Influence of Fe$_3$O$_4$ on redox changes during Cu dissolution from CuFeS$_2$ in acidified ferric sulfate

Kolela J NYEMBWE1, Elvis FOSSO-KANKEU2,3, Frans WAANDERS1, Martin MKANDAWIRE1, Didier K NYEMBWE5, Bhekie B MAMBA6

1. Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, South Africa; 2. Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa; 3. Department of Metallurgy, Faculty of Engineering and Built Environment, University of Johannesburg, Doornfontein, Johannesburg, South Africa; 4. Department of Chemistry, School of Science and Technology, Cape Breton University, Canada; 5. School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa; 6. Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa

Received 15 December 2022; accepted 18 September 2023

Abstract: Chalcopyrite (CuFeS$_2$) leaching under oxidizing conditions is generally characterized by slow dissolution rates due to the formation of passivation layers. The aim of this study is to develop a method that will allow the minimization of the passivation effect on the leaching of chalcopyrite and enhance copper recovery. To achieve this goal, the effect of parameters such as magnetite (Fe$_3$O$_4$) addition to the lixiviant Fe$_2$(SO$_4$)$_3$-\cdotH$_2$SO$_4$ during the leaching of CuFeS$_2$ at various pH (1.0, 1.5 and 1.8) and temperatures (25 and 50 °C) on copper dissolution rate overtime, was investigated. The results revealed that the solution pH, potential and temperature played a vital role during the dissolution. The highest recovery rate (70%) of Cu was achieved at pH 1.8, 50 °C and 400 mV from the mixed Fe$_3$O$_4$-CuFeS$_2$, whereas the recovery rate of Cu from CuFeS$_2$ in the absence of Fe$_3$O$_4$ was relatively low (48%). It was found that the addition of Fe$_3$O$_4$ allowed to maintain higher redox potential values. The addition of Fe$_3$O$_4$ also decreased the activation energy from 79.04 to 53.69 kJ/mol, suggesting that CuFeS$_2$ is easily oxidized in the presence of Fe$_3$O$_4$ through the formation of more soluble intermediates (bornite (Cu$_5$FeS$_4$) and chalcocite (Cu$_2$S)). Both dissolution processes were chemically controlled on the surface of the mineral. Furthermore, the mineralogical analysis of leaching residues showed that jarosite which is a candidate for surface passivation appeared in higher concentration in the absence of Fe$_3$O$_4$. Therefore, the addition of Fe$_3$O$_4$ reduced the formation of a passivation layer and enhanced the recovery rate of Cu.

Key words: chalcopyrite; dissolution; magnetite; galvanic couple; passivation

1 Introduction

Efficient leaching of chalcopyrite concentrates at ambient pressure remains a challenge because of the slow dissolution kinetics of this mineral in most leaching media [1−4]. The slow and incomplete dissolution is attributed to the formation of a passive layer on the mineral surface, regardless of the method of chemical or bioleaching [5−7].
nature and composition of this barrier, remain subject to controversy up to date [8−10]. It is often reported that the passivation layers are formed by metal-deficient phases, elemental sulfur and jarosite [10,11]. In order to enhance the Cu dissolution from the CuFeS₂ mineral, different methods and techniques have been proposed from various laboratory studies. These methods include the use of sulfate−chloride solutions, microorganisms, fine/ultra-grinding and silver ions addition [11,12].

Galvanic effect is susceptible to occur between minerals in aqueous system such as flotation, and leaching is another approach exploited to accelerate mineral dissolution and takes place when electrically conducting minerals are present and in contact with a medium which facilitates charge transfer [13]. The voltaic interaction results in rates variation of both anodic and cathodic half-reactions that occur on each mineral surface, leading to a prone oxidative dissolution of anode, while the cathode is well protected [14,15]. Particular interests have been placed on the galvanic couple between CuFeS₂ and FeS₂, and numerous experimental works [14,16,17] have been conducted to understand and provide more insight on this alternative route of CuFeS₂ dissolution. In the galvanic set-up between FeS₂ and CuFeS₂, the dissolution rate of the FeS₂ (cathode) particle decreases and FeS₂ becomes galvanically protected due to the reduction of the active oxidant in the system, while the dissolution of the CuFeS₂ (anode) is significantly enhanced. DIXON et al [16] reported appreciable results at a Cu recovery of 98% with a FeS₂-to-CuFeS₂ (Py:Cp) mass ratio being from 2:1 to 4:1, solution potential varying from 440 to 470 mV (vs Ag/AgCl) and media temperature in the range from 70 to 80 °C.

