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Abstract: Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The 
present study attempts to find the optimal level of machining parameters for multi-performance characteristics in turning of 
Al−SiC−Gr hybrid composites using grey-fuzzy algorithm. The hybrid composites with 5%, 7.5% and 10% combined equal mass 
fraction of SiC−Gr particles were used for the study and their corresponding tensile strength values are 170, 210, 204 MPa 
respectively. Al−10%(SiC−Gr) hybrid composite provides better machinability when compared with composites with 5% and 7.5% 
of SiC−Gr. Grey-fuzzy logic approach offers improved grey-fuzzy reasoning grade and has less uncertainties in the output when 
compared with grey relational technique. The confirmatory test reveals an increase in grey-fuzzy reasoning grade from 0.619 to 
0.891, which substantiates the improvement in multi-performance characteristics at the optimal level of process parameters setting. 
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1 Introduction 
 

Metal matrix composites (MMCs) offer interesting 
opportunities for new product design due to enhanced 
properties. Some of the beneficial properties of MMCs 
are high strength and stiffness, increased wear resistance, 
lower coefficient of thermal expansion and dimensional 
stability at a higher temperature. In aluminium metal 
matrix composites (AMCs), the matrix material is 
aluminium/aluminium alloy and the other phases are 
reinforcement which are Gr, SiC, Al2O3, B4C, etc [1,2]. 
The incorporation of ceramic particles in Al alloy 
increases both mechanical strength and wear resistance 
of the composite. The hard abrasive SiC particles in 
Al−SiC composite complicate the machining operation. 
Thus the machinability of particulate MMCs is improved 
by reinforcing soft particles like graphite along with hard 
ceramic particles [3]. The composites with combined 
reinforcement of SiC and Gr particles are referred to 
Al−SiC−Gr hybrid composite. The superiority of 
Al−SiC−Gr composite is self-lubricating property, 
enabled by the presence of graphite and its strength is 

enhanced by SiC ceramic phase. This hybrid composite 
substitutes materials for pistons, cylinder liners, brake 
drums in automotive and aerospace applications [4,5]. 

Although most composite materials are molded or 
formed to near net shape, the machining process could 
not be eliminated entirely because it provides the 
preferred dimensions, shape and surface finish. 
PALANIKUMAR and KARTHIKEYAN [6] indicated 
that on machining Al−SiC composite, the surface 
roughness is influenced by the feed rate, cutting speed 
and volume fraction of SiC particles. BASHEER et al [7] 
reported that in precision machining of MMCs, the 
roughness of the machined surface is significantly 
influenced by the size of particles. It is been known that 
its magnitude depends on feed rate and tool nose radius. 
LIN et al [8] observed that the material removal rate of 
aluminium composite seems to be high when the feed 
rate is higher and cutting speed is lower. The tool wear 
normally occurred on flank and rake surfaces, with flank 
wear being most dominant. HOCHENG et al [9] 
observed the machining characteristics such as 
discontinuous chips, low cutting forces, less tool    
wear and low power consumption during machining of  
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Al−graphite composite. KRISHNAMURTHY and 
SRIDHARA [10] obtained considerably reduced cutting 
forces in machining of Al−SiC−Gr hybrid composite 
when compared with Al−SiC composite. This is due to 
the presence of graphite particles in Al−SiC−Gr hybrid 
composite, which reduces friction at the machining 
interface. BASAVARAJAPPA et al [11] reported that the 
subsurface deformation extends up to a maximum of 150 
μm below the machined surface in Al−2219/15SiC 
composite. However, in the case of Al−2219/15SiC/3Gr 
hybrid composite, it is only about 120 μm. RAJMOHAN 
et al [12] indicated that wear loss of Al/10SiC−3mica 
composite is reduced at the higher mass fraction of mica. 

