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Abstract: Effects of heat treatment processes on tensile properties of 2A97 Al−Li alloy were investigated. The results show that one 
new heat treatment process which was developed from traditional T8 temper can effectively improve the tensile properties of Al−Li 
alloy. In the peak-aged condition, a large quantity of fine T1 dispersedly precipitated in the matrix. At the same time, few secondary 
phases precipitated at the grain boundaries, and precipitation-free zone was unobvious. The corresponding tensile strength, yield 
strength and elongation of alloy were 597 MPa, 549 MPa and 7.4%, respectively. In addition, BP neural network model was 
developed for prediction of the tensile properties of alloy subjected to different heat treatment processes. A very good correlation 
between experimental and predicted results was obtained, which indicates that the BP neural network can be used for the prediction 
of tensile properties of 2A97 Al−Li alloy. 
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1 Introduction 
 

Al−Li alloy is one of the age-hardenable aluminum 
alloys. Compared with the other aluminum alloys, higher 
elastic modulus, lower density, higher specific strength 
and more favorable damage tolerance properties can be 
attained in Al−Li alloys. Nowadays, application of Al−Li 
alloys in the aerospace industry as structural components 
becomes an important way to reduce the mass, increase 
the payload and improve the fuel efficiency of    
aircraft [1]. 

The precipitation characteristics of Al－Li alloys 
are rather complex as the result of the affection of 
alloying elements. δ′ (Al3Li), θ′ (Al2Cu), S′ (Al2CuMg), 
T1 (Al2CuLi) or other phases may precipitate in the 
matrix during aging. The final properties of alloy 
products depend on their microstructures [2−7], while 
the microstructures are influenced by the heat treatment 
processes. Al−Li alloys usually undertake T8 temper 
which is a thermomechanical treatment including 
solution heat treatment, pre-deformation and artificial 
aging. The nucleation of θ′, S′ and T1 phases is strongly 
promoted by pre-deformation because the application of 
plastic deformation prior to aging increases the density 

of dislocation which can act as preferable nucleation site 
for these phases. The pre-deformation of traditional T8 
temper is generally not more than 7%. With the increase 
of the amount of pre-deformation, heavy precipitation of 
strengthening phases occurs, which enhances the strength, 
meanwhile may deteriorate the ductility of alloy. So 
developing one new heat treatment process which can 
enhance the strength and improve ductility of alloy is 
significant in exploring the potential of Al−Li alloys and 
extending their application in aerospace industry. 

Nowadays, the artificial neural network (ANN) is 
one of the most powerful modelling techniques, which 
has been applied to modelling complicated processes in 
many engineering fields, such as aerospace, 
telecommunication, automotive and manufacturing and 
robotics. With ANN, a predictive model can compensate 
for the limitation of conventional predictive control 
based on the linear model and can predict the non-linear 
model more accurately. The basic advantage of ANN is 
that it is not necessary to postulate a mathematical model 
at first or identify its parameters. An ANN learns from 
data obtained from experiments and recognizes patterns 
in a series of input and output data sets without any prior 
assumptions about their interrelations. In the past    
few years, ANN has been developed to model different 
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correlations and phenomena of alloys [8−13], and 
provided an effective and time-saving way in developing 
new material and technology in different fields of 
materials science. 

In this work, one new heat treatment was applied to 
improving the tensile properties of 2A97 Al−Li alloy, 
and the mechanism by which the heat treatment process 
affected the tensile properties was investigated. In 
addition, multi-layer artificial neural network with 
back-propagation (BP) learning algorithm [14] was 
employed to stimulate the relation between the tensile 
properties and the heat treatment parameters and predict 
corresponding tensile properties of 2A97 Al−Li alloy. 
 
2 Experimental 
 

The 2 mm-thick 2A97 Al−Li alloy sheets were used 
in this study. The samples were solution heat treated in a 
salt bath at 520 °C for 2 h, followed by an immediate 
quenching in ambient water. After quenching, these 
samples were divided into groups A, B and C. In the 
group A, samples were cold rolled to 5% reduction, and 
then aged at 160 °C. In the group B, samples were cold 
rolled to 9.5% reduction, subsequently aged at 160 °C. In 
the group C, samples were aged at 100 °C for 1.5 h, and 
then cold rolled to 5% reduction and aged at 160 °C. The 
heat treatment processes of 2A97 Al−Li alloy are shown 
in Table 1. In order to distinguish two kinds of aging, the 
low temperature (100 °C) aging was termed pre-aging 
(P.A), and the high temperature (160 °C) aging was 
termed secondary aging (S.A). 
 