Magnetite (Fe₃O₄) could also be found to be an existing impurity in the CuFeS₂ ore matrix, especially in the case of carbonatite [14,17,18]. Being a spinel, the magnetite (FeO·Fe₂O₃) in aqueous solutions could represent a substantial source of oxidant in the system. Recently, SAAVEDRA et al [19] reported the existence of galvanic interactions between CuFeS₂ and Fe₂O₃. These interactions might be a second new alternative for application in the industrial recovery of Cu from CuFeS₂ after the FeS₂−CuFeS₂ combination. It is therefore worthwhile to study the CuFeS₂−Fe₂O₃ galvanic couple considering that any addition to our knowledge on the subject of Fe₂O₃−CuFeS₂ voltaic couple is worth being recorded. Both the pH and the redox potential are the most important chemical aspects that control the dissolution mechanism. This study therefore investigated the kinetics of Cu dissolution from a carbonatite CuFeS₂ with and without addition of Fe₂O₃ in an acidified ferric sulfate solution (H₂SO₄−Fe₂(SO₄)₃) at varying pH values (1.0−1.8) and temperatures of 25 and 50 °C.

2 Experimental

2.1 Materials

2.1.1 Chalcopyrite and magnetite samples

Chalcopyrite and magnetite samples were obtained from South Africa, with the CuFeS₂ and Fe₂O₃ concentrate samples originating from the Limpopo Province (Phalaborwa) and northern KwaZulu Natal (Richards Bay), respectively. The received samples were dried in an oven at 50 °C for 7 d. Laboratory sub-sampling and homogenization were conducted according to the soil sampling protocol published by the US Environmental Protection Agency [20].

Figures 1(a) and (b) summarize the sample

![Fig. 1 Chemical compositions of CuFeS₂ (a) and Fe₂O₃ (b) concentrates by XRF](image-url)
bulk chemistry of CuFeS₂ and Fe₃O₄, respectively. The XRD patterns (Fig. 2) further indicated a high purity and well crystallized CuFeS₂ (70%) accompanied by Mg + CaCO₃ (24.3%) and with a very small amount of SiO₂ (4.09%) and Fe₂O₃ (1.58%); while, 96% purity was identified for the Fe₃O₄ with SiO₂ and CaCO₃ at 3.0% and 1.0%, respectively. For the distribution of size fractions, the 53–75 range was used, which was obtained by wet sieving.

![XRD patterns of CuFeS₂ (a), Fe₃O₄ (b) and Fe₃O₄−CuFeS₂ (c) samples](image)

Fig. 2 XRD patterns of CuFeS₂ (a), Fe₃O₄ (b) and Fe₃O₄−CuFeS₂ (c) samples

2.1.2 Characterization techniques

Solid samples were analyzed for mineral composition and bulk chemistry using X-ray analysis, i.e., XRD and XRF, respectively. An XRD Rigaku Ultima IV was operated at 40 kV and 30 mA. PDXL analysis software was used for mineral phases, and the instrument’s detection limit was 2%. Data were recorded over the range of 5°≤2θ≤95° at a scan rate of 0.5 (°)/min and a step width of 0.01°. The elemental composition (XRF) powder method was carried out on a Rigaku-ZSX Primus II in conjunction with the SQX analysis software, which was operated at 4 kW, 60 kV, and 150 mA.