The most commonly applied techniques in 
optimization are Taguchi technique, artificial neural 
network (ANN), response surface methodology (RSM), 
genetic algorithm, scatter search technique, grey 
relational approach and fuzzy logic approach [13]. 
ANKITA et al [14] applied fuzzy based desirability 
function for optimizing multiple bead geometry 
parameters of submerged arc weldment. KOVAC et al 
[15] predicted surface roughness using fuzzy and 
regression model analysis. DENG [16] proposed a grey 
system to deal with poor, incomplete and uncertain 
output. This system also seemed to solve the complicated 
inter relationships among multiple responses. Grey 
relational analysis is used primarily for multi response 
optimization to obtain corresponding level of input 
parameters for better performance characteristics [17,18]. 
This technique is used for optimization in various 
applications such as drilling [19], turning [20], milling 
[21,22], EDM [23,24] and welding [25−27]. 

The present study uses grey-fuzzy algorithm to 
optimize the machining parameters in turning of 
Al−SiC−Gr hybrid composite. For a given work piece 
and machine tool combination, the performance 
characteristics such as surface roughness, material 
removal rate and flank wear of the tool are influenced by 
the process parameters such as cutting speed, feed rate, 
depth of cut and mass fraction of reinforcement. In order 
to minimize the surface roughness and flank wear of the 
tool and to maximize the material removal rate, an 
optimal setting of input turning parameters is required. 
Grey-fuzzy logic approach provides a viable solution to 
determine optimum setting of machining parameters with 
multi-performance characteristics. 
 
2 Materials and their characteristics 
 
2.1 Materials used 

Aluminium alloy LM25 was used as the matrix 
material and its chemical composition included 7%Si, 
0.35%Mg, 0.45%Fe, 0.13%Cu, 0.08%Zn, 0.01%Ni, 
0.16%Mn, 0.01Pb, 0.05%Ti, and 91.76%Al. The 

presence of silicon content between 7% and 15% in 
aluminium alloy will inhibit the detrimental reaction 
product Al4C3 from SiC. The silicon carbide and graphite 
particles with combined equal mass fraction of 5%, 7.5% 
and 10% were used as the reinforcement materials. SEM 
micrographs of silicon carbide and graphite particles are 
shown in Fig. 1. The silicon carbide particles exhibit in 
the form of solid crystal whereas the graphite particles 
appear to be flakes. The average size and density of 
silicon carbide and graphite particles are 20 μm, 3210 
kg/m3 and 40 μm, 2090 kg/m3 respectively. Al−SiC−Gr 
composite specimens required for the investigation were 
fabricated through compo-casting method. The hardness 
values of aluminium hybrid composites with 5%, 7.5% 
and 10% of SiC−Gr particles are BHN67, BHN 80, BHN 
76 and their corresponding tensile strength values are 
170, 210, 204 MPa, respectively. The higher mass 
fraction of graphite results in decreased hardness and 
tensile strength of Al−SiC−Gr hybrid composite. 
 

 
Fig. 1 SEM micrographs: (a) SiC particles; (b) Gr particles 
 
2.2 Microstructure analysis 

The optical micrographs of Al−SiC−Gr hybrid 
composites are shown in Fig. 2. SiC−Gr reinforcement 
particles influence the solidification pattern of composite 
melt and also lead to the refinement of grains. In 
solidification process, the inclusion of SiC−Gr particles 
resists the growing of α(Al) grains and acts as a grain 
nucleation site. The higher the content of SiC−Gr 
particles is, the more the number of nucleation sites is 
and the more the aluminium grains solidify on it. The 
intra-granular distribution of SiC−Gr particles can be 
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seen from the micrographs of Al hybrid composites, 
which seems to provide better mechanical and 
tribological properties. The distribution of SiC−Gr 
particles in the aluminium matrix is based on the 
solidification process. Since the densities of matrix and 
reinforcement particles are different, the semi-solid state 
of stirring gives a homogenous dispersion of particles. In 
semi-solid state of stirring, the tendency of particles to 
sink or float is retarded due to enhanced viscosity of the 
composite slurry. It is evident from Fig. 2 that the 
SiC−Gr particles are dispersed nearly homogeneously in 
the aluminium matrix. The common casting defects such 
as porosity, shrinkages or slag inclusion are not visible in 
micrographs, which reveals the quality of castings. 
 