Table 1 Heat treatment processes of 2A97 Al－Li alloy 

Process S.T 
P.D/ 
% 

θP.A /
°C

tP.A/ 
h 

M.D/ 
% 

θS.A/
°C

tS.A/
h 

A 5 − − − 160 0−150

B 9.5 − − − 160 0−150

C 

520 °C for 
2 h, water 
quenching 5 100 1.5 5 160 0−150

S.T−Solution treatment; P.D−Pre-deformation (cold rolling); M.D−Mid- 
deformation (cold rolling) 

 
Tensile tests were performed on MTS 858 testing 

machine in a displacement controlled mode at a 
displacement rate of 2 mm/min. The tensile samples 
were cut from sheets along the rolling direction, and 
machined into bone-shape with the dimensions of 40 mm 
in gauge length and 10 mm in reduced section width. 
Three samples under different conditions were tested. An 
extensometer attached to the sample gauge was used to 
determine the strain and total elongation. The 
experimental errors in measurements of the stress and 
strain were less than 2.5%. 

Microstructural features were characterized by 
transmission electron microscopy (TEM, Tecnai G2 200) 

analysis. Slices for TEM samples were cut from tensile 
samples, and subsequently ground to less than 70 μm and 
punched into 3 mm discs. The thin foils were obtained by 
electrothinning at 15 V. The electrolyte was a mixture of 
75% methanol and 25% nitric acid, and thinning was 
performed at −25 °C. 

 
3 Establishment of BP neural network 
 

An ANN is a mathematical model consisting of a 
number of highly interconnected processing neurons 
organized into layers, the geometry and functionality of 
which have been likened to that of the human brain [15]. 
The model has three kinds of layers of neurons: input 
layer, hidden layer and output layer. The neurons of the 
network are connected by the weights. Input layer 
consists of all the input factors, information from the 
input layer is then processed through hidden layer; 
following output vector is computed in the output layer. 
There are several algorithms in artificial neural network 
and one of which was used in this study was the BP 
training algorithm. This algorithm is one of the most 
famous training algorithms for multilayer perceptions, 
which is an iterative gradient descent technique to 
minimize the mean-square error (MSE) between the 
actual output of particular training pattern and desired 
output, as shown in Fig. 1. 
 

 
 
Fig. 1 Learning process and structure of ANN 
 

In order to simulate the relationship between heat 
treatment parameters and tensile properties of 2A97 
Al−Li alloy, a three-layer BP neural network was used. 
The network has five input parameters: pre-deformation, 
pre-aging temperature and time, mid-deformation and 
secondary aging time, and the output parameters of 
tensile strength, yield strength and elongation. So the 
network structure is 5-12-3, 5 corresponding to the input 
value, 12 to the number of hidden layer neurons and 3 to 
the outputs (Fig. 2). 

The convergence criterion for the network is 
determined by MSE between the desired and predicted 
output values. 
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Fig. 2 Structure of three-layer BP neural network 
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where Dpj and Opj are the desired and predicted solution 
of the jth output node on the pth example, respectively, 
and N is the number of training samples. 

BP is invoked to update all of the weights in the 
network according to the modified delta rule [16], which 
can be written as 
 

( ) ( )1ij j i i jW n H W nηδ αΔ + = + Δ                 (2) 
 

( ) ( )1hi i h hiV n A V nηδ αΔ + = + Δ                  (3) 
 
where η is the learning rate; α is the momentum factor; 
Vhi is the weight between the input layer and hidden layer; 
Wij is the weight between the hidden layer and the output 
layer; Hi is the output of the ith neural in the output layer; 
Ah is the input of the hth neural in the input layer; δj and 
δi are the error signals for neurons j and i as 
 

( ) (net )j j j jD O Gδ ′= −                         (4) 

3

1
(net )i ij j i

j
W Fδ δ

=

⎛ ⎞
′= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                        (5) 

 
where F(neti), G(netj) are the transfer functions for the 
neurons in the hidden layer and the output layer. In this 
work, the hyperbolic tangent sigmoid transfer function 
was used for neurons in the hidden layer, and the linear 
transfer function was used for neurons in the output 
layer. 

For the established BP neural network, 39 from 44 
samples were randomly chosen to train the network and 
the remaining 5 samples were used to identify the 
prediction capability of the network. In this study, the BP 
neural network was designed, trained and tested using 
MATLAB package. The parameters of the network were 
taken as η=0.1, α=0.95 and the controlled error was 
0.0001. Before training the network, both the input and 
output variables were normalized within the range of −1 

to 1 as follows: 
 

min
n

max
2 1

x x
x

x x
−

= −
−

                            (6) 

where xn is the normalized value of x, and xmin and xmax 
are the minimum and maximum values of x. 
 