2.1.3 Electrolyte preparation

Solutions of the desired pH (1.8) value were prepared at a constant Fe³⁺ amount of 0.05 mol using Fe₂(SO₄)₃ at 25 and 50 °C, which were referred to as Solutions 1 and 2 (S₁ and S₂) respectively throughout this investigation. An additional solution (S₃) at 400 mV was prepared by mixing Fe₂(SO₄)₃ and FeSO₄ with a constant total Fe content of 5 g/L at pH 1.8 and 50 °C; this solution could assist in determining the effect of redox potentials on the recovery of copper. All chemical reagents, namely the Fe₂(SO₄)₃ and FeSO₄ were of analytical grade. The acidified ferric sulfate was used as the leaching system because the acidity prevented precipitation of iron while the ferric ion ensured the leaching of chalcopyrite.

A pH meter with a temperature probe (Hanna pH meter, HI 8314) was used to measure pH, which was regularly calibrated with standard buffer solutions with pH 1, 4 and 7. The effect of the redox potential on the leaching rate has been reported by many authors [21−23] and related to passivation; hence, in this study the initial leaching potential was determined in order to monitor the variation of redox potential and therefore formation of the passivation layer. The redox potential was measured using a HI8314 Ag/AgCl probe allowing to vary within ±8 mV.

2.2 Dissolution test

The leaching tests of both CuFeS₂ samples (with and without Fe₃O₄ addition) were conducted at room temperature (25 °C) and 50 °C. These temperatures were kept steady using a water bath. The leaching solution had a pH value of 1.8. The comparison between CuFeS₂ and CuFeS₂−Fe₃O₄ (mass ratio 1:1) dissolution recovery was intended to highlight the effect of Fe₃O₄ on the Cu dissolution under atmospheric pressure.

Another dissolution test was conducted using the Fe₃O₄−CuFeS₂ sample at pH 1.8, 50 °C and an initial redox potential of 400 mV (vs Ag/AgCl) to observe the dependency of the galvanic couple (Fe₃O₄−CuFeS₂) on the potential.
The pH of all dissolution tests was kept steady (pH 1.8) by continual addition of H₂SO₄ conducted at a solid/liquid ratio of 10% and for 12 h. Dissolution kinetics investigations were carried out through a periodic withdrawal of 10 mL of the slurry each 20 min, while the ORP was recorded every 10 min. The total dissolved Cu content was analyzed using an atomic absorption flame spectrometry (AAFS, Thermo Scientific ICE 3000 series).

3 Results and discussion

Figure 2 and Table 1 present the chemical and mineral contents of the CuFeS₂ and Fe₃O₄ samples used in this study. The figure also specifies the ratio of Fe₃O₄ to CuFeS₂ and presents the new mixed sample characteristics. A mass ratio of 1:1 (Fe₃O₄−CuFeS₂) was used to make a mineralogical content ratio (Fe₃O₄−CuFeS₂) of 1.4:1.

Table 1 Mineralogical compositions of CuFeS₂, Fe₃O₄ and Fe₃O₄−CuFeS₂ samples

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Content/wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silica (SiO₂)</td>
</tr>
<tr>
<td>CuFeS₂</td>
<td>4.09</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>3</td>
</tr>
<tr>
<td>Fe₃O₄−CuFeS₂</td>
<td>3.73</td>
</tr>
</tbody>
</table>

3.1 Copper dissolution curve

The Cu dissolution curves obtained from the CuFeS₂ and Fe₃O₄−CuFeS₂ samples at two different experimental temperatures (25 and 50 °C) and different pH values are presented in Fig. 3. In all cases it was observed that more Cu dissolved at 50 °C than at 25 °C and slightly more at pH 1.8 than pH 1.5 and pH 1.0 (evident at 25 °C, not so at 25 °C). The obtained recoveries agreed with those of ANTONIJEVIĆ and BOGDANOVIĆ [24], and CORDOBA et al [25] who pointed out that chalcopyrite was easily oxidized at higher pH values when oxygen was present in solutions.

All dissolution curves were asymptotic and characterized by three stages: the first rapid stage (0–60 min), the second stage (40–360 min) and the third stage which exhibited a plateau with no further Cu dissolution (360–720 min). Our results supported those of KLAUBER et al [11], SALINAS et al [26], and TORRES et al [27], but did not support those of JONES and PETERS [28] who observed a linear kinetics probably due to an extended dissolution time over 55 d.