 
Fig. 2 Optical micrographs of Al−SiC−Gr hybrid composites: 
(a) Al−5%(SiC−Gr); (b) Al−10%(SiC−Gr) 
 
3 Experimental design and procedure 
 

The experiments were designed based on Taguchi’s 
L27 orthogonal array with 27 experimental runs. The 
process parameters such as cutting speed, feed rate and 
mass fraction of SiC−Gr were selected for conducting 
experiments. The depth of cut was maintained constant 
in all experiments and its value was equal to 1 mm. Table 
1 represents the machining parameters and their levels. 
The castings of Al−SiC−Gr composite specimens were 
machined and reduced to a standard sample with 30 mm 
in diameter and 250 mm in length. The machining tests 
were conducted using an ACE LT2 type of CNC lathe 
under dry turning condition. The tool holder MTJNL 
2525M16 and tungsten carbide tool insert TNMG 
120408 were used. The turning operation was performed 

on Al−SiC−Gr hybrid composites at different levels of 
machining parameters, as per the Taguchi’s L27 
orthogonal array. 
 
Table 1 Machining parameters and their levels 

Parameter Symbol Level 1 Level 2 Level 3

Cutting speed/(m·min−1) A 100 150 200 

Feed rate/(mm·r−1) B 0.075 0.100 0.125
Combined equal mass
fraction of SiC−Gr/%

C 5.0 7.5 10.0 

 
The surface roughness (Ra) was determined using 

Mitutoyo Surf test SJ−201 with a cut-off length of     
0.8 mm and a traverse length of 5 mm. The surface 
roughness values given in this study are the 
mathematical average of two measurements taken from 
the same machined surface. The material removal rate 
(MRR) was determined from the amount of material 
worn during the period of machining. The high precision 
digital balance meter was used to weigh the samples, 
thus ruling out the possibility of errors. For each 
experiment, a new insert tip was used for the turning 
operation. Further, the flank wear of the tool was 
measured with an optical microscope of 1 μm resolution. 
The experimental results are summarized in Table 2. 
 
4 Grey-fuzzy analysis 
 

Grey-fuzzy analysis combines both the grey 
relational approach (GRA) and fuzzy logic theory. In this 
analysis, the multi-objective problem is converted into a 
single-objective optimization using GRA technique and 
further uncertainties in the grey output are reduced by 
fuzzy logic theory. 

While machining Al−SiC−Gr hybrid composites, 
the criteria considered for the best performance are lower 
surface roughness and flank wear, and higher material 
removal rate. Using grey relational approach, the original 
sequence data are first transformed into a comparability 
sequence. Subsequently, grey relational coefficients and 
grey relational grades are determined for all experimental 
runs. In this study, all machining parameters influence 
the responses, so equal weights are assigned to 
parameters. A larger value of grey relational coefficient 
is indicative of a better performance characteristic and 
would be equal to one. The parametric condition 
corresponding to the highest grey relational grade 
represents a minimum value for surface roughness and 
flank wear, and a maximum value for material removal 
rate. However, there is a possibility of certain degree of 
uncertainty in the obtained grey relational grades. These 
uncertainties arise primarily due to vagueness, 
imprecision and lack of information. Fuzzy logic  
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Table 2 Experimental results using L27 orthogonal array 
Level  Actual value Response Exp. 

No. A B C  Cutting speed/(m·min−1) Feed rate/(mm·r−1) Mass fraction of SiC−Gr/% Ra/μm MRR/(g·min−1) Fb/mm