4 Results and discussion 
 
4.1 Tensile properties 

The aging curves of alloy subjected to different heat 
treatment processes are shown in Fig. 3. It can be seen  
 

 

Fig. 3 Relationship between tensile properties and aging time 
of 2A97 Al−Li alloy by heat treatment processes A (a), B (b) 
and C (c) 
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that peak aging is achieved after aging at 160 °C for 30 h 
by process A. The tensile strength, yield strength and 
elongation are 584 MPa, 478 MPa and 6.0%, respectively. 
By process B, the peak aging is obtained after aging at 
160 °C for 16 h. The tensile strength, yield strength and 
elongation are 592 MPa, 508 MPa and 5.8%, respectively. 
In the condition of process C, the peak aging is reached 
after the secondary aging at 160 °C for 16 h. The tensile 
strength, yield strength and elongation are 597 MPa, 549 
MPa and 7.4%, respectively. Compared with process A, 
processes B and C can effectively improve the strength, 
and shorten the response time of aging. However, the 
ductility of alloy which is subjected to process B is 
undesirable. The total amount of deformation of process 
C is equal to that of process B, but the alloy, which 
suffers smaller deformation, twice by process C, 
obtained more favorable tensile properties in the 
peak-aged condition. The peak-aged tensile properties of 
alloy which was subjected to different heat treatment 
processes are shown in Table 2. 
 
Table 2 Peak-aged tensile properties of 2A97 Al－Li 
alloy subjected to different heat treatment processes 

Process σb/MPa σ0.2/MPa δ/%

A 584 478 6.0 

B 592 508 5.8 

C 597 549 7.4 

 
4.2 Microstructure 

Figure 4 shows the TEM images and corresponding 
SAED patterns of 2A97 Al−Li alloy in different 
peak-aged conditions, viewed along 〈112〉α direction. It 
can be seen that plate-shaped T1 phases precipitate in the 
matrix of alloy. In the peak-aged condition, coarse T1 
phases distribute widely in the matrix of alloy subjected 
to process A (Fig. 4(a)). The alloy which undertaken 
process B obtains fine and dispersed T1 phases      
(Fig. 4(b)). By process C, more high density of fine T1 
phases and a small number of S′ phases are obtained in 
the peak-aged condition (Fig. 4(c)). Above observation 
of microstructure indicates that pre-deformation and 
mid-deformation can effectively promote the nucleation 
of T1 phase and alter its precipitation characteristic. 

Generally, dislocations can promote the 
precipitation of T1 phases. With increase of the amount 
of deformation, more dislocation will be introduced to 
the matrix, so more T1 phases are obtained in alloys by 
process B or C. Process C applied intense deformation to 
the alloy by twice smaller deformation, namely 
pre-deformation and mid-deformation. The twice smaller 
deformation was interrupted by a low temperature aging 

 

 
Fig. 4 TEM images of peak-aged 2A97 Al−Li alloy subjected 
to processes A (a), B(b) and C(c), and corresponding SAED 
patterns along 〈112〉α 
 
which ensured the uniform deformation of alloy and 
introduced uniform distribution dislocations to the matrix. 
In that case, the alloy obtained higher density of fine T1 
phases and a highest strength after secondary aging at 
160 °C for 16 h. 

Figure 5 shows the microstructure of grain 
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boundaries in different peak-aged conditions. Secondary 
phases and precipitate-free zone (PFZ) were observed at 
the grain boundaries of alloy subjected to processes A 
and B, as shown in Figs. 5(a) and (b). By process C, 
grain boundary phases and PFZ could not be observed 
(Fig. 5(c)). 

During aging process, T1 and δ(AlLi) phases usually 
nucleated and grew at grain boundaries that induced  
 

 
Fig. 5 Microstructures of grain boundaries of peak-aged 2A97 
Al−Li alloy subjected to processes A (a), B(b) and C(c) 

solution depletion near grain boundaries resulting in 
formation of PFZ. The alloy which was subjected to 
process C obtained more uniform T1 phases within the 
grains. Heavy precipitation of T1 phases consumed lots 
of solute atoms that reduced the quantities of grain 
boundary phases, so the secondary phases and PFZ were 
unobvious at grain boundaries. However, there were 
secondary phases and PFZ at the grain boundaries of 
alloy, which was subjected to process B. It is due to the 
fact that large deformation applied to alloy at one time 
did not promote the uniform precipitation of T1 phases in 
the grains. 