3.2 Effect of Fe₃O₄ addition

A high Cu recovery was obtained from the mixed sample (Fe₃O₄−CuFeS₂) in comparison to the pure CuFeS₂ concentrate (Fig. 3). For instance, 30% Cu was recovered from Fe₃O₄−CuFeS₂ at pH 1.8 as opposed to the pure CuFeS₂ concentrate which yielded only 23% at room temperature. Furthermore, 53.2% Cu was recovered from the mixed sample (Fe₃O₄−CuFeS₂) while the concentrate sample produced 25% of Cu at 50 °C. This increase in Cu recovery in the presence of Fe₃O₄ was observed under all experimental conditions and in some instances, it even doubled when the temperature increased from 25 to 50 °C. The obtained results agreed with SAAVEDRA et al [19] who highlighted that the presence of Fe₃O₄ was beneficial to CuFeS₂ dissolution in an acid microbial culture medium. It was reported that the presence of Fe₃O₄ allowed to leach more Cu and Fe. Suggesting that the Fe₃O₄ strongly accelerates the mineral solubilization due to the galvanic couple formed when mixing Fe₃O₄ and CuFeS₂, it could be said that the presence of Fe₃O₄ undeniably has a positive effect during Cu dissolution from CuFeS₂.

3.3 Effect of temperature

The general effect of temperature was studied when the leaching temperature was raised from 25 to 50 °C (Fig. 3). In all cases it was observed that the increase of temperature leads to an increase in content of Cu dissolved. Previous studies reported the positive impact of temperature during the dissolution, and more than tenfold increase in copper extraction has been reported with temperature increase within 30–90 °C [29]. At pH 1.8 for instance, the Cu recovered from the concentrate sample increased from 23% to 30% while in the case of the mixed sample (Fe₃O₄−CuFeS₂), Cu recovery increased from 25% to almost 40% with temperature increasing from 25 to 50 °C. It could be said that the effect of temperature was well pronounced in the presence of Fe₃O₄ as opposed to the pure CuFeS₂ concentrate.

The effect of temperature was further evaluated at pH 1.8 under free redox potential. The
Fig. 3 Cu dissolution curves under different conditions: (a) 25 °C, 348 mV (vs Ag/AgCl), CuFeS$_2$; (b) 25 °C, 348 mV (vs Ag/AgCl), Fe$_3$O$_4$–CuFeS$_2$ (mass ratio 1:1); (c) 50 °C, 335 mV (vs Ag/AgCl), CuFeS$_2$; (d) 50 °C, 335 mV (vs Ag/AgCl), Fe$_3$O$_4$–CuFeS$_2$ (mass ratio 1:1); (e) 50 °C, 400 mV (vs Ag/AgCl), CuFeS$_2$; (f) 50 °C, 400 mV (vs Ag/AgCl), Fe$_3$O$_4$–CuFeS$_2$ (mass ratio 1:1)

simplified shrinking core model (Eq. (1)) was applied on the Cu dissolution curve obtained at each temperature, as shown in Fig. 3. The apparent rate constant and the correlation coefficient were obtained from the straight lines in Fig. 4. The Arrhenius equation (Eq. (2)) was used to estimate the activation energy for the process (Fig. 4). The obtained E_a values for the concentrate and mixed sample (Fe$_3$O$_4$–CuFeS$_2$) were 79.04 and 53.69 kJ/mol, respectively. The obtained E_a value for the CuFeS$_2$ concentrate (79.04 kJ/mol) appeared to be within the range (71–88 kJ/mol) reported in the literature [19], while in the case of the mixed sample, the E_a value was lower and could be attributed to the impact of Fe$_3$O$_4$, suggesting that it is much easier to dissolve Cu from CuFeS$_2$ under the action of Fe$_3$O$_4$. However, both E_a values were found to be above 40 kJ/mol and could imply that
the dissolution is chemically controlled through the particle surface reaction [30].

\[1-(1-x)^{1/3}=k_0t \quad (1) \]
\[\ln\left(\frac{k_1}{k_2}\right)=\frac{(E_a/R)((1/T_2)-(1/T_1))} \quad (2) \]

where \(x \) is the fraction of \(\text{CuFeS}_2 \) dissolved at time \(t \); \(k_0, k_1 \) and \(k_2 \) are the rate constants, \(R \) is the molar gas constant (8.314 J/(mol·K)), and \(T \) is the thermodynamic temperature.