1 1 1 1  100 0.075 5.0 3.8 9.51 0.20

2 1 1 2  100 0.075 7.5 3.4 10.91 0.13

3 1 1 3  100 0.075 10.0 3.1 12.32 0.16

4 1 2 1  100 0.100 5.0 4.4 16.68 0.15

5 1 2 2  100 0.100 7.5 4.2 18.55 0.17

6 1 2 3  100 0.100 10.0 3.9 20.43 0.19

7 1 3 1  100 0.125 5.0 4.9 23.85 0.17

8 1 3 2  100 0.125 7.5 4.5 26.19 0.21

9 1 3 3  100 0.125 10.0 4.4 28.54 0.23

10 2 1 1  150 0.075 5.0 3.5 20.26 0.14

11 2 1 2  150 0.075 7.5 3.0 22.37 0.16

12 2 1 3  150 0.075 10.0 2.5 24.48 0.17

13 2 2 1  150 0.100 5.0 4.0 31.01 0.16

14 2 2 2  150 0.100 7.5 3.8 33.83 0.17

15 2 2 3  150 0.100 10.0 3.5 36.64 0.19

16 2 3 1  150 0.125 5.0 4.6 41.77 0.17

17 2 3 2  150 0.125 7.5 4.4 45.29 0.19

18 2 3 3  150 0.125 10.0 3.9 48.8 0.22

19 3 1 1  200 0.075 5.0 3.0 31.01 0.19

20 3 1 2  200 0.075 7.5 2.8 33.83 0.21

21 3 1 3  200 0.075 10.0 1.6 36.64 0.18

22 3 2 1  200 0.100 5.0 3.5 45.35 0.2 

23 3 2 2  200 0.100 7.5 3.2 49.10 0.24

24 3 2 3  200 0.100 10.0 2.9 52.86 0.25

25 3 3 1  200 0.125 5.0 4.4 59.69 0.25

26 3 3 2  200 0.125 7.5 4.1 64.38 0.27

27 3 3 3  200 0.125 10.0 3.9 69.07 0.30
 
approach seems to offer an effective solution to control 
these uncertainties in grey relational grade. Therefore, a 
fuzzy reasoning of multiple performance characteristics 
is developed and referred to grey-fuzzy reasoning grade. 
The steps in fuzzy logic approach involve fuzzification 
of input data, rule inference and defuzzification process 
[28]. 

The proposed grey-fuzzy algorithm for determining 
the optimal level of machining parameters is illustrated 
in Fig. 3 and the steps involved are summarized below. 

1) The range of parameters is determined and an 
appropriate orthogonal array is adopted to conduct 
experiments. 

2) Responses such as surface roughness, material 
removal rate and flank wear are measured for each 
experiment. These responses are first normalized through 
data pre-processing. Following this, grey relational 
coefficients and grey relational grades are determined 

and listed in Table 3. 
3) Triangular membership function and fuzzy rule 

are established to fuzzify the grey relational coefficient 
ξi(k) of each response. Three fuzzy subsets are assigned 
to the grey relational coefficient of surface roughness, 
material removal rate and flank wear using triangular 
membership function. If−Then rule statement is used to 
formulate conditional statements. It has three grey 
relational coefficients ξ1, ξ2, ξ3, and one multi-response 
output η, which is represented as follows:  
Rule 1: if ξ1 is A11, ξ2 is A12 and ξ3 is A1n, then η is D1, 
else 
Rule 2: if ξ1 is A21, ξ2 is A22 and ξ3 is A23, then η is D2, 
else 
M  
Rule n: if ξ1 is A31, ξ2 is A32 and ξ3 is A33, then η is D3, 
else 

     (1) 
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Fig. 3 Structure of grey-fuzzy integrated algorithm 
 

For the multi-response output η, nine fuzzy subsets 
are used. The range of each fuzzy subset is presented in 
Table 4. Based on the experimental plan, 27 fuzzy rules 
are developed according to the concurrence that a large 
grey relational coefficient would be a better process 
response. 

4) Fuzzy multi-responses output μD0(η) is calculated 
using the max–min interface operation. The inferential 
result in a fuzzy set with a membership function for the 
multi-response output η can be expressed as follows: 
 
μD0(η)=(μA11(ξ1) ∧ (μA12(ξ2) ∧ (μA13(ξ3)∧ (μD1(η)∨  

(μA21(ξ1) ∧ (μA22(ξ2)∧ (μA23(ξ3) ∧ μD2(η)∨  
(μA31(ξ1)∧ (μA32(ξ2) ∧ (μA33(ξ3)∧ μD3(η)        (2) 

 
where ∧  and ∨  are the minimum and the maximum 
operations, respectively. 