The PFZ is soft with respective to interior of grain 
containing precipitates, and the flow stress in PFZ is 
lower than that in the region within the grain, so PFZ 
will deform more easily than the interior of grain [17]. 
The deformation takes place preferentially in the soft 
PFZ, leading to stress concentration of grain boundaries. 
The high stress concentration at the grain boundaries and 
at grain boundary triple junctions promotes propagation 
and coarsening of cracks, resulting in low energy 
intergranular fracture of alloy. Therefore, the alloy which 
is subjected to process C obtains more preferable 
ductility in the peak-aged condition. 

It is interesting that the alloy obtained a few of S′ 
phases in the peak-aged condition by process C, but the 
mechanism by which S′ phases precipitated will not be 
discussed in this work. The S′ phases have open-packed 
structure, and there are no uniform densely packed 
potential slip planes within the S′ phases which lie 
parallel to the matrix slip planes. Therefore, the S′ phases 
prevent the development of bands of coplanar slip and 
promote uniform deformation [18]. Therefore, process C 
improves the peak-aged ductility of alloy by the 
dispersing slip of S′ phases to some extent. 
 
4.3 Simulation 

During the training procedure, the MSE decreased 
with increasing number of iteration. The performance 
changing of network in training stage is shown in Fig. 6.  
 

 
Fig. 6 Performance changing of BP neural network at training 
stage 
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It can be seen that the significant influence on error 
reduction is not changed after 4476 training cycles. After 
being trained, the BP neural network model can map the 
non-linear relationship between tensile properties and 
heat treatment parameters. Comparison between 
experimental and BP neural network predicted tensile 
properties of 2A97 Al−Li alloy in different heat 
treatment processes at training stage is shown in Fig. 7. It 
can be clearly seen that the BP neural network        
is properly trained and shows a consistency among the  
 

  
Fig. 7 Comparison between experimental and predicted tensile 
properties of 2A97 Al−Li alloy subjected to heat treatment 
processes A (a), B (b) and C (c) for training data sets 

tensile properties. Regression analysis between the 
experimental and predicted tensile properties at training 
stage is shown in Fig. 8. Figure 8 shows that the slop and 
intercept of the regression equations for the prediction 
are significantly near to 1 and 0, and it is difficult to 
distinguish the best fit line from perfect fit line (predicted 
data are equal to experimental data). This indicates that 
the BP neural network has a perfect fit between 
experimental and predicted tensile properties at training  
 

 

Fig. 8 Regression analysis between experimental and predicted 
tensile strength (a), yield strength (b) and elongation (c) of 
2A97 Al−Li alloy for training data sets 
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stage. For the purpose of identifying the prediction 
performance with regards to the testing data, a 
comparison of the experimental and predicted tensile 
properties of 2A97 Al−Li alloy for 5 testing data sets 
which have never been seen by the network has been 
conducted, as shown in Fig. 9. Comparison of 
experimental and predicted tensile properties at testing 
stage indicates that there is a high correlation between 
them. Regression analyses between the experimental and 
predicted tensile properties are shown in Fig. 10. It can 
be seen that the slop and intercept of the regression 
equations for the prediction are close to 1 and 0 
respectively, and the relation coefficients (R) are almost 
1, so the predicted results can accurately reflect the 
corresponding tensile properties of alloy. Additionally, 
the performance accuracy was reproved by statistical 
analysis of the relative error between prediction and 
experiment (Fig. 11). It can be observed that there is a 
less variation between predicted and experimental values; 
the relative errors are all within 2.5%. It should be noted 
that the relative errors of tensile strength and yield 
strength are smaller than those of elongation because the 
experimental strengths are very large. 
 

 

Fig. 9 Comparison between experimental and predicted tensile 
properties of 2A97 Al−Li alloy for testing data sets 
 

The BP neural network used in this work provided 
the weights listed in Tables 3 and 4. The neural net 
weight matrix can be used to assess the relative 
importance of the various heat treatment parameters on 
the tensile properties. Connection weights were 
partitioned by the method which was proposed first by 
GARSON [19]. The relative importance of various heat 
treatment parameters is shown in Table 5. It can be seen 
that all of the heat treatment parameters have strong 
effects on the tensile properties of 2A97 Al−Li alloy. The 
secondary aging appears to be the most influential 
parameter. However, a relative importance of 37.79% of  

 