3.4 Effect of initial potential

The evolution of the dissolution potential (vs Ag/AgCl) is shown in Fig. 5. Figures 5(a, b) show the solution potential with an initial \(\text{Fe}^{3+} \) amount of 0.05 mol at 25 °C (S1) and 50 °C (S2), individually, while Fig. 5(c) shows the results under conditions of 400 mV and 50 °C (S3). It could be seen for both samples (with and without \(\text{Fe}_3\text{O}_4 \) addition) that directly after addition of the sample into the solution, the potential begins dropping and could be due to the rapid consumption of ferric (\(\text{Fe}^{3+} \)) ion, leading to Cu withdrawal and favoring the increase in \(\text{Fe}^{2+} \). The \(\text{CuFeS}_2 \) concentrate without \(\text{Fe}_3\text{O}_4 \) addition revealed a sharp drop in its solution potential as opposed to the mixed sample \(\text{Fe}_3\text{O}_4-\text{CuFeS}_2 \). A decrease from 348 to 337.9 mV and from 335.1 to 325 mV was recorded for the \(\text{CuFeS}_2 \) concentrate sample respectively at 25 and 50 °C. While for the dissolution of the \(\text{Fe}_3\text{O}_4-\text{CuFeS}_2 \), the initial potential decreased from 348 to 341 mV and from 337 to 334.2 mV at 25 and 50 °C, respectively. A similar trend was also observed when the leaching conditions were 50 °C and 400 mV (initial potential), the ORP of the mixed (\(\text{Fe}_3\text{O}_4-\text{CuFeS}_2 \)) sample only dropped from 400 to 390 mV after 440 min, thereafter, sharply dropped to 367 mV. It could be said that the addition of \(\text{Fe}_3\text{O}_4 \) appears to stabilize the dissolution potential. A stationary region (phase) was observed for the mixed \(\text{Fe}_3\text{O}_4-\text{CuFeS}_2 \) dissolution. The presence of this stationary phase could be attributed to the galvanic couple existing between \(\text{Fe}_3\text{O}_4 \) and \(\text{CuFeS}_2 \) (\(\text{Fe}^{3+}/\text{Fe}^{2+} \)). In fact, the potential of the leach solution is related to the \(\text{Fe}^{3+}/\text{Fe}^{2+} \) couple; for high ratios, the potential will be high while for low ratios
the potential will be low [31]. It can therefore be observed that the leaching curve is inversely related to the potential curve, implying that ferrous iron is co-leached with copper over time, therefore reducing the $\text{Fe}^{3+}/\text{Fe}^{2+}$ ratio. The stationary phase was only observed at the early stage of the dissolution at 0–80 min in S1 and S2 while in S3 this region lasted up to 400 min, confirming that the potential is related to the galvanic couple $\text{Fe}^{3+}/\text{Fe}^{2+}$ ratio. However, after a period of time there is jarosite precipitation that limits further leaching of iron, therefore leading to stable conditions. In previous work [14,31], the influence of the redox potential on copper leaching rate has already been reported; however, it is important to mention that the initial copper recovery rate is attributed to the leaching of secondary copper minerals; hence the chalcopyrite leaching will only be observed in the decreasing zone of the redox potential curve.

The increase in temperature from 25 to 50 °C appeared to decrease the solution initial potential from 348.7 to 335.1 mV (Figs. 5(a) and (b)). This could be due to the formation of complex species belonging to the Fe(III)\rightarrowFe(III)\simH$_2$SO$_4$$\simH_2$O [32].

Earlier studies [33] showed the existence of a potential range interval, referred to as critical (in the vicinity of 0.500 V (vs Ag/AgCl) within the mid-potential range from 0.45 to 0.55 V (vs Ag/AgCl)). All experimental potential values were below the critical range and could explain the relatively low Cu recoveries.

