons was selected, as shown in Fig. 10, as an 
optimum model with the best performance. A 
comparison of different networks tried for the present 
study, along with performance indicators is listed in 
Table 6. 

 

 

Fig. 10 3-2-2-1 MLP architecture used in ANN model 
 
Table 6 Performance of ANN model for testing datasets of AA5083/2%TiC nanocomposite 

Trial No. Architecture Number of epochs MRE R2 MRE/% RMSE/% Is 
1 3-1-1 NC-20000 0.001863270 0.997 0.333 5.132 0.058
2 3-2-1 NC-20000 0.000564190 0.998 −3.817 6.414 0.072
3 3-3-1 NC-20000 0.000616662 0.989 4.635 7.360 0.083
4 3-4-1 NC-20000 0.000157447 0.926 −35.424 87.298 0.980
5 3-5-1 NC-20000 0.000071935 0.985 8.051 10.254 0.115
6 3-6-1 NC-20000 0.000039900 0.987 −3.242 7.899 0.089
7 3-7-1 NC-20000 0.000012973 0.193 −42.225 92.783 1.041
8 3-8-1 351 5.74×10−24 0.899 −17.394 51.302 0.576
9 3-9-1 82 8.08×10−27 0.974 4.259 11.442 0.128

10 3-10-1 68 4.51×10−24 0.979 6.369 12.929 0.145
11 3-11-1 18 1.48×10−30 0.921 −16.968 52.421 0.588
12 3-12-1 10 4.54×10−27 0.990 −6.102 12.349 0.139
13 3-13-1 22 6.21×10−30 0.978 −21.240 43.874 0.492
14 3-14-1 6 1.11×10−28 0.761 −26.648 31.864 0.358
15 3-15-1 6 8.02×10−30 0.943 −4.289 16.680 0.187
16 3-16-1 6 7.91×10−23 0.875 12.459 30.614 0.344
17 3-17-1 7 7.87×10−32 0.947 −35.966 60.378 0.678
18 3-18-1 7 6.62×10−30 0.935 −3.193 16.769 0.188
19 3-19-1 8 1.70×10−30 0.873 −21.416 23.657 0.266
20 3-20-1 7 1.16×10−31 0.839 −12.843 29.628 0.333
21 3-1-1-1 15 5.18×10−2 0.997 1.515 3.666 0.041
22 3-2-2-1 18 2.48×10−4 0.997 −0.130 3.769 0.042
23 3-3-3-1 15 9.19×10−5 0.998 −1.772 3.452 0.039
24 3-4-4-1 17 6.52×10−7 0.967 −3.017 15.871 0.178
25 3-5-5-1 24 5.60×10−27 0.968 3.895 13.091 0.147
27 3-6-6-1 154 3.59×10−23 0.877 −3.331 31.608 0.355
28 3-7-7-1 8 2.01×10−23 0.994 −0.177 5.259 0.059
29 3-8-8-1 11 1.11×10−23 0.549 −14.393 42.414 0.476
30 3-9-9-1 11 3.37×10−26 0.959 −0.577 20.916 0.235
31 3-10-10-1 8 2.87×10−28 0.932 18.818 23.938 0.269
32 3-11-11-1 14 3.23×10−29 0.937 −29.618 30.210 0.339 
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Figure 11 shows the comparison between the 
experimental and predicted flow stress by neural network 
model under various processing conditions. The 
statistical parameters evaluated using the neural network 
model are listed in Table. 7. The selected MLP network 
with 3-2-2-1 has the highest R2 of 0.999, and the lowest 
RMSE, MRE and Is of 1.326%−0.056%, and 0.016  
respectively. After training, 15 testing data were used to 
validate the accuracy of the proposed MLP network. The 
result of the testing phase shows that the proposed 
3-2-2-1 MLP network using Trainlm and Logsig  
 

 
Fig. 11 Comparison between experimental and predicted flow 
stresses using ANN model at strain rates of 0.01−1 s−1: (a) 523 
K; (b) 623 K; (c) 723 K 

functions is capable of generalizing between input and 
output variables with reasonably good prediction errors 
where the R2, RMSE, MRE and Is were estimated as 
0.997, 3.769%, −0.009% and 0.042, respectively. 
 
Table 7 Statistical flow stress values of proposed 3-22-1 
network 

Flow stress R2 RMSE/% MRE/% Is 

Training 0.999 1.326 −0.056 0.016

Testing 0.997 3.769 −0.009 0.042

 
3.7 Comparative studies of constitutive models with 

ANN model 
In order to study the accuracy of constitutive and 

ANN models to predict the flow stress during hot 
deformation, as explained in section 3.6, four different 
statistical parameters, namely correlation coefficient, 
RMSE, MARE and Is were evaluated and compared. 
Figure 12 shows the comparison of experimentally 
measured and predicted flow stresses using general flow 
equation, Arrhenius hyperbolic, Johnoson−Cook, 
modified Zerilli−Armstrong and ANN models. The 
statistical parameters estimated by different models are 
listed in Table 8. It is observed that the general flow 
equation could not predict the flow behavior of 
AA5083/2%TiC nanocomposite as shown in Fig. 4(a), at 
high temperatures and higher strain rates. A similar 
behavior was found for Arhneius hyperbolic model  
(Fig. 7). However, compared with general flow model, 
Arrhenius model has better statistical indicators such as 
R2, MRE, RMSE and Is due to more accurate prediction 
of flow behavior at low and medium temperatures and 
strain rates.  The inability of the above models to 
predict in the above regions can be attributed to material 
instability set in the material under these conditions. 
Activation energies estimated using the above models 
(Tables 1 and 2) show similar values at initial 
deformation level, but change substantially as the 
deformation progresses. As the Arrhenius hyperbolic 
model has better statistical parameters, it can be 
suggested for all metallurgical analyses. 