 
Fig. 10 Regression analysis between experimental and 
predicted tensile strength (a), yield strength (b) and elongation 
(c) of 2A97 Al−Li alloy for testing data sets 
 
combination influent of pre-aging and mid-deformation 
shows that the combination of pre-aging and 
mid-deformation plays an important role in affecting the 
tensile properties of 2A97 Al−Li alloy. Further, 
traditional T8 temper combining with pre-aging and 
mid-deformation may become an effective process in 
extending the potential of Al−Li alloy. 
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Fig. 11 Relative errors between experimental and predicted 
tensile properties of 2A97 Al−Li alloy for all data sets 
 
Table 3 Weights between input and hidden layers 
Neuron No. P.D θP.A tP.A M.D tS.A 

1 3.7688 −1.4841 −1.5503 −1.0813 4.6693
2 −0.2861 1.4341 −0.8694 0.5974 −2.2194
3 −0.7200 1.5036 −0.3295 −0.5808 5.1984
4 0.7311 −0.6074 −0.1604 −0.8512 −0.4586
5 −4.5496 0.2792 −1.8247 −0.1062 −3.9837
6 1.4247 −2.4773 −0.2145 −0.8621 −2.4967
7 −4.1570 −0.9919 −0.1400 −0.4855 −3.8689
8 −4.0599 −3.9800 −1.4571 −2.3261 −13.4445
9 2.1699 3.9324 3.8063 2.6220 −8.2745
10 −1.0156 6.9057 7.8919 5.8373 20.6115
11 −0.3955 −1.1754 −1.5005 −0.6949 3.1196
12 −0.7562 0.5142 −0.2083 −1.9142 −11.9132

 
Table 4 Weights between hidden and output layers 

Neuron No. σb σ0.2 δ 
1 −0.0586 1.4627 0.1972 
2 0.3441 0.1587 0.2016 
3 −0.5014 0.5504 −2.0682 
4 1.4983 −3.9623 −0.5586 
5 1.9293 −1.2166 6.8306 
6 −0.5432 2.5099 0.1983 
7 −1.9296 1.4979 −6.8330 
8 0.0125 0.3304 0.0294 
9 0.4410 −0.5313 −0.0766 
10 0.2687 0.6309 −0.1070 
11 −0.1657 −0.1259 −0.2335 
12 −1.2692 0.3513 −0.6471 

 
Table 5 Relative importance of input variables on tensile 
properties of 2A97 Al−Li alloy (%) 

P.D θP.A tP.A M.D tS.A 

17.84 16.29 10.44 11.06 44.37 

 
5 Conclusions 
 

1) One new heat treatment process consisting of 
solution treatment, pre-deformation, pre-aging, 
mid-deformation, and secondary aging is developed. And 
2A97 Al−Li alloy obtains favorable tensile properties by 
this new heat treatment. In the peak-aged condition, the 
tensile strength, yield strength and elongation of alloy are 
597 MPa, 549 MPa and 7.4%, respectively. At this stage, 
a large number of T1 phases precipitate in the matrix, and 
few secondary phases are observed at the grain 
boundaries. 

2) The BP neural network reflecting the inherent 
law between the experimental data is built with heat 
treatment parameters and tensile properties. According to 
the selected process parameters of heat treatment, the BP 
neural network can accurately foresee the tensile 
properties of 2A97 Al−Li alloy. The predicted results 
show that the secondary aging appears to be the most 
influential parameter on tensile properties of 2A97 Al−Li 
alloy, and the combination of pre-aging and 
mid-deformation also plays an importance role in 
improving the tensile properties of the alloy. 
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热处理工艺对 2A97 Al–Li 合金拉伸性能的影响： 
实验和 BP 人工神经网络模拟 

 
林 毅，郑子樵，张海锋，韩 烨 

 
中南大学 材料科学与工程学院，长沙 410083 

 
摘  要：研究热处理工艺对 2A97 Al−Li 合金拉伸性能的影响。结果表明：从传统 T8 工艺改进的、具有预时效和

中间变形的热处理工艺可以有效地改进 Al−Li 合金的拉伸性能。合金经该热处理工艺处理后，在峰时效条件下，

基体中析出大量的 T1相，同时，晶界无第二相析出，并且晶界上无沉淀析出带不明显。峰时效合金的抗拉强度、

屈服强度和伸长率分别为 597 MPa、549 MPa 和 7.4%。此外，建立 BP 人工神经网络模型对经不同热处理工艺处

理的合金的拉伸性能进行预测，所得预测结果与实验结果吻合较好，表明该人工神经网络模型可用于预测 2A97 

Al−Li 合金的拉伸性能。 

关键词：2A97 AL−Li 合金；热处理工艺；拉伸性能；BP 人工神经网络 
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