3.5 XRD data of solid residues

Figure 6 shows XRD patterns of the solid residues at pH 1.8, and in the figure a comparison of the mineral phase of the CuFeS$_2$ samples with and without Fe$_3$O$_4$ addition, is shown. Furthermore, in the case of galvanic interaction between CuFeS$_2$ and Fe$_3$O$_4$, it is assumed that Fe$_3$O$_4$ is unaltered, or its content remained virtually unchanged throughout the dissolution. In all cases, the solid residues confirmed the progressive dissolution of the Cu, and the CuFeS$_2$ peaks (2θ=29.46°, 48.93° and 57.95°) appeared to some extend distorted and decreased in its intensity. In addition, Cu-rich phases (bornite (Bo), chalcocite (Cx), gerite (Ge) and covellite (Co)) were observed. The presence of these Cu-rich intermediates appeared to support earlier investigation by ACERO et al [31], who underlined the preferential dissolution of Fe over Cu, leading to the formation of an Fe deficient chalcopyrite mineral (defect chalcopyrite structure Cu$_{1-x}$Fe$_{1-x}$S$_2$), to which the present identified species could belong. In addition, NYEMBWE et al [35,36] identified the correlation of these transient phases to the media pH values and thermodynamically highlighted covellite as the main refractory transition phase, hindering further dissolution as opposed to bornite and chalcocite. Similarly, DENG et al [37] reported an enhanced CuFeS$_2$ dissolution in the presence of Fe$_3$O$_4$ through preferential formation of chalcocite (Cu$_2$S). This could imply that the presence of Fe$_3$O$_4$ favors the formation of soluble Cu-rich intermediate and further supports the rapid Cu withdrawal and high dissolution content obtained (Figs. 6(a), (c) and (e)).

The Fe$_3$O$_4$–CuFeS$_2$ spectrum remained mostly dominated by the presence Fe$_3$O$_4$, suggesting that little dissolution of Fe$_3$O$_4$ took place. Thus, the galvanic couple exists when Fe$_3$O$_4$ is combined to CuFeS$_2$, since a high content of Cu is dissolved from the mixed Fe$_3$O$_4$–CuFeS$_2$ sample, as opposed to the pure CuFeS$_2$ sample. Overall, the Fe$_3$O$_4$ content in the mixed Fe$_3$O$_4$–CuFeS$_2$ sample practically decreased by a small margin when compared to its content in the feed sample and appeared to be ORP dependent. The results showed that the Fe$_3$O$_4$ content dropped by 9.7%, 12.3% and 6.4% from its respective content in the feed for the solutions with ORP values of 348.7 mV (25 °C), 335.1 mV (50 °C) and 400 mV (vs Ag/AgCl) (50 °C), respectively. This further implies that a complete recovery of Fe$_3$O$_4$ could be achievable by a regulation of the solution potential which is subjected to further research.

Elemental sulphur (S0) and jarosite were also identified in both solid residues. The former could be regarded as a dissolution product while the latter phase occurred due to the hydrolysis of Fe products. S0 was clearly identified and its content was higher compared to its content in the feed sample and appeared to be ORP dependent. The results showed that the S0 content dropped by 9.7%, 12.3% and 6.4% from its respective content in the feed for the solutions with ORP values of 348.7 mV (25 °C), 335.1 mV (50 °C) and 400 mV (vs Ag/AgCl) (50 °C), respectively. This further implies that a complete recovery of Fe$_3$O$_4$ could be achievable by a regulation of the solution potential which is subjected to further research.
Fig. 6 XRD patterns of solid residues at pH 1.8: (a) Fe$_3$O$_4$–CuFeS$_2$ residue at 25 °C; (b) CuFeS$_2$ concentrate residue at 25 °C; (c) Fe$_3$O$_4$–CuFeS$_2$ residue at 50 °C; (d) CuFeS$_2$ concentrate residue at 50 °C; (e) Fe$_3$O$_4$–CuFeS$_2$ residue at 50 °C and 400 mV (Gy–Gypsum; Co–Covellite; Cx–Chalcocite; Bo–Bornite; Go–Goethite; Ja–Jarosite; Q–Quartz)
Jarosite was identified in all solid residues, its content was high in the CuFeS$_2$ concentrate, as opposed to the mixed sample (Fe$_3$O$_4$–CuFeS$_2$), and could be probably due to the Fe$_3$O$_4$ addition to CuFeS$_2$ which has diluted the jarosite content. Furthermore, the jarosite content was observed to be pH dependent. However, the high Cu recovery was obtained at a higher pH (1.8) value than at lower pH values (highly acidic solution, pH 1.5 and 1.0); this could suggest that jarosite has little effect on the Cu dissolution [35,36].