5) The grey-fuzzy reasoning grade η0 is calculated 
from fuzzy multi-responses output μD0(η) using the 
following formula: 
 
η0=∑yμD0 (y)/∑μD0 (y)                          (3) 
 

6) The optimal levels of parameters are determined 

Table 3 Grey relational coefficients and grey relational grade 
for each machining experiment 

Grey relational 
coefficient Exp. 

No.
Ra MRR Fb 

Grey 
relational 

grade 

Grey-fuzzy 
reasoning

grade 
Order

1 0.759 0.663 1.000 0.607 0.619 16

2 0.747 0.608 0.945 0.767 0.771 4 

3 0.674 0.494 0.805 0.658 0.674 13

4 0.371 0.362 0.704 0.479 0.512 22

5 0.400 0.383 0.625 0.469 0.474 25

6 0.418 0.380 0.543 0.447 0.481 23

7 0.339 0.403 0.619 0.454 0.476 24

8 0.363 0.410 0.487 0.420 0.467 26

9 0.371 0.424 0.442 0.412 0.439 27

10 0.675 0.589 0.970 0.745 0.750 8 

11 0.750 0.598 0.864 0.738 0.747 9 

12 0.866 0.619 0.832 0.772 0.786 3 

13 0.501 0.533 0.749 0.595 0.624 14

14 0.510 0.539 0.694 0.581 0.596 17
15 0.530 0.544 0.608 0.560 0.566 19
16 0.426 0.593 0.684 0.567 0.592 18
17 0.387 0.572 0.559 0.506 0.563 21
18 0.470 0.647 0.515 0.544 0.565 20
19 0.641 0.539 0.643 0.608 0.621 15
20 0.769 0.648 0.677 0.698 0.714 12
21 1.000 0.839 0.802 0.880 0.891 1 
22 0.668 0.760 0.717 0.715 0.724 10
23 0.708 0.799 0.622 0.710 0.72 11 
24 0.773 0.862 0.618 0.751 0.768 5 
25 0.579 0.968 0.612 0.720 0.753 7 
26 0.660 0.991 0.635 0.762 0.767 6 
27 0.718 1.000 0.633 0.784 0.795 2 

 
Table 4 Range of fuzzy subsets used 

Condition Range Membership function 

Ultra small −0.125−0.125 

Very small 0−0.25 

Small 0.125−0.375 

Low medium 0.25−0.5 

Medium 0.375−0.625 

High medium 0.5012−0.7512 

Low 0.625−0.875 

Very low 0.75−1 

Ultra low 0.8762−1.126 

Triangular 

 
from the response table and then evaluated. 

7) The confirmation test is conducted at the  
optimal setting of machining parameters and results are 
verified. 
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5 Results and discussion 
 
5.1 Grey-fuzzy reasoning analysis 

The process of obtaining grey-fuzzy output by 
integrating grey relational coefficients with fuzzy 
approach is represented as grey-fuzzy reasoning analysis 
and a MATLAB tool was used for this analysis. Each 
grey relational coefficient of surface roughness, material 
removal rate and flank wear is assigned with three 
triangular membership functions, thus amounting to a 
total of nine membership functions for the grey output. 
For activating fuzzy inference system, a set of rules is 
written and evaluated. The grey-fuzzy reasoning grades 
for all 27 experiments are predicted and their order is 
shown in Table 3. A comparison of grey relational grade 
and grey-fuzzy reasoning grade in Table 3 indicates that 
there is a definite improvement in grey-fuzzy reasoning 
grade. This improvement is achieved because of the 
reduced uncertainty in data obtained from grey relational 
approach. Since the fuzziness is reduced, the value of 
grey-fuzzy reasoning grade obtained is found to be 
higher when compared with grey relational grade and 
shows an increase towards the reference value 1. 