Though the general flow and Arrhenius models 
were used for analysis of hot deformation, their 
dependence on strain for model development is 
necessary to develop new constitutive models 
independent of deformation level (strain). As shown in 
Figs. 8 and 12(c), JC model has problem in predicting 
high temperature flow behavior. As shown in Table 8, a 
poor mean absolute error of 20.58 was obtained in JC 
model at temperature of 523 K and strain rate of 1 s−1 for 
the estimation of material constants, which was used for 
other process parameters yield larger error in estimation 
of flow values. Another disadvantage of JC model as  
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Fig. 12 Comparison of experimental with stresses predicted by general flow model (a), by Arrhenius hyperbolic model (b), by 
original JC model (c), by modified ZA model (d), by ANN with training and testing data (e) and by full ANN (f) 
 
reported earlier is its appropriation of process parameters 
such as strain, strain rate and temperature as independent 
factors and not considering interaction effects among 
them. The interaction effects of above parameters were 
considered in the case of modified ZA model,  and 
when this model was applied to flow stress prediction, as 
shown in Fig. 12(d), better statistical values which are 
close to those of Arrhenius model were obtained as listed 
in Table 8. 

In the case of 3-2-2-1 neural network model, a 
maximum absolute error in prediction was found to be 
10.533 MPa, which corresponds to the actual flow stress 
of 101.52 MPa, where the relative error is 6.94%. In 
another case, when the absolute error is 1.56 MPa, the 
relative error is 5.49%. This corresponds to the low flow 
stress of 28.45 MPa. Similarly in another condition, 
when the absolute error of prediction is −3.24 MPa, the 
relative error is −6.24%. This corresponds to the high 
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Table 8 Comparison of experimental flow stress with 
constitutive and ANN models of AA5083/2%TiC 
nanocomposite 

Model R2 RMSE/% MRE/% Is 

General 
flow equation 

0.959 17.41 2.721 0.209

Arrhenius hyperbolic 
model 

0.965 13.362 −0.980 0.160

Johnson−Cook model 0.978 12.369 −20.58 0.148

Modified Zerrilli− 
Armstrong model 

0.989 7.965 −2.295 0.095

ANN model 0.999 2.431 −0.035 0.029

 
flow stress of 52 MPa. In general, it is noticed that the 
low flow stress is considered to be more sensitive to 
errors even when the absolute errors are small. This 
suggests that more uniformity in prediction of flow stress 
using ANN can be achieved by taking more experimental 
data pertaining to low flow stress. In addition to the use 
of logarithmic values of flow stress during normalization, 
more uniformity in prediction of flow stress during hot 
deformation can be achieved if more data are taken near 
the boundaries of the domain [23], and also, more data 
pertaining to the low flow stress. In the present study, 
3-2-2-1 network provides less than ±2% of error in 60% 
of cases and more than 25% of cases the error falls in the 
range of ±(2%−4%). The ability of ANN model in 
predicting the flow behaviour during thermo-mechanical 
processing can be seen from Figs. 12(e) and (f). The 
prediction results from the ANN show a higher accuracy 
than those from the regression constitutive model method 
as indicated in Table 8. 
 
4 Conclusions 
 

Constitutive models such as general flow, Arrhenius 
hyperbolic, Johnson−Cook, modified Zerilli−Armstrong 
models were developed using the experimental data 
collected from hot isothermal compression under 
different temperatures and strain rates. Neural network 
model with 3-2-2-1 multilayer perceptron (MLP) was 
developed to predict the flow stress of AA5083/2%TiC 
nanocomposite. The results of the ANN model show 
satisfactory results with a higher accuracy compared with 
constitutive model in terms of R2, MRE, RMSE and Is. 
Among the constitutive models developed in the present 
study, modified Zerilli−Armstrong model shows better 
statistical indicators of R2, RMSE and Is. Arrhenius 
hyperbolic model shows better mean relative error of 
−0.980% and can be recommended for estimating 
metallurgical parameters such as activation energy, strain 
rate and temperature sensitivity factors. 
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应用本构模型和神经网络模型预测 

铝/镁基纳米复合材料的高温流变行为 
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摘  要：为了预测 Al/Mg 基纳米复合材料的高温流变行为，在不同的应变速率(0.01−1.0 s−1)和温度(523，623 和

723 K)的条件下进行热压缩试验，利用所得到的应力−应变数据，开发了本构模型，比如一般流动方程。阿累尼乌

斯双曲模型、Johnson−Cook(JC)和改性的 Zerilli−Armstrong(ZA)模型及人工神经网络(ANN)模型。通过使用统计参

数，例如均方根误差(RMSE)、回归系数(R2)、平均相对误差(MRE)和分散指数(Is)，比较了人工神经网络和不同的

本构模型。结果表明，人工神经网络模型对 AA5083−2%TiC 复合材料的热变形流动应力的评估准确性更高。 

关键词：热压缩；Johnson−Cook (JC)模型；改性 Zerilli−Armstrong(ZA)模型；阿累尼乌斯(AR)双曲模型；流动应

力；纳米复合材料 
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