4 Conclusions

(1) Both chemical and physical factors play a vital role during aerobic dissolution of CuFeS$_2$ in acidic ferric sulfate at different pH (1.0–1.8) and temperature (25 and 50 °C) values. Cu dissolves more easily at higher pH values than at lower pH values (pH1.8 > pH1.5 > pH1.0), evidently at 25 and 50 °C.

(2) Elemental sulfur and jarosite had little effect on CuFeS$_2$ dissolution. The addition of Fe$_3$O$_4$ had a positive effect on Cu dissolution. Both dissolution rate and recovery increased after addition of Fe$_3$O$_4$ due to the formation of a Fe$_3$O$_4$–CuFeS$_2$ galvanic couple. The analysis of the solid residues confirmed the existence of this voltaic couple as the leached residues remained dominated by Fe$_3$O$_4$.

(3) The estimated activation energies of 79.04 and 53.69 kJ/mol were obtained for the concentrate and mixed Fe$_3$O$_4$–CuFeS$_2$ sample, respectively. The obtained results present an alternative dissolution route for the CuFeS$_2$ mineral; however, further research in regard to process optimization should be conducted.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are thankful to the local South African Mining Company which participated in this research by providing the samples, the Extraction Metallurgy Laboratory at the University of Johannesburg for equipment utilization, the North-West University (IREA Account) and the University of South Africa (CSET Special Research Fund) for the support and promotion of this research.

References

[37] DENG S, YANG J, WANG Y, LONG T, YANG W. Influence
Fe₃O₄对黄铜矿在酸性硫酸铁溶液中铜溶解氧化还原反应的影响

Kolela J NYEMBWE¹, Elvis FOSSO-KANKEU²,³, Frans WAANDERS¹, Martin MKANDAWIRE⁴, Didier K NYEMBWE⁵, Bhekie B MAMBA⁶

1. Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, South Africa;
2. Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa;
3. Department of Metallurgy, Faculty of Engineering and Built Environment, University of Johannesburg, Doornfontein, Johannesburg, South Africa;
4. Department of Chemistry, School of Science and Technology, Cape Breton University, Canada;
5. School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa;
6. Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa

摘 要：由于钝化层的形成，黄铜矿(CuFeS₂)在氧化条件下浸出通常具有溶解速率缓慢的特点。为了将黄铜矿浸出过程中的钝化效应降至最低并提高铜的回收率，研究了CuFeS₂在不同pH值(1.0, 1.5和1.8)和温度(25和50 ℃)条件下浸出时，向Fe₂(SO₄)₃−H₂SO₄浸出剂中添加磁铁矿(Fe₃O₄)对铜溶解速率的影响。结果表明，溶液pH值、电位和温度在溶解过程中起着关键作用。在pH 1.8, 50 ℃和400 mV的条件下，Fe₃O₄−CuFeS₂混合体系中铜的回收率达到最大值(70%)，而未添加Fe₃O₄时，CuFeS₂中铜的回收率较低(48%)。添加Fe₃O₄有助于维持较高的氧化还原值。添加Fe₃O₄还使活化能从79.04 kJ/mol降低到53.69 kJ/mol。这表明，当Fe₃O₄存在时，由于形成了更易溶解的中间体斑铜矿(Cu₅FeS₄)和辉铜矿(Cu₂S)，CuFeS₂更易被氧化。两种溶解过程都受到矿物表面的化学控制。此外，对浸出残渣的矿物学分析表明，当无Fe₃O₄存在时，作为表面钝化物的黄钾铁矾浓度较高。因此，添加Fe₃O₄减少了钝化层的形成，提升了铜的回收率。

关键词：黄铜矿；溶解；磁铁矿；电偶；钝化

(Edited by Wei-ping CHEN)