The improvement in grade values by applying 
grey-fuzzy analysis is also similar to that by other 
researchers’. LIN et al [23] used grey-fuzzy relational 
analysis for optimizing EDM process with multiple 
responses and concluded that grey-fuzzy relational 
analysis is a direct method when compared with 
fuzzy-based Taguchi method. CHIANG et al [29] 
reported that using grey-fuzzy algorithm, the required 
performance characteristics in die casting process were 
significantly improved. 

In order to find the optimal condition of machining 
precisely, a response table (Table 5) using grey-fuzzy 
reasoning grade has been developed. The values in 
response table are the average sum of grey-fuzzy 
reasoning grade for each level of machining parameters. 
The variation of average fuzzy reasoning grade with 
respect to different levels of machining parameter is 
shown in Fig. 4. The steep slope in the response plot 
indicates that the machining parameter influences the 
performance characteristics to a larger extent. In this 
experimental result, the feed rate is indicated by a steep 
slope with a fuzzy reasoning grade and it has a 
comparatively greater influence when compared with 
other parameters. The grade value increases in proportion 
to the cutting speed up to the second level, after which 
the grade value shows only a gradual increase towards 
multi-performance. At high cutting speed even though 
surface roughness is reduced, it results in increased flank 
wear of the tool. The heat produced at the 
machining interface is more at high cutting speed and 

Table 5 Response table for grey-fuzzy reasoning grade 

Parameter Level 1 Level 2 Level 3 

Cutting speed (A) 0.5673 0.6429 0.6900 

Feed rate (B) 0.7518 0.6771 0.6013 
Mass fraction of 

SiC−Gr (C) 
0.6212 0.6466 0.6624 

 

 

Fig. 4 Response graphs for different levels of machining 
parameters: (a) Cutting speed; (b) Feed rate; (c) Mass fraction 
of SiC−Gr 
 
this in turn, softens the tool tip. An increase in mass 
fraction of SiC−Gr shows an increase in fuzzy reasoning 
grade. Therefore, machining Al−SiC−Gr hybrid 
composite with a higher mass fraction of SiC−Gr 
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particles results in better multi-performance 
characteristics. 

The highest value of grey-fuzzy reasoning grade η0 

in the response table indicates the optimal level of 
machining parameters. Since grey-fuzzy reasoning grade 
represents a level of relationship between reference 
sequence and objective sequence, a greater value of 
grey-fuzzy reasoning grade indicates the existence of 
strong correlation among them. The optimal parameter 
setting can be specified as follows: cutting speed at level 
3 (200 m/min), feed rate at level 1 (0.075 mm/r) and 
mass fraction of SiC−Gr at level 3 (10%). 
 
5.2 Effect of machining parameters and responses on 

grey-fuzzy reasoning grade 
The influence of machining parameters and grey 

relational coefficients of responses on the grey-fuzzy 
reasoning grade is shown in Figs. 5 and 6, respectively. It 
can be observed from Fig. 5 that the highest and lowest 
values of grey-fuzzy reasoning grades are obtained at  
 

 
Fig. 5 Effect of grey-fuzzy reasoning grade on machining 
parameters: (a) Feed rate and cutting speed; (b) Feed rate and 
mass fraction of SiC−Gr; (c) Mass fraction of SiC−Gr and 
cutting speed 

 

 
Fig. 6 Variation of grey-fuzzy grade based on grey relation 
coefficient of responses: (a) MRR and Ra; (b) Fb and MRR; (c) 
Fb and Ra 
 
interaction levels A3B1, B1C3, A3C3 and A1B3, B3C1, A1C1 
respectively. 

Based on the results, it can be inferred that surface 
roughness reduces with an increase in cutting speeds; 
however, an increase in feed rate results increases 
surface roughness. The surface roughness is mostly 
affected by build-up edge formation (BUE) at the tip of 
insert. The BUE and chip fracture are developed at low 
speeds, which readily induces roughness. The surface 
roughness decreases as the speed increases due to the 
disappearance of BUE and chip fracture. The result is in 
agreement with results of PALANIKUMAR and 
KARTHIKEYAN [6]. Normally, at a high cutting speed, 
the force induced in machining increases which cuts the 
hybrid MMCs smoothly and results in lower surface 
roughness. In machining of hybrid Al−SiC−Gr 
composite, a low level of feed rate is preferred because 
an increase in feed rate increases the tangential force and 
heat generation during turning operation. This increase in 
tangential force bends the material to a great extent 
before the interfacial bond crack progresses, finally 
resulting in a higher surface roughness. Similar resulting 
have also been obtained by PAULO DAVIM [30] during 
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turning operation; the surface roughness value is directly 
proportional to an increase in feed rate and is inversely 
proportional to cutting speed. From Figs. 5(b) and (c), it 
can be observed that an increase in mass fraction of 
SiC−Gr increases grey-fuzzy reasoning grade which 
represents decrease in surface roughness. This can be 
attributed to the increase in brittleness of hybrid 
composite and subsequently the build-up edge 
disappears. 

The material removal rate increases with an increase 
in cutting speed, feed rate or mass fraction of SiC−Gr 
particles. The inclusion of SiC in metal matrix was 
reported to increase the hardness, tensile strength and 
heat resistance of the aluminium alloy. A higher mass 
fraction of SiC induces more flank wear of the tool, 
simultaneously resulting in a minimum material removal 
rate [6]. The MRR of the graphite particulate composite 
is better than that of the ceramic particles reinforcement. 
The increase in mass fraction of Gr particles reduces the 
ductility and hardness of Al−SiC−Gr hybrid composites. 
Therefore, machining of Al−SiC−Gr hybrid composites 
with a higher mass fraction of graphite is easy with a 
maximum MRR and less tool wear. 

When cutting speed and feed rate are increased, the 
rubbing action between the tool and work piece also 
tends to become faster. This produces more heat during 
minimum period of tool contact. The generation of heat 
on flank side softens the edge, leading to increased wear. 
The addition of graphite particles reduces flank wear of 
the tool due to the formation of tribo-layer. Some of the 
crushed or removed graphite particles trapped between 
flank face of the tool and machining surface, and reduced 
friction at the machining interface. 

Al−10%(SiC−Gr) has better machinability with a 
minimum surface roughness, flank wear and a maximum 
MRR under all cutting conditions when compared with 
MMC with 5% and 7.5% of SiC−Gr reinforcement. At 
the cutting speed of 200 m/min, feed rate of 0.075 mm/r 
and 10% of SiC−Gr, the overall machining performance 
is better which also reflects higher grey-fuzzy reasoning 
grade. 
 
5.3 Confirmation experiment 

The confirmation experiment is the final step to 
verify the improvement of performance characteristics at 

optimal level of machining parameters. After 
determining the optimum conditions, a new experiment 
was conducted. The predicted grey-fuzzy reasoning 
grade is calculated as follows:  

∑
=

−+=
n

i 1
0m0predicted )( ηηηη                     (4) 

 
where η0 is the total mean of grey-fuzzy reasoning grade; 
ηm is the mean of grey-fuzzy reasoning grade at the 
optimal level of significant parameters A, B and C; n is 
the number of significant parameters that affect the 
performance characteristic and is assigned as 3. The 
confirmation test results are shown in Table 6, and reveal 
that the surface roughness reduces from 3.8 to 1.6 μm, 
and the flank wear of the tool from 0.20 to 0.18 mm, 
while the material removal rate improves from 9.51 to 
36.64 g/min. The predicted grey-fuzzy reasoning grade is 
the nearest to the experimental value. A higher 
grey-fuzzy reasoning grade in optimal setting, confirms 
the enhancement in multi-performance characteristics. 
The increase in mass fraction of graphite in the 
composite avoids sticking of Al alloy with insert tip and 
in turn increases the tool life. Under optimum machining 
condition, the tool life is also found to be improved. 

An examination of the machined surface (Fig. 7) 
under the optimum machining condition (A3B1C3) reveals 
the presence of few micro cracks, particle pull-out and 
shearing of particles which normally induce surface 
roughness. The deformation and micro cracks seem to 
multiply at those regions of dislocation pile-up. The 
micro cracks thus form, tend to progress and finally end 
as they meet the reinforcement particle in their path. In 
machining process, plastic deformation occurs and 
graphite particles tend to smear over the machined 
surface due to low interfacial strength. This smeared 
graphite particles over the machined surface improve the 
surface finish. The micrograph in Fig. 8 reveals distinct 
abrasive wear grooves on the flank face while turning 
hybrid AMCs with 10% of SiC−Gr at a cutting speed of 
200 m/min and feed rate of 0.075 mm/r. This abrasive 
wear is caused by the presence of hard abrasive SiC 
particles in the hybrid aluminium composite. The ridges 
and grooves are also induced by this particle on the flank 
face of tool. The grooves formed on the flank face are 
deposited with Al matrix material, which acts as a shield 
and prevents further major abrasive wear. 

 
Table 6 Results of machining performance with initial and optimal setting of parameters 

Item Setting 
level 

Surface 
roughness/μm 

Material removal 
rate/(g·min−1) 

Flank wear of 
tool/mm 

Tool 
life/min

Grey-fuzzy 
reasoning grade 

Grade 
improvement 

Initially A1B1C1 3.8 9.51 0.20 38 0.619  

Predicted A3B1C3 − − − − 0.882 0.263 

Experimental A3B1C3 1.6 36.64 0.18 43 0.891 0.272 
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Fig. 7 SEM micrograph of machined surface under optimum 
machining condition (A3B1C3) 
 

 
Fig. 8 SEM micrographs of flank wear under optimum 
machining condition (A3B1C3): (a) Lower magnification; (b) 
Higher magnification 
 
6 Conclusions 
 

1) The semi-solid state of processing allows 
uniform distribution of SiC and Gr particles in 
aluminium matrix. The hardness of aluminium hybrid 
composite with 5%, 7.5% and 10% of SiC−Gr particles 
are BHN67, BHN80, BHN76 and their corresponding 
tensile strength values are 170, 210, 204 MPa, 
respectively. Al−10%(SiC−Gr) provides better 
machinability with a minimum surface roughness and 
flank wear, and a maximum MRR under all cutting 
conditions when compared with AMCs with 5% and 
7.5% of SiC−Gr. 

2) Implementation of fuzzy logic approach in a grey 
system offers improved grey-fuzzy reasoning grade and 

minimizes uncertain output. The recommended levels of 
turning parameters to minimize surface roughness and 
flank wear, and to maximize material removal rate are: 
cutting speed of level 3 (200 m/min), feed rate of level 1 
(0.075 mm/r) and mass fraction of SiC−Gr of level 3 
(10%) and at a constant depth of cut of 1 mm. An 
increase in grey-fuzzy reasoning grade from 0.619 to 
0.891 confirms the improvement in performance 
characteristics at optimal level of process parameters. By 
increasing the number of process parameters and 
experiments, accuracy and effectiveness of grey-fuzzy 
approach could be further improved. 
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摘  要：石墨颗粒增强金属基复合材料能够提供更好的切削加工性能和摩擦性能。用灰度模糊算法优化 Al−SiC−Gr

混合金属基复合材料的加工参数，以获得到具有优秀综合性能的材料。当混合金属基复合材料中 SiC−Gr 的质量

分数分别为 5%、7.5% 和 10%时，对应的拉伸强度分别为 170、210 和 204 MPa。另外，与另外 2 种材料相比，

Al−10%(SiC−Gr) 复合材料具有更好的切削加工性能。与其他的灰度技术相比，灰度模糊逻辑算法在输出方面提

高了推理的合理性，降低了不确定性。实验结果表明，在设置的相同加工参数下，与其他的灰度技术相比，灰度

模糊逻辑算法的推理合理性从 0.619 提高到 0.891，且同时保证材料具有更好的综合性能。